
Lithuanian Journal of Physics, Vol. 46, No. 4, pp. 459–467 (2006)
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The electron spin transport along a semiconducting quantum wire connected to spin-unpolarized electron reservoirs and
the spin filtering properties of the wire are investigated. The wire is immersed in a magnetic field that is perpendicular to the
wire axis and substrate plane on which the wire is grown. The lateral confining potential is assumed to be parabolic. The
spin–orbit interaction is included via Rashba Hamiltonian that in conjunction with the Zeeman Hamiltonian determines the
spin conductance of the wire. Dependences of the spin current and conductance on the voltage applied over the ends of the
wire as well as on the magnetic field strength are analysed.
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1. Introduction

The controllable manipulation of electron and hole
spins by electric and magnetic fields is a central theme
in spintronics. One way to achieve this is via an in-
trinsic spin–orbit interaction in semiconductors. Two
types of spin–orbit interaction are known in the litera-
ture. The first arises in bulk semiconductor compounds
which do not have inversion symmetry [1]. The second
arises in heterostructures that lack structural inversion
symmetry [2, 3]. An important property of new semi-
conducting nanodevices related to structural asymme-
try is the possibility to manipulate the strength of the
asymmetry (or Rashba interaction) by external voltages
as demonstrated experimentally in Refs. [4, 5].

In this article the spin filtering properties of the
quantum wire (QWR) that lacks structural inversion
symmetry is studied. The wire is assumed to be con-
nected to two unpolarized reservoirs kept at thermal
equilibrium but at unequal chemical potentials. When
the Rashba and Zeeman Hamiltonians are included, the
electrical current between the reservoirs appears to be
spin polarized due to spin filtering in the quantum wire.
In this article the properties of the spin current which is
proportional to voltage are investigated as functions of
the externally applied voltage and magnetic field in the
nanowire.

Fig. 1. Model of the quantum wire. The wire (thick central line)
on xy plane is defined by two split gates (outer rectangles along
the wire) on the 2D electron gas surface. The magnetic field B is
perpendicular to the plane. The confining potential that forms the
wire in y direction is proportional to x2. The voltage between the
ends of the wire is applied via 2D pads (not shown) that make an

integral part of the film with 2D gas.

2. QWR model

We shall assume that the quantum wire has been
formed on a two-dimensional (2D) film filled with 2D
electron gas. The wire on the film can be defined by
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two gates on both sides of the wire, Fig. 1. The Hamil-
tonian that describes the behaviour of noninteracting
electrons in the wire reads:

H =
(p + eA)2

2m∗
+ V (x) + V (z) +HZ +HR

≡H0 +HR , (1)

where p = (px, py, pz) is the linear momentum, with
components px and py being in the film plane, and m∗

is the effective electron mass. The magnetic induction
B is assumed to be directed along the z axis. B is
present in the Zeeman Hamiltonian HZ and in the ki-
netic term. In the latter it is described by the vector
potential in the Landau gauge A = (0, Bx, 0), where
B = |B|. The electron can freely propagate only in y
direction, Fig. 1. The voltage between the split gates is
assumed to induce a parabolic lateral confining poten-
tial V (x) in the x direction,

V (x) =
m∗ω2

0x
2

2
, (2)

where ω0 is an oscillator frequency. The triangular,
or close to triangular potential V (z) between the sub-
strate and the film with 2D electron gas is assumed to
be strong enough, so that only the lowest energy level
related to V (z) is occupied by electrons. In the follow-
ing the total electron energy will be referenced relative
to this lowest energy level. By this reason the depen-
dence on z coordinate in the Hamiltonian (1) can be
neglected altogether.

