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A vorticity of the light field created by interference of two parallel Laguerre–Gaussian vortex beams of topological charge
n > 1 is analysed. It is demonstrated that the locations of the vortices present in the composite beam depend on the separation
between two beams as well as on the phase shift and topological charge. The qualitative agreement between theoretical and
experimental data was obtained.
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1. Introduction

In 1974 it was shown that the scalar Helmholtz equa-
tion has a solution of the type rneinθ [1]. This type of
solution has a singular point at radius r = 0. The beam
intensity vanishes at this point, and the azimuthal an-
gle θ is undefined there. The integer number n is the
topological charge. Such a singular beam satisfies the
laser model equation and was named the optical vor-
tex [2]. The solutions of Helmholtz equation possess-
ing Gaussian aperture are the Laguerre–Gaussian and
Bessel–Gaussian beams. These beams are of practi-
cal interest because they have an orbital angular mo-
mentum [3], which can be transferred to trapped parti-
cles. A fundamental question arises about the vorticity
of the light field created by superposition of individ-
ual vortex beams. In the case of superposition of two
coaxial Laguerre–Gaussian beams the number of exist-
ing vortices and their net topological charge are found
to depend during free-space propagation on the beam
relative widths and amplitudes [4]. The interference
of mth-order Laguerre–Gaussian beam with a weak
coaxial Gaussian beam was investigated in Ref. [5].
As a result, the Laguerre–Gaussian vortex splits into
|m| single-charge vortices. The interference of coaxial
Bessel–Gaussian beams was studied in [6, 7]. It was
shown that their vortical structure is richer than that of
individual beams and varies under diffraction. In the
case of superposition of two noncoaxial parallel single-
charge beams [8, 9] the number of vortices in compos-

ite beam may vary depending on the distance between
beam axes as well as on the phase shift. The vor-
ticity of such composite beam changes under diffrac-
tion of individual beams [10]. In the case of intersect-
ing Laguerre–Gaussian beams the vortical structure of
the light field depends on the intersection angle [11].
A richer vortical structure is also obtained after in-
terference of Bessel–Gaussian and Laguerre–Gaussian
beams [12].

In this paper we investigate the vortical structure of
the composite beam obtained by superposition of two
higher-order Laguerre–Gaussian beams and demon-
strate that the superposition creates light patterns with
a richer vortex content, which essentially depends on
topological charges n of individual beams.

2. Theoretical

In Cartesian coordinates the complex amplitude of
Laguerre–Gaussian vortex beam of topological charge
n can be written as

An0(x, y) = A0

(

x + iy

d

)n

exp

(

− x2 + y2

d2

)

, (1)

where d is a beam radius at the waist. The vortex core
is located at x = 0, y = 0. We analyse the super-
position of two identical higher-order collinear vortex
beams, the axes of which are separated by a distance
2a (Fig. 1). In that case the complex amplitude of the
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Fig. 1. Schematic depiction of the overlapping of two beams.

composite beam is

An(x, y) = An0(x − a, y) + exp(iϕ)An0(x + a, y) ,
(2)

where ϕ is the phase shift. It is supposed that the am-
plitudes and topological charges of both beams are the
same. The locations of the vortex cores of the compos-
ite beam can be determined using the equations

Re[An(x, y)] = 0 , Im[An(x, y)] = 0 . (3)

Further, we will investigate the cases n = 2 and n = 3
at ϕ = 0 and analyse the influence of the phase shift
ϕ = π for n = 2.

2.1. n = 2, ϕ = 0

In this case the complex amplitude of the composite
beam can be written as

A2(x, y) = A0

[

x − a + iy

d

]2

exp

[

− (x − a)2 + y2

d2

]

+A0

[

x + a + iy

d

]2

exp

[

− (x + a)2 + y2

d2

]

. (4)

The numerically calculated distribution of the intensity
|A2(x, y)|2 as a function of axial separation a is de-
picted in Fig. 2. The locations of the vortex cores of
composite beam can be found analytically by use of
Eqs. (3),

[(x − a)2 − y2] exp

(

2xa

d2

)

+ [(x + a)2 − y2] exp

(

− 2xa

d2

)

= 0 , (5)

y(x − a) exp

(

2xa

d2

)

+ y(x + a) exp

(

− 2xa

d2

)

= 0 .

