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The spin-FET (spin field effect transistor) is the spintronics device the operation of which is based on unique properties of
free electron or hole spin in semiconductors. In the spin-FET, the modulation of channel conductance is achieved by control of
spin direction via the spin–orbit interaction. The present article, firstly, critically reviews the main difficulties encountered in
realizing the spin-FET. Secondly, using the concept of the spin surface, general spin properties of 2D holes in p-type channel
of the FET are considered. The complex nature of the spin surfaces of the ballistic 2D holes is demonstrated. It is shown that
in optimizing the spin-FET, in addition to the dispersion law of the channel one should pay a special attention on how the spin
surface transforms between spin injector and collector.
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1. Introduction

Electron is an object with the charge and spin. But
so far the semiconductor electronics has completely ne-
glected the spin. In 1990, Datta and Das proposed a
spin analog of the electrooptic modulator that later was
renamed spin-FET [1]. In the spin-FET the source and
drain are ferromagnetic materials (Fig. 1) where free
carriers have a fixed spin direction. Whereas in a stan-
dard semiconducting FET the gate voltage controls the
number of charge carriers in channel and, thus, modu-
lates the current flowing through the FET, in the spin-
FET the gate voltage controls the spin orientation of
the electrons in the channel via spin–orbit interactions
and, due to drain selectivity to spin state, modulates
the current flowing through the device. The spin ori-
entation is changed by electric field via Rashba spin–
orbit (SO) interaction mechanism [2, 3]. Since electron
transmission probability at channel–drain interface de-
pends on relative alignment of the spin with respect
to the drain magnetization direction, the total electri-
cal current appears to be dependent on the spin state.
When the spin of the electron incident on the drain is
aligned with the drain magnetization, the transmission
is the largest and, therefore, the current flowing through
the device is maximal. However, the current stops to
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flow if the spin direction changes to opposite during
electron flight in the spin-FET channel. Thus, by con-
trolling the spin precession angle between the source
and the drain electrodes one can switch on or switch
off the electrical current. Since the described spin ma-
nipulation scheme does not require magnetic fields, the
spin-FET can be integrated in the existing charge-based
semiconductor technology without incorporation of ex-
ternal magnetic systems. However, the attempts to re-
alize the spin-FET till now have been unsuccessful be-
cause of a number of obstacles, both of practical and
theoretical character. Below, the problems of theoret-
ical nature related to spin superposition states will be
touched in more detail, with a special accent on the
2D hole carrier spin surfaces which represent all pos-
sible directions and magnitudes of the average spin in
the spin space. The properties of spin surfaces in bulk
semiconductors were considered earlier in [4–9].

2. Salient features and requirements to spin-FET

2.1. Principal differences between electronic and hole
spin-FETs

The discussion below will be limited to A3B5 com-
pound semiconductors the spin properties in which are
most investigated. The conduction band of these semi-
conductors is made up predominantly of s-type orbitals,
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Fig. 1. Schematic drawing of the spin field effect transistor (spin-
FET). The quantum well (QW) containing spin-polarized 2D gas
lies in the x–y plane. The vertical magnetization of the ferromag-
netic source and drain electrodes is shown by vertical arrows. The
horizontal magnetization is possible too. The spatial polarization
of the 2D electron or hole gas in the channel can be controlled by

voltage applied to the gate electrode.

the SO interaction of which with the spin is indirect (via
other bands) and, for this reason, is rather weak. Inclu-
sion of the SO interaction lifts the double degeneracy
of the conduction band and fixes the orientation of the
quantization axis. The spin-split energy bands are char-
acterized by opposite spin directions with respect to the
quantization axis, Fig. 2. The spin-split bands are re-
lated by Kramers symmetry, E↑(k) = E↓(−k), where
E↑(k) is the carrier energy whose wave vector is k and
the spin is directed along the quantization axis. Nor-
mally the spin splitting energy ∆E = E↑(k) − E↓(k)
is small, about (1–10) meV. If the spin splitting is due to
Rashba interaction [2] (the main process used to control
the spin orientation in semiconductors), the conduction
band splitting depends linearly on the wave vector:

∆Ee = 2αek, (1)

where αe is the Rashba constant and k =
√

k2
x + k2

y

is the wave vector in the plane of the QW. Similar de-
pendence was found for 2D holes that originate from
the 3D light-mass valence band. The consequence of
the proportionality of ∆Ee to k is that the spin pre-
cession length (see Eq. (7)) is independent of the car-
rier energy. Thus, all injected electrons or light-mass
holes will experience the same precession angle during
their ballistic flight from the source to drain electrode.
However, in case of p-type QWs, usually, the principle
energy band has a heavy-mass rather than light-mass
character. It can be shown that in the latter case the de-
pendence of the splitting energy on k (at least at small
k values) is cubic rather than linear [10]:

∆EHH = 2αHHk
3. (2)

Thus, for heavy 2D holes it will be more difficult to
guarantee equal precession lengths of the ensemble of

the holes if the initially injected holes are spread in en-
ergy.

However, the fundamental difference between the
electrons and holes comes from their spin properties.
In a free space, as known, the spin surface of a nonrel-
ativistic electron is the Bloch sphere [11]. For a free
conduction band electron in A3B5 compounds the spin
surface is spherical too, if the conduction band is spin-
degenerate. Inclusion of the SO interaction has very
small influence on the sphericity. Calculations show
that the electron spin surface in these compounds de-
viates from the sphere by less than 1% [12]. This
explains why the evolution of the average electron spin
〈S〉 in A3B5 compounds can be described by preces-
sion equation that coincides with the classical equation
of the top:

d〈S〉
dt

= −Ω × 〈S〉, (3)

where Ω is the precession vector. The module of
Ω is equal to the conduction band spin splitting en-
ergy (1). Because of the simplicity of spin dynamics
on the spherical surface, the bulk of papers in semi-
conductor spintronics are devoted to analysis of elec-
tronic spin-FETs [13]. In the 2D channels that orig-
inate from the valence band, as will be shown in the
next section, the spin surfaces strongly deviate from the
spherical shape. This is due to strong SO interaction in
the A3B5 semiconductor valence bands, which are pre-
dominantly made up of p-orbitals. The same was found
to be true for bulk holes in semiconductors. Examples
of spin trajectories on spin surfaces of bulk semicon-
ductors can be found in Ref. [8].

The simplicity of electron spin surfaces suggests
that they could serve as a benchmark in answering the
principal questions in spintronics, at least theoretically.
However, the comparison of theory with experiment at
present is difficult due to lack of good spin injecting
contacts. At present, the experimentalists work with
a circularly polarized light to generate spin-polarized
electrons in semiconductors [14]. Since during exci-
tation both the polarized electrons and holes are gen-
erated, in order to have only polarized electrons their
spin lifetime should be long compared to the hole spin
lifetime. In the case of A3B5 semiconductors this is
easy to achieve, because complex valence band struc-
ture favours short spin coherence times of free holes.
On the other hand, the experimental situation with
hole spin injection is more encouraging. The diluted
magnetic semiconductors, for example, GaAs heavily
doped with Mn impurities, have been shown to be an
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Fig. 2. The dashed line shows the dispersion of a doubly spin-
degenerate band. The SO interaction splits this band into “up” and
“down” spin bands (solid lines) with respect to quantization axis.
The bands in this figure are inverted and represent the heavy-mass
hole band (cf Fig. 3). The important parameters are ∆E and ∆k

which determine the magnitude of spin splittings along the energy
and wave vector axes at the Fermi energy E0. The splitting ∆k

determines spatial spin precession and the pitch of a helix trajectory
drawn by a tip of the spin along the channel. ∆k should be large
to have nanometre or shorter channel lengths. The splitting ∆E

describes the spin precession as a function of time at a fixed point
in the channel. The condition ∆E À kT should be satisfied for a

proper operation of the spin-FET.

efficient source of the spin-polarized holes [15]. How-
ever, the commercial applicability of the diluted mag-
netic semiconductors in microelectronic technologies,
in our case in fabrication of spin source and drain elec-
trodes, requires high Curie temperatures. The current
record is 173 K in GaAs : Mn epilayers. As an alter-
native one can use transition metals. However, the in-
jectors fabricated from these metals are less efficient
and are more difficult to match with the semiconductor
material technologically, although they allow to reach
higher Curie temperatures.