Apart from the kinetic term, the spin controlling
properties in the Hamiltonian (1) also enter via the Zee-
manHZ and RashbaHR terms. The Zeeman spin split-
ting Hamiltonian is

HZ =
1

2
g∗µBBσz , (3)

where g∗ is the effective magnetic factor (effective
Landé g factor) and µB is the Bohr magneton, µB =
e~/2m0, with bare electron mass m0. For electrons
g∗ = −0.44 in GaAs, g∗ = −1.9 in InP, g∗ = −7.8
in GaSb, g∗ = −15 in InAs, g∗ = −51 in InSb. The
spin quantization axis is thought to be aligned along B

as indicated by diagonal Pauli matrix σz . The Rashba
Hamiltonian [2], the origin of which is related to the
structural asymmetry in z direction, is

HR =
α

~
[σx(py + eBx) − σypx] . (4)

Here α is the Rashba constant. As concerns the spin–
orbit interaction, apart from the Rashba there is also a
bulk-related contribution [1]. The latter is also called

the Dresselhaus contribution and is associated with
the absence of an inversion symmetry in a compound,
for example a zinc-blende-type semiconductor. The
Rashba contribution usually dominates in narrow-gap
materials and nanostructures considered here.

The Schrödinger equation with the Hamiltonian (1)
is separable in x and y coordinates, so that its solution
can be factorized in the following way:

Ψ(x, y) = ψ(x) exp(ikyy) . (5)

Here ψ(x) is the transverse part of the wave function
and the exponent describes the running waves with the
wave vectors ky along the wire. Substitution of (5) into
the unperturbed part H0 of (1) gives one-dimensional
Hamiltonian of the shifted harmonic oscillator plus a
constant (independent of x) term:

H0 =− ~
2

2m∗

d2

dx2
+
m∗ω2

2
(x− x0)

2 +
ω2

0

ω2

~
2k2

y

2m∗

+
1

2
gµBBσz , (6)

where ω =
√

ω2
0 + ω2

c is the effective oscillator fre-
quency. The shift is x0 = (1 + ω2

0/ω
2
c )

−2(~ky/eB),
where ωc is the cyclotron frequency, ωc = eB/m∗.
The shift is due to magnetic field. It vanishes when
B → 0. The solution of the unperturbed Hamilto-
nian (6) is given by [6]

ψ(0)
nν (x) =

(

m∗ω

π~

)1/4 e−m∗ω(x−x0)2/2~

√
2nn!

×Hn



(x− x0)

√

m∗ω

~



χν . (7)

In (7), Hn(ξ) is the Hermite polynomial of the order
n = 0, 1, 2, . . . and χν is the spin eigenstate with the

spin projection ν on the z axis, χ↑ =

(

1
0

)

and χ↓ =
(

0
1

)

. The corresponding energy eigenvalues are given

by

E
(0)
n↑,↓ = ~ω

(

a†nan +
1

2

)

+
ω2

0

ω2

~
2k2

y

2m∗
± 1

2
gµBB , (8)

where a†n and an are the standard raising and lowering
operators, a†nan is the number operator with the eigen-
values n = 0, 1, 2, . . ., and ± signs correspond to up
and down spins with respect to B. The first term in (8)
describes the discrete oscillator energies, the second
term shows that every discrete level is associated with
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a parabolic band, and the last term indicates that in the
magnetic field the parabolic bands are split for the up
and down spin states. The coefficient at k2

y shows that
in the subband dispersion, in fact, the effective massm∗

has been replaced by m∗(1 +ω2
c/ω

2
0), i. e. the effect of

the magnetic field is to increase the effective mass of
the electron that propagates along the wire. As a re-
sult, at high magnetic fields as we shall see the bands
become flat.

The Hamiltonian H0 with the Rashba term HR ne-
glected and the corresponding basis (6) will serve as a
starting point in finding the dispersion and spin prop-
erties of the full Hamiltonian (1). The investigation
shows that it is possible to obtain a good quantitive de-
scription of the lower energy bands of the wire if the
truncated Hilbert space characterized by a finite oscil-
lator number n is used [7, 8, 9, 10]. This is so because
at n 6= n′ and in the basis χ↑,↓ the matrix elements
〈ψnν(x)|HR|ψn′ν′(x)〉 of the Rashba Hamiltonian