At y 6= 0 Eqs. (5) can be written as

x = a tanh
2xa

d2
, y = ±

√

a2 − x2 . (6)

Then for 0 < a < d/
√

2 we obtain x = 0, y = ±a.
So, in this case in the composite beam there exist two
single-charge vortices the cores of which are separated
by a distance 2a (see Fig. 2(b)). However, when the
axial separation a is equal to d/

√
2, the vortices change

the sign of their charge, and the vortex twin is nucleated
at the origin of each vortex, Fig. 2(c). As a result, there
exist six vortices in the composite beam at a > d/

√
2,

the cores of which are located at the circle given by
equation x2 + y2 = a2 (see Fig. 2(c–e)). The total
charge of all vortices is always +2. In the limiting case
a À d the solutions of Eqs. (6) are x = 0, y = ±a
and x = ±a, y = 0. These solutions correspond to two
well-separated beams of charge 2 with cores at (a, 0)
and (−a, 0). However, two vortices with the negative
charge −1 are always present in the region where the
field amplitude is vanishingly small, see Fig. 2(f–h) for
a/d = 2.

2.2. n = 2, ϕ = π

The vortical structure of the composite beam may
depend on the relative phase ϕ. In the following, we
demonstrate this for a special case ϕ = π. Then the
complex amplitude of the composite beam can be writ-
ten as follows:

A2(x, y) = A0

[

x − a + iy

d

]2

exp

[

− (x − a)2 + y2

d2

]

−A0

[

x + a + iy

d

]2

exp

[

− (x + a)2 + y2

d2

]

. (7)

The numerically calculated evolution of intensity
|A2(x, y)|2 is presented in Fig. 3. The locations of the
vortex cores in the composite beam is determined by
equations

[(x − a)2 − y2] exp

(

2xa

d2

)

− [(x + a)2 − y2] exp

(

− 2xa

d2

)

= 0 , (8)

y(x − a) exp

(

2xa

d2

)

− y(x + a) exp

(

− 2xa

d2

)

= 0 .
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Fig. 2. Intensity distribution of the composite beam for n = 2, ϕ = 0, and at a/d: (a) 0, (b) 0.6, (c) 0.74, (d) 1, (e) 1.2, (f) 2. The circles
mark the locations of the vortex cores. (g) |A2(x, y)|2 profile at y = 0 and (h) |A2(x, y)| profile at x = 0, when a/d = 2.

Fig. 3. Intensity distribution of the composite beam for n = 2, ϕ = π, and at a/d: (a) 0.3, (b) 1.02, (c) 1.14, (d) 2. The circles mark the
locations of the vortex cores.

An analysis of Eqs. (8) shows that the solutions exist
only for y = 0. In this case the first equation of Eqs. (8)
can be written as

(x2 + a2) tanh
2ax

d2
= 2ax . (9)

Obviously, a trivial solution of Eq. (9) at a 6= 0 is x =
0. The vortices are also located at x 6= 0. For example,
at a/d ¿ 1 we find x = ±d. So, three vortices are
present in the composite beam at y = 0 (see Fig. 3(a)).
Next, for small values x and y from Eq. (7) we obtain

A2(x, y) ∝
(

1 − a2

d2

)

x + iy . (10)

At the critical value a = d the central vortex changes its
topological charge from +1 to −1 and two additional
vortices of charge +1 appear (Fig. 3(b)). If the separa-
tion between two individual beams is further increased,
these vortices collide with the vortices at x 6= 0 and

form two double-charge vortices, Fig. 3(c, d). We note,
that one negative-charge (−1) vortex is located at in-
finity (x = 0, y = −∞) and for this reason the total
charge of the composite beam is +2.

2.3. n = 3, ϕ = 0

In this case Eq. (2) yields

A3(x, y) = A0

[

x − a + iy

d

]3

exp

[

− (x − a)2 + y2

d2

]

+A0

[

x + a + iy

d

]3

exp

[

− (x + a)2 + y2

d2

]

. (11)

The numerically calculated evolution of the intensity
|A3(x, y)|2 on the axial separation a is depicted in
Fig. 4. The locations of the vortex cores in the com-
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Fig. 4. Intensity distribution of the composite beam for n = 3, ϕ = 0, and at a/d: (a) 0, (b) 0.6, (c) 0.64, (d) 1, (e) 1.24, (f) 2. The circles
mark the locations of the vortex cores.

posite beam can be determined by use of Eqs. (3). We
obtain

[(x − a)3 − 3y2(x − a)] exp

(

2xa

d2

)

+ [(x + a)3 − 3y2(x + a)] exp

(

− 2xa

d2

)

= 0 ,

[3y(x − a)2 − y3] exp

(

2xa

d2

)