2.2. Spin superposition states and precession length

For a proper operation of the spin-FET the electron
should be in a superposition of up and down spin states.
In the dispersion represented by two solid lines in Fig. 2
this corresponds to two points on the respective lines.
The resulting spinor is

|ψ(y, t)〉= ei(ω0+∆ω/2)t+i(k0+∆k/2)y cosϑ |↑ 〉 (4)

+ ei(ω0−∆ω/2)t+i(k0−∆k/2)yeiφ sinϑ |↓ 〉 ,
where the coordinate y runs along the channel, Fig. 1.
In (4) it was assumed that the splittings ∆k/2 and
∆ω/2 = ∆E/2~ are symmetric with respect to the
degeneracy point (k0, ω0), where ω0 = E0/~. The

spinor (4) is normalized. The parameters ϑ and φ allow
to vary the contribution of spin-up | ↑ 〉 and spin-down
| ↓ 〉 eigenvectors in the mixed state. At ϑ = 0 and
ϑ = π/2 one regains pure up and down states. As will
be shown in section 3 with the help of exact quantum
mechanical solution, the true quantization axis in the
QW with Rashba interaction included is parallel to x
axis. Then, using the Pauli matrices σ = (σx, σy, σz)
transformed so that the spin quantization axis lies along
x axis, Σ = U

†
σU, where U = 1/

√
2
(

1
1
−1
1

)

, and the
spinor (4), one finds the following average spin:

〈S(y, t)〉= 〈ψ(y, t)|Σ|ψ(y, t)〉 = (5)

1

2
(cos 2ϑ,

− sin(∆ωt+ ∆ky − φ) sin 2ϑ,

− cos(∆ωt+ ∆ky − φ) sin 2ϑ) .

When ϑ = π/4, it is seen that the parameter φ fixes the
initial spin polarization which should be set to φ = π
in the case of vertical polarization and to φ = π/2 in
the case of horizontal polarization. For an arbitrary φ
and ϑ = π/4 the spin lies in the y–z plane. In addition,
if one has ∆ω = ∆E/~ = 0 (see Fig. 2) in the super-
position state, from Eq. (5) it follows that the average
spin is time-independent and at the distance y = L it
makes up some fixed angle with the z axis,

〈S(L, t)〉 =
1

2
(0, sin ∆kL, cos ∆kL) . (6)

The equation (6) describes a helix as a function of the
distance L. The pitch of the helix (precession length)
can be controlled by external electric field via ∆k, i. e.
via the spin splitting of the bands. The initial and fi-
nal spins should be either parallel or antiparallel in the
conducting and nonconducting state respectively [1]. If
∆ω 6= 0, there, in addition, will be a rotation of the
spin around the quantization axis with frequency ∆ω.
This is undesirable, since the direction of the spin at the
drain electrode will not be fixed in space. Thus, at the
finite lattice temperature T , the condition ∆ω À kT
should be satisfied in order to minimize the contribu-
tion of mixed states having different energies. At room
temperature, due to small spin splitting in A3B5 semi-
conductors ∆E = (1–10) meV [16], this is difficult to
satisfy.

The spin precession length is given by LSO =
2π/∆k. For electrons and light-mass holes, as
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mentioned, the precession length is independent of car-
rier energy and is given by [1]

Le
SO = LLH

SO =
2π

αe,LH

~
2

2me,LH
, (7)

where αe,LH and me,LH are the Rashba coefficient and
the effective mass for electrons or light-mass holes, re-
spectively. For holes that originate from the heavy-
mass band the spin splitting is given by Eq. (2) and the
precession length decreases with hole energy [17],

LHH
SO =

2π

αHH

(

~
2

2mHH

)2
1

E0
. (8)

For typical values, αe,LH ∼ 0.01 eV nm and αHH ∼
0.005 eV nm3, the expressions (7) and (8) give Le

SO ≈
LLH

SO ≈ 240 nm and LHH
SO ≈ 150 nm at Fermi energy

E0 = 0.05 eV. The mean free paths of the ballistic carri-
ers must be longer than the above evaluated precession
lengths. This condition is the most difficult to satisfy in
the case of holes, especially at high temperatures when
optical phonon scattering becomes important. Experi-
ments show that the mean free path of the injected holes
may be as long as 300 nm at low temperatures [18]. Of
course, at high temperatures the ballistic length will be
smaller.