HR = α



















0 ky+B

√

~

2m∗ω
A++

√

~m∗ω

2
A−

ky+B

√

~

2m∗ω
A+−

√

~m∗ω

2
A− 0



















,

(9)
where A± = a ± a† couple only the adjacent energy
bands (8), i. e., due to properties of the lowering and
raising operators one has 〈ψm|a|ψn〉 = δm,n−1

√
n and

〈ψm|a†|ψn〉 = δm,n+1

√
n+ 1 . Thus, when the quan-

tum numbers n and m are large enough the truncation
error in the highly excited states will reduce to neg-
ligibly small error for the ground and low-lying en-
ergy states. The neighbouring oscillator levels n ± 1
will be coupled only if the unperturbed spinors pos-
sess oppositely directed spins in the matrix element
〈n, ν|HR|n ± 1, ν ′〉, where |n, ν〉 ≡ ψ

(0)
nν (x). Apart

from m = n ± 1 perturbation terms, there also appear
m = n terms that couple the opposite spins, too. This
perturbation on the diagonal matrix elements is related
to the wave vector ky and is given by 〈n, ↑ |HR|n, ↓〉 =
α(1 − ω2

c/ω
2)ky. The appearance of the cyclotron fre-

quency in this expression comes from x0.
Combining the diagonal part given by (8) and the

coupling elements 〈n, ν|HR|m, ν ′〉, a large matrix was
constructed which was then diagonalized or used to
find the exact eigenfunctions numerically. Since the
spin in the diagonalized in this way Hamiltonian is
not a good quantum number, in the following the ex-
act eigenfunctions ψl that correspond to energy bands

l will be numbered by their increasing eigenvalues (en-
ergies) l = 1, 2, . . . rather than by their oscillator and
mixed spin numbers. In the numerical calculations
and analysis it is convenient to introduce the following
characteristic lengths related to the oscillator ω0 and
cyclotron ωc = eB/m∗ frequencies and to the Rashba
constant α:

L0 =

√

~

m∗ω0
, LZ =

√

~

m∗ωc
, LR =

~
2

2m∗α
.

(10)
The oscillator length L0 gives a characteristic spread-
ing of the electron wave function in the transverse di-
rection. The magnetic length LZ is equal to the radius
of the skipping electron trajectory along the wire at
electron energy ~ωc/2 [11]. For parameters of InAs
(m∗/m0 = 0.04, α = 10−11 eV m, g∗ = −8) at
L0 = 31 nm and B = 1 T one has LZ = 25.6 nm
and LR = 95 nm.

Figure 2 shows the spectrum of the QWR at three
characteristic strengths of the magnetic field. Here and
in all subsequent figures the energy is measured in units
of ~ω0 and the wave vectors in units of L−1

0 . For InAs
at L0 = 31 nm one has ~ω0 = 2 meV. At high mag-
netic field the bands are flat (Fig. 2(a)) and the adja-
cent energy levels carry opposite spins, the directions
of which are either parallel or antiparallel to B. This
can also be seen in Fig. 3, where the average spin Carte-
sian components of the two lowest bands are plotted as
functions of the wave vector. It is seen that 〈σz〉 compo-
nent predominates and has opposite signs in Fig. 3(a b).
At high magnetic fields the influence of band mixing
due to Rashba term (9) is small and the spectrum is
described mainly by the first and the last terms in the
dispersion (8). At intermediate magnetic fields the flat-
tening effect of B becomes smaller and, as a result,
in (8) the quadratic in ky term makes the dispersion
closer to parabolic as seen in Fig. 2(b). The bands still
remain spin-split along the vertical axis by the Zeeman
term, although the average spins now are not in pure
states (compare with Fig. 5). In weak and zero mag-
netic fields the Rashba term prevails, what causes the
bands with opposite spins to split along the horizontal
axis, i. e. along the wave vector axis. At higher ener-
gies, as seen in Fig. 2(c), the band crossing takes place
in this case.
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(a) (b) (c)
Fig. 2. The characteristic spectra of the wire at three magnetic field strengths: (a) high magnetic field, LZ = 0.35, (b) intermediate, LZ = 1,
and (c) zero magnetic field, LZ → ∞. The energy is normalized by the oscillator energy ~ω0 and the wave vector by transverse oscillator

length L0. The other parameters are L0 = 1, LR = 1.