+ [3y(x + a)2 − y3] exp

(

− 2xa

d2

)

= 0 . (12)

We note that for a > 0 at x = 0 the solutions of
Eqs. (12) are y = 0, ±

√
3a (Fig. 4(b)). In the vicinity

of the points (0,±
√

3a) from Eq. (11) for small values
of ∆x, ∆y it follows that

A3(∆x, y = ±
√

3a + ∆y)

∝ (3d2 − 8a2)∆x + i3d2∆y . (13)

So, there is a critical value a = a1 =
√

3/8d ≈ 0.61d
at which the topological charge of the vortices at (0,
±
√

3a) is changed from +1 to −1, and the vortex twin

is nucleated at the origin at each vortex, see Fig. 4(c).
As a result, at a > a1 four positively charged (+1)
vortices are present in the composite beam. Next, in the
vicinity of the point (0, 0) the Eq. (11) can be written
as

A3(x, y) ∝ (3d2 − 2a2)x + 3id2y . (14)

So, at a = a2 =
√

3/2d ≈ 1.22d the central vortex
changes its sign from +1 to −1, and simultaneously
two new vortices of charge +1 appear, Fig. 4(e). If the
separation between two individual beams is further in-
creased, the positively charged vortices approach each
other and in the limit a/d À 1 merge into two vortices
of charge +3. In this case the solutions of Eqs. (12) at
y = 0 are x → ±a. However, three vortices with neg-
ative charge −1 are always present in the region where
the field amplitude is vanishingly small, as shown in
Fig. 4(f) for a/d = 2. The total charge of all vortices is
always equal to 3.

3. Experimental

An experimental set-up is presented in Fig. 5. In
experiments the linearly polarized radiation of second
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Fig. 5. Experimental set-up. L1 and L2 are lenses, BS1–BS4 are
beam splitters, M1–M6 are mirrors, PP is a parallel plate, H is a

hologram.

harmonic (SH) of a microchip Nd : LSB (lanthanum
scandium borate) laser (STA-1) was used (λ = 531 nm).
The SH radiation was filtered by spatial filter and col-
limated into d = 1.2 mm diameter beam. The ob-
tained beam was divided into two beams by a beam
splitter BS1. One of them was directed to a computer-
generated hologram H, and 2nd or 3rd higher-order
Laguerre–Gaussian beams were produced. The sec-
ond beam was used as a reference beam for analysis of
topological charges by interference with the composite
beam, which was formed by use of beam splitters (BS2,
BS3) and mirrors (M1, M4). The phases of the vortex
beams were adjusted by a parallel glass plate (PP). The
interference patterns were registered by a CCD camera
and are presented for n = 3 in Fig. 6. The obtained
patterns can be compared with the numerically calcu-
lated patterns shown in Fig. 4. Obviously, the quali-
tative agreement between theoretical and experimental
data is obtained.

4. Conclusions

The interference of two parallel higher-order
Laguerre–Gaussian beams was investigated. It was re-
vealed that the number of vortices as well as their loca-

tions in the composite beam depend on the separation
between beam axes, relative phase shift of the beams,
and topological charge. Very similar scenarios of the
evolution of vortical structure on beam separation in
the case of second- and third-order Laguerre–Gaussian
beams were observed. In the case of small separation
of two individual beams in one direction all vortices
are found to be located on the straight line in the per-
pendicular direction. The vortices change their sign at
some critical value of the beam separation, which is dif-
ferent for different vortices and depends on the vortex
distance from the centre (x = y = 0). Simultaneously,
two additional vortices are nucleated at the origin of
each vortex. In the case of large separation, two well-
separated beams of charge n are obtained. However,
the total charge of a light field is n, because n single-
charge (−1) vortices are present in the region where the
field amplitude is vanishingly small.

The qualitative agreement between theory and ex-
periment was obtained.
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AUKŠTESNĖS EILĖS LAGERO IR GAUSO PLUOŠTŲ INTERFERENCIJA
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Santrauka
Nagrinėjama dviejų lygiagrečių Lagero ir Gauso (Laguerre–

Gauss) sūkurinių topologinio krūvio n > 1 pluoštų interferencijos
lauko sūkurinė sandara. Parodyta, kad sudėtiniame pluošte esančių

sūkurių padėtys priklauso tiek nuo atstumo tarp pluoštų, tiek ir nuo
fazių skirtumo bei topologinio krūvio. Gautas kokybinis teorinių ir
eksperimentinių duomenų sutapimas.