2.3. The dephasing of spinor

Collisions of the carrier with impurity atoms, de-
fects, and phonons may change the direction of the
ballistic spin. The coherence distance determines the
minimum length of channel that allows to fulfil on and
off conditions in the spin-FET. To have a maximum
modulation depth of the spin-dependent current the in-
jected charge carrier should not experience the colli-
sions which destroy coherence of the spinor. In semi-
conductors, usually the spin coherence or relaxation
time due to collisions with the impurities and phonons
is comparable to or longer than momentum relaxation
time. There is a large number of papers devoted to spin
relaxation in semiconductors, thus, only the review ar-
ticle [13] and the paper [19] are mentioned here for ref-
erence. In general, it has been found that the electron
spin dephasing time is longer than the momentum scat-
tering time and, therefore, the dephasing is not a limit-
ing factor. However, in the case of holes the situation
is worse. Here the efficient spin relaxation is related
to the strong SO interaction and the emission of opti-
cal phonons when the hole energy is high enough. For
example, optical orientation experiments with undoped
bulk GaAs at room temperature [20] give that due to

optical phonon emission the hole spin lifetime can be
as short as 0.11 ps. At low temperatures the spin life-
time, in general, is substantially longer and is not a lim-
iting factor. However at room temperature the role of
optical phonons remains important in 2D as well as 3D
structures.

As mentioned above, for an efficient operation of the
spin-FET the carrier must be in a superposition state
with ∆E = 0, Fig. 2. At finite device temperature
there will also be superpositions with different energies
in the energy range kT . Such superpositions give spins
precessing with different frequencies at the channel–
drain interface and, as a result, the leakage current ap-
pears in the device. This reduces the contrast between
on and off states. At present the condition ∆E ¿ kT
can be satisfied at low temperatures only since Rashba
constants in different materials are too small [16].

2.4. Differences between 1D and 2D spin-FETs

In 2D FET the carrier is bounded in one direction
and can move freely in two perpendicular directions.
As a result there is an unavoidable angular spread of
the injected carriers in the channel. In a flat electrode
configuration this yields different mean free paths and
spin rotation angles at the drain electrode. In 1D spin-
FET the confinement of a moving carrier is maximal,
and this eliminates the angular spread that is always
present in 2D channels. This was already noted in the
original paper by Datta and Das [1]. This is important
since in the off-state the 1D spin-FET will have no leak-
age current due to angular spread and, thus, the standby
power dissipation will be avoided. Moreover, in the 1D
channel there is a possibility to eliminate or to avoid
major spin relaxation mechanisms. Therefore, the 1D
channel is always more advantageous with respect to
2D channel [21].

2.5. Semiconductor–ferromagnetic interface

As shown in Refs. [22, 23], the double spin refrac-
tion appears at the interface separating the injector and
2D gas in the channel. The refraction follows from
both the conservation of the electron wave vector par-
allel to the interface and the spin splitting of the energy
bands. As shown by Pala et al. [17], the double spin
refraction should be taken into account to get correct
boundary condition for the total spinor at the spin in-
jector (collector) and 2D channel interface. The dou-
ble spin refraction allows one to calculate the coher-
ence length of the spinor in absence of spin scattering
events since it allows to take correctly into account the
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interference due to different injection angles and differ-
ent source–drain distances. The finite spin coherence
length is limiting the useful channel length because the
incoherence causes the leakage current that may be un-
acceptably large in the off state. The calculations [17]
show that due to this mechanism the coherence length
in 2D channels is about (2–3)LSO in the case of holes.
To minimize the effect of double refraction on the leak-
age current it is desirable to have lateral dimensions of
the channel as small as possible. In this respect, 1D
channels are preferable.