(a) (b)
Fig. 3. Average spin components versus wave vector for the (a) ground and (b) first excited energy bands at high magnetic field. For

respective pairs of bands at higher energies the dependencies have similar character. LR/L0 = 3, LZ/L0 = 0.35.

3. Spin transport

3.1. Spin conductivity

The spin current will be defined as the transporta-
tion of electron spin in a real space, when the average
spin direction during movement along the wire remains
unchanged. Thus, for an electron occupying a single
energy band, the spin current related to spin projection
i = x, y, or z can be written as

Is
i =

d〈si〉
dt

=
~

2

∞
∫

−∞

〈ν|σi|ν〉vν(k)fν(k) dk , (11)

where 〈ν|σi|ν〉 is the average spin in the eigenstate |ν〉
that must be found from the wire Hamiltonian, vν(k) is
the electron velocity along the wire at the wave vector
k, and fν(k) is the distribution function. The factor ~/2
comes from the relation si = ~σi/2 between the spin si

and Pauli σi matrices. As mentioned, it is supposed that
during electron movement from one to other reservoir
the spin does not change with time, otherwise a more
refined definition of the spin current is required [12]. If
1D channel supports only those injected electrons that
move in the positive direction, then the lower limit in
the integral (11) is zero, i. e. k = ky = 0 for the con-
sidered energy band. If, in addition, the temperature is
low enough so that the electron concentration is zero at
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energies E > EF, where EF is the Fermi energy, then
the spin current reduces to

Is
i =

~

2

EF
∫

0

〈ν|σi|ν〉vν(E)fν(E)Nν(E) dE , (12)

where Nν(E) is the density of states. For a parabolic
dispersion law, E = ~

2k2/2m∗, the electron velocity
is v = ∂E/∂(~k) = ~k/m∗. Then the corresponding
density of states becomes

N(E) =

√

m∗

2π~E
=

1

π~v
. (13)

Remembering that at zero temperature fν(E) = 1
when the energy E is below the Fermi energy EF, the
equation (12) can be reduced to

Is
i =

1

2π

EF
∫

0

〈ν|σi|ν〉 dE , (14)

where the well-known cancellation of the velocity and
density of states was used. When the electron is in a
pure spin state, for example, aligned with the z axis,

the eigenstates in (14) are |ν〉 =

(

1
0

)

or |ν〉 =

(

0
1

)

.

However, in general case, when a universal quantiza-
tion axis cannot be defined, the average spin 〈σi〉 =
〈ν|σi|ν〉 depends on the wave vector k and, therefore,
on electron energy E. The energy interval 0–EF in
the integral (14) can be expressed as a difference be-
tween the electrochemical potentials µ1 and µ2 in left
and right electron reservoirs connected to 1D conduc-
tor: EF = µ1 − µ2 = −eV , where V is the voltage
applied between the reservoirs. In accordance with the
arguments of Landauer, Büttiker, and Imry [13–15], it
is assumed that there is no potential drop in the chan-
nel. The potential drop that is associated with a fi-
nite resistance occurs at the connections to the reser-
voirs, and V is supposedly divided equally between
the two tapered connectors. This is essential, since the
conduction can be calculated after specifying the lo-
cation where the potential drop occurs [15]. The in-
tegral in (14) can be evaluated if the dependence of
spin on the wave vector magnitude and direction is
known. For continuous functions, according to the
mean value theorem [16], the integral can be written
as e〈ν(µ)|σi|ν(µ)〉V , where µ is the energy in the in-
terval µ1–µ2. Since the wire acts as a spin filter that al-
lows the propagation of electronic waves having a well-
defined energy (related to k via the dispersion relation),

we shall assume that µ = eV/2. Then, the spin conduc-
tivity (or conductance, since it appears to be indepen-
dent of sample dimensions) related to a single energy
subband will be