Since the spin-FET is supposed to work in the bal-
listic regime1, the reflection of the spinor from the
semiconductor–ferromagnetic interfaces also may have
an effect on injection as well as on collection efficien-
cies in the on-state. The reflection coefficient depends
on both the injector / collector and the channel prop-
erties which include many factors, such as the double
refraction and the deviation of the average spin from
optimal direction given by Eq. (6). In addition, Fabry–
Perot type resonances may develop between the inject-
ing and collecting electrodes and this may enhance or
suppress the electrical current in the FET. In the pa-
per [25] the interplay between the Fabry–Perot reso-
nance and Rashba–Dresselhaus spin splitting mecha-
nism has been used to simulate possible modulation of
the spin conductance when the source and drain elec-
trodes are not magnetized at all. In the next section it
will be shown that some insight into the properties of
the spin-FET may be gained if one also takes into ac-
count the structure of the spin surfaces on both sides
of the interfaces. The problem of the spin surface is
much simpler than the full quantum mechanical prob-
lem. Since the shape of the spin surface is insensitive
to ∆E and ∆k, at least when conditions ∆E ¿ E0

and ∆k ¿ k0 are satisfied, the problem can be simpli-
fied further by neglecting the SO interaction at all and
treating the degenerate bands only.

2.6. Role of the quantization axis

The quantization axis is undefined and has no priv-
ileged direction if the energy bands are spin degener-
ate. The magnetic field B induces spin splitting of the
doubly degenerate bands and at the same time fixes the
direction of the quantization axis, usually along B in
1 There were proposals to relax strictly ballistic transport by us-

ing the interplay between Rashba and Dresselhaus SO interaction
mechanisms [24]. The strength of these mechanisms can be tuned
so that the spinor becomes independent of the carrier wave vector
even in two dimensions. Vanishing of the wave vector nullifies
the scattering matrix element if the bands are parabolic.

the absence of other spin-related mechanisms. In semi-
conductors that do not possess the inversion symmetry
the quantization axis in absence of the magnetic field
is fixed by SO interaction (Rashba, Dresselhaus), crys-
tal symmetry, and to some extent by properties of the
confining potential. If, in addition, the magnetic field
is applied, the direction of the quantization axis will
also depend on B, although now it will not necessar-
ily be aligned with B. The knowledge of the direction
of quantization axis and k allows one to do some pre-
dictions about the free charge carrier spin properties.
The “up” and “down” energy bands in Figs. 2 and 3
are measured with respect to this effective quantization
axis. However, to find the direction of the quantization
axis one has to solve full quantum mechanical prob-
lem. In some cases the quantization axis can be guessed
from heuristic considerations. Then spin properties can
be predicted from simpler spin-degenerate Hamiltoni-
ans.

2.7. In- and out-of-plane electrode magnetization

Usually in the analysis the magnetization directions
in both spin injecting and collecting electrodes are as-
sumed to be identical, since technologically it is eas-
ier to produce identical electrodes. Two geometries
are possible: when the magnetization vector lies in the
plane of QW, or when the magnetization is perpendic-
ular to QW plane as shown in Fig. 1. These magneti-
zation geometries should be matched with the direction
of the quantization axis of a ballistic carrier that prop-
agates along the channel. The calculations show that
for electrons as well as for holes the quantization axis
appears perpendicular to carrier wave vector and at the
same time lies in the QW plane if only the Rashba SO
interaction is accounted for. If one imagines that the
quantization axis and the wave vector are attached to
the moving carrier, then the knowledge of ∆E and ∆k
allows one to portrait the variation of the spin as a func-
tion of time and position in the channel.