Gs
i =

Is
i

V
=

e

2π
〈ν(µ)|σi|ν(µ)〉 . (15)

In a pure spin state, |ν〉 =

(

1
0

)

or |ν〉 =

(

0
1

)

,

one has 〈ν(µ)|σi|ν(µ)〉 = ±1 or 0. In this case
from (15) follows that an elementary spin conductance
is Gs

i = ±e/2π. If electron can propagate in two chan-
nels that support oppositely directed spins then the total
spin current will be zero due to cancellation of spins.
Thus, in pure states the total spin conductance will be
zero either due to spin cancellation in adjacent channels
that carry opposite spins, or when the spin is perpendic-
ular to the quantization axis.

The obtained spin conductance (15) for a single
channel (subband) can be generalized to multiband
case. When one has n energy subbands, with the nth
subband having j local extrema ξ(j)

n , the total spin con-
ductivity then becomes the sum over the subbands and
extremal points

Gs
i = Gs

0

∑

n,j

〈νn(µ− ξ(j)n )|σi|νn(µ− ξ(j)n )〉

×Θ(µ− ξ(j)
n ) sgn(m∗(j)

n ) , (16)

where Gs
0 = e/(2π) and the signum function accounts

for the type of the extremal point. It is positive for en-
ergy minimum and negative for energy maximum. The
Heaviside Θ-function takes into account the open chan-
nels at a given applied voltage. The formula (16) is
analogous to the quantized electrical conductance for-
mula, therefore, its domain of applicability is similar,
as discussed in Ref. [17]. Normally, with the increase
of V the signs of spin projections in the “opened” bands
alternate, and as a result, the spin conductance, in con-
trast to the electrical conductance, as we shall see,
will have an alternating character. From the compar-
ison of expression (16) with the analogous formula for
quantized electrical conductance (see, for example, the
book [11]) it can be concluded that the measurements
of spin conductance may give more information on 1D
band properties, since the average spin magnitude also
depends on the applied voltage, whereas in the analo-
gous formula for electrical conductance, instead of the
average spin the constant (elementary charge) appears.
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(a) (b)
Fig. 4. The average (a) x and (b) z components of the normalized spin conductivity as functions of the normalized Fermi energy difference

µ (or applied voltage) between the ends of the wire. LR/L0 = 3, LZ/L0 = 0.35.

(a) (b) (c) (d)
Fig. 5. Average spins versus wave vector at intermediate magnetic field for the four lowest subbands at LR/L0 = 1, LZ/L0 = 1. The

numbers on the panels correspond to increasing subband energies (numbers).

3.2. Spin conductivity versus voltage at various
magnitudes of B

As mentioned, at high magnetic fields the spectral
and spin properties are determined mainly by Zeeman
rather than Rashba Hamiltonian, as a result at high
magnetic fields the spin is aligned along or against
B direction. Figure 3 shows spin projections in two
lowest energy subbands, which as can be seen from
Fig. 2(a) are flat, i. e. nearly independent of ky. The
origin of the flatness, as explained earlier, comes from
the unperturbed Hamiltonian (6). Similar picture was
observed for higher energy bands. In agreement with
the earlier investigations [7, 8, 9, 10], the electrical con-
ductivity was found to increase in steps with the volt-
age amplitude. Appearance of a new step reflects the
switching on of a new mode (conducting channel),
where an extra electron can propagate along the wire.
Since the total spin is equal to sum of individual spins
of all open channels, while the adjacent channels carry
opposite spins, the resulting spin conductance Gs

i con-
sists of nearly equal amplitude pulses whose spins are
parallel to z axis, Fig. 4. The pulse length is equal to
energetic distance between two bands that carry oppo-
site spins. The spin is equal zero when the number of
bands that are open is even. As noted in Ref. [7], in the
limit B → ∞ the considered model converges to the

exactly integrable Jaynes–Cummings model, one of the
most simple models that couples the boson mode and a
two-level system.