3. Spin surfaces in p-type 2D channels

3.1. Hamiltonian and spectrum

The heuristic formula (5) yields spherical spin sur-
face. The average spin length |〈S〉| given by (5) is in-
dependent of band mixing parameters ϑ and φ. In the
case of the valence band a stricter treatment of the prob-
lem is required. The valence band Hamiltonian that
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includes the quadraticHLK and linearHSO in the wave
vector terms will be considered:

Hv = HLK +HSO. (9)

Four band Luttinger–Kohn (LK) Hamiltonian will be
used [26],

HLK =















Hhh b c 0

b∗ Hlh 0 c

c∗ 0 Hlh −b
0 c∗ −b∗Hhh















, (10)

where

Hhh =
~

2

2m0

[

(γ1 + γ2)(k
2
x + k2

y)

− ∂

∂z
(γ1 − 2γ2)

∂

∂z

]

+ V (z) , (11)

Hlh =
~

2

2m0

[

(γ1 − γ2)(k
2
x + k2

y)

− ∂

∂z
(γ1 + 2γ2)

∂

∂z

]

+ V (z) , (12)

b=−i

√
3~

2

2m0
(−ky − ikx)

(

γ3
∂

∂z
+

∂

∂z
γ3

)

, (13)

c=

√
3~

2

2m0

[

γ2(k
2
x − k2

y) − 2iγ3kxky

]

. (14)

Here m0 is the free electron mass, and γ1, γ2, and γ3

are the Luttinger valence band parameters that depend
on coordinate z. V (z) describes the potential profile
of the barriers and the quantum well: V (z) = V0

if z is in the barrier, 0 ≤ z < (Lt − Lw)/2 or
(Lt + Lw)/2 ≤ z < Lt, and V (z) = 0 if z is in
the well, (Lt − Lw)/2 ≤ z < (Lt + Lw)/2, where
Lw is the well width and Lt is the total length of the
structure (channel). V0 is the height of the barrier. To
include the boundary conditions, the Hamiltonian HLK

was symmetrized with respect to coordinate z.
The contribution of hole states to the spin splitting

due to structural inversion asymmetry was approxi-
mated by a matrix [3, 10]

HSO = r1
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√
3
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√
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0 k+ 0

√
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0 0

√
3

2
k+ 0

























, (15)

where k± = kx ± ky. The Hamiltonians (10)
and (15) are written for the following order of the
projections of total angular momentum of the hole:
mJ = (+3/2,+1/2,−1/2,−3/2). In calculations the
Rashba interaction strength, which differs from the av-
eraged one in the Eq. (8), was assumed to be r1 =
0.005 eV nm. Two depths of the well were considered,
V0 = 0.0956 eV and V0 = 0.604 eV, which correspond
to Ga0.21Al0.79As / GaAs and AlAs / GaAs wells. The
valence band parameters for respective materials are:
for GaAs, γ1 = 6.85, γ2 = 2.1, γ3 = 2.9; for AlAs,
γ1 = 3.45, γ2 = 0.68, γ3 = 1.29; for Ga0.21Al0.79As,
γ1 = 6.14, γ2 = 1.8, γ3 = 2.56. In all cases the QW
width Lw = 100 Å and the total widths Lt = 300 Å
were used.

Figure 3 shows the dispersions of the first three 2D
energy bands for (a) shallow and (b) deep QWs. At
k = 0 the Hamiltonian (9) is diagonal and, as a result,
the energies are doubly degenerate. At k 6= 0 the band
splitting is induced by SO Hamiltonian (15). The mag-
nitude of the splitting ∆E = E↑(k) − E↓(k) is shown
in Fig. 4 for shallow well. For deep well the depen-
dence is very similar. It is seen that the relations (1)
and (2) are satisfied at small splitting energies only. It
should be noted that in the intermediate energy range
the heavy hole splitting is proportional to k. How-
ever, at high energies the deviation from both linear and
quadratic dependences is strong.

3.2. Spin surfaces

The spin surfaces were determined from average
spin

〈S〉 = 〈ψ|S|ψ〉, (16)

where S = (Sx, Sy, Sz) and Si is one of the Cartesian
4×4 Pauli-like matrices. In the considered approxima-
tion S = J/3, where J is the total angular momentum
matrix with the component Jz diagonal [4]. To draw
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(a) (b)
Fig. 3. Dependence of hole energy on the wave vector parallel to [01] direction. Only three main subbands degenerate at k = 0 are shown.