In Figs. 3 and 4 the ratio of characteristic lengths is
LR/L0 = 3, LZ/L0 = 0.35. In InAs the Rashba length
is LR = 95 nm, then, at the oscillator quantum ~ω0 =
0.02 meV (or L0 = 317 nm, the length that roughly
defines the current carrying strip width in Fig. 1) the
magnetic induction is found to be B = 0.054 T. If
the characteristic oscillator length is decreased to L0 =
31.7 nm (~ω0 = 2 meV) then B = 5.4 T.

The average spin component along the wire axis in
all cases was found to vanish, i. e. 〈σy〉 = 0. This
is seen in Figs. 3 and 4 and in all subsequent figures.
This means that independent of the wave vector the to-
tal electron spin is perpendicular to the wire axis. This
property is associated with the symmetry of the Hamil-
tonian, which in our case is real and symmetric. The
eigenvalues of such Hamiltonian are real too, what im-
plies zero y component of the spin.

At intermediate magnetic fields the spectrum and
spin properties are determined by both Rashba and Zee-
man Hamiltonians. The spectrum in this case appears
to be more or less parabolic, Fig. 2(b). The spin com-
ponents 〈σx〉 and 〈σz〉 on average are of a comparable
magnitude as can be seen from Fig. 5. Since at ky = 0
the Rashba term (4) vanishes, the spin is directed along
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(a) (b)
Fig. 6. Dependence of x and z components of the normalized spin conductivity on the Fermi energy difference between the ends of the wire

at intermediate magnetic field. LR/L0 = 1, LZ/L0 = 1.

(a) (b)
Fig. 7. (a) Dependence of z component of the normalized spin conductivity on the Fermi energy difference at intermediate magnetic field
which is 4 times weaker than in Fig. 6. The panel (b) shows contributions of the first eight channels to the total spin in the panel (a).

LR/L0 = 1, LZ/L0 = 2.

(a) (b)
Fig. 8. Average spin projections versus wave vector at magnetic field close to zero. To emphasize the symmetry, the pairs of spins of the

adjacent bands, panels 1–2 in (a) and panels 3–4 in (b), are plotted on the same panel. LR/L0 = 1, LZ/L0 = 1000.

magnetic field, i. e. along z axis for all subbands near
the point ky = 0. At larger wave vectors the oscil-
lations of the spin projections are associated with the
oscillations of the excited wave functions of the shifted
oscillator. The variation of spin projections with ky in
Fig. 5 is also mirrored in the spin dependence on the
applied voltage, Fig. 6. The component 〈σz〉 still has
a pulsed character, with the abrupt changes of the spin
magnitude at the crossings of the Fermi level with next
higher energy subband minima, whereas 〈σx〉 compo-
nent, due to contribution of the adjacent bands (chan-

nels), does not reduce to zero and even may be larger
than that for a single channel. Thus, the compensation
of the total spin after switching on of a new subband
in this case is not complete. This reflects the property
that under the action of Zeeman and Rashba Hamilto-
nians the spin is not in one of the pure up- or down-
spin states χ↑,↓ and the average spin in different bands
changes in a different manner versus ky, Fig. 5. From
this follows that the measurement of the spin current
or conductance as a function of the voltage applied be-
tween the reservoirs may give new information on the
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Fig. 9. Dependence of the x component of the normalized spin
conductivity on the Fermi energy difference. The z spin component

Gs

z
is zero in this case. LR/L0 = 1, LZ/L0 = 1000.

properties of 1D system. Recently there was proposed
a method how to determine the spins of charge carri-
ers transported in wires [18]. In the method a pair of
closely spaced point contacts were used to measure the
spin polarization of valence band holes. The holes were
injected from the end of one wire and collected by the
other, adjacent wire. The spin polarization as high as
40% was detected with this system.

Figure 7 illustrates the z component of spin conduc-
tance versus wave vector along with the contribution by
various channels (panel (b)) to the total conductance
at the intermediate magnetic field, which is fourfold
weaker than in Fig. 6. Since at ky = 0 the z component
is the largest (cf. Fig. 5), the opening of the nth chan-
nel is accompanied by the appearance of a new term
〈σz〉n and a peak in the total spin conductance. In con-
trast, the x component of the total spin conductance is
found to be continuous (see, for example, the panel (a)
in Fig. 5), since at ky = 0 the Rashba term is ineffective
and as a result 〈σx〉n = 0 when ky = 0.

Finally, at zero (or close to zero) magnetic field the
Rashba interaction prevails, Figs. 8 and 9. The spin-
splitting of the energy bands in this case is along hor-
izontal axis rather than along vertical (energy) axis as
seen in Fig. 2(c). The splitting is the larger the larger
Rashba constant α is. In the absence of a magnetic field
one finds 〈σy〉n = 〈σz〉n = 0, and as a result, after the
switching on of a new channel the x component of the
total spin suffers a discontinuity and the total spin re-
mains parallel to x axis for all values of the voltage over
the wire.

4. Summary and conclusions

Spectrum, wave functions, and transport of spin
along the quantum wire connected to two unpolarized
electron reservoirs at zero temperature were analysed.
The Rashba interaction, which is due to wire structural
asymmetry, and the Zeeman interaction determine the
injected from the reservoir spin properties in the con-

ducting channel. These two mechanism fix the elec-
tron spin in the plane perpendicular to the wire axis.
The transport properties in the states where the elec-
tron has a well-defined energy in the occupied subband
was considered only. The interference between closely
lying channels was neglected. Due to mixing between
Zeeman and Rashba Hamiltonians, the resulting spin
of individual channels depends on the oscillator quan-
tum number and electron propagation wave vector. As
a result, the total spin current along the wire (or equiva-
lently the spin conductance) was found to be a compli-
cated function of the applied external voltage. Only at
high magnetic fields, when the Zeeman term dominates
and the spin is in a pure ±~/2 state, the total transferred
between the reservoirs spin acquires a toothed structure
with teeth amplitude ~/2 as the voltage is increased. In
general, due to Rashba and Zeeman interaction, spin
projections are in mixed states. This is reflected in the
spin transport, which in its turn may be used to extract
spin-related physical properties of the wire.

The standard methods of finding the electron spec-
trum in nanostructures are based on measurement of
the quantized conductance or quantized Hall voltage as
a function of bias or magnetic field [11]. The above
discussed spin filtering properties of the quantum wire
can also be adapted to determine the spectrum of nano-
structures. This was recently demonstrated using the
pairs of quantum wires subjected to external magnetic
field [18, 19]. In addition, it should be noted that
the quantum wire that carries the uncompensated elec-
tronic spin at the same is magnetized. Measurement
of the magnetization of the wire with the help of small
stripes of magnetic material deposited across the wire
also may give useful information on the spectrum and
magnetic properties of the wire. Alternatively, the in-
tegrated micromechanical magnetometer may be used
for this purpose as demonstrated recently for 2D elec-
tron gas [20].
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KVANTINĖS VIELOS SUKININIS LAIDUMAS

A. Dargys

Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka
Išnagrinėta elektrono sukinio pernaša išilgai kvantinės vielos,

kurios galai prijungti prie nepoliarizuotų elektronų rezervuarų, taip
pat išnagrinėti kvantinės vielos sukinio filtravimo ypatumai. Spren-
džiant uždavinį buvo padaryta prielaida, kad vielos plotį lemiantis
potencialas turi parabolinį pavidalą, o magnetinis laukas yra stat-
menas vielos ašiai ir padėklui, ant kurio užauginta viela. Į sąveika

tarp elektrono sukinio ir jo orbitinio judėjimo yra atsižvelgta per
Rašbos (Rashba) pasiūlytą hamiltonianą, kuris kartu su Zėmano
(Zeeman) hamiltonianu lemia sukinio srovės stiprį kvantinėje vie-
loje. Išnagrinėta sukinio srovės (laidumo) priklausomybė tiek nuo
įtampos tarp kvantinės vielos galų, tiek nuo magnetinio lauko stip-
rio. Sukininio laidumo savybės straipsnyje pailiustruotos pieši-
niais.