The well depth in (a) is 0.0956 eV and in (b) it is 0.604 eV. The letters on curves correspond to respective panels in Figs. 5 and 6.

(a) (b)
Fig. 4. Dependence of the spin splitting energy ∆E on hole wave vector for (a) HL1 and (b) HH1 bands. The well depth is 0.0956 eV.

the spin surface, the wave function |ψ〉 was parameter-
ized:

|ψ〉 = cosϑ |ψ↑〉 + sinϑ eiφ |ψ↓〉 , (17)

where |ψ↑〉 and |ψ↓〉 are the eigenstates of the Hamil-
tonian (9) with opposite spins but with the same en-
ergy, E(k↑) = E(k↓). To satisfy the latter equa-
tion, the wave vectors k↑ and k↓ must be different,
Fig. 2. By varying the parameters ϑ and φ one can
change the direction and magnitude of the average spin
leaving the energy of the hole fixed. Alternatively,
one can calculate the eigenstates at different energies,
E(k↑) 6= E(k↓), but at the same wave vector, k↑ = k↓.
Since spin splitting is small, the difference in spin sur-
faces calculated by both methods was found to be neg-
ligibly small. From the computational point of view the
second method is simpler.

Figures 5 and 6 show spin surfaces of the two lowest
energy subbands at three wave vectors parallel to [01]

direction. The corresponding wave vectors are also in-
dicated on the dispersion curves by letters in Fig. 3.
First of all, it should be noted that, in general, the sur-
faces are not spherical. In fact they are spheroids. The
ratio of large and small spheroid axes is sensitive to
the magnitude of the wave vector. When the wave vec-
tor is rotated in the QW plane, the spin surface syn-
chronously rotates about 〈Jz〉 axis, however, its over-
all shape remains nearly the same. Secondly, the two
poles (at ϑ = 0 and π/2) on the spin surfaces cor-
respond to two orthogonal eigenstates in (17) and are
representatives of the spin-split energy subbands with
up and down spins. The line that connects the poles
(not shown) is the true quantization axis. Thirdly, the
general point on the spin surface corresponds to a mix-
ture of the two eigenstates in the superposition (17).
Beyond doubt the Figs. 5 and 6 show that the direc-
tion and magnitude of the average spin 〈S〉 depend on
the contribution of individual eigenstates in the mixed
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(a) (b) (c)

(d) (e) (f)
Fig. 5. The spin surfaces and their projection on 〈Jx〉–〈Jy〉 plane of (a, b, c) HH1 and (d, e, f) LH1 subbands in Al0.21Ga0.79As / GaAs
QW. The direction of the wave vector is shown by lines: ky = 0 and (a, d) kx = 0.003, (b, e) 0.012, (c, f) 0.024 Å−1. The respective wave

vectors are designated by letters on the dispersion curves in Fig. 3, too. The QW lies in the x–y plane.

state. The complicated dependence of the spin surface
on the wave vector can be explained by different con-
tributions of heavy- and light-mass bands. At k = 0
these bands are decoupled from each other. However,
away from the k = 0 point the wave function of HH1
band more and more acquires the light-band character
and, vice versa, the LH1 band acquires the heavy-band
character [27].

In the spin-FET proposed by Datta and Das the con-
tributions of up and down states in the mixture (17) are
equal, that corresponds to ϑ = π/4. In Figs. 5 and
6 the corresponding points lie on the equator at equal
distances from the poles. When the hole propagates in
the FET channel, the tip of 〈S〉 moves on the equator.
The parameter φ fixes the initial spin polarization (hor-
izontal or vertical) of the injected hole, similarly as in
the superposition (4). It can be shown that in the case
of 4× 4 valence Hamiltonian (9) one has 〈S〉 = 〈J〉/3,
i. e., the shapes of the spin and total angular momentum
surfaces apart from their magnitude are identical in this
approximation.

The important message in 2D hole case is that the
magnitude of the average spin strongly depends on the
hole wave vector and even can be equal to zero. This is
at variance with the standard belief that in mixing the

states with different ratios only spin direction changes.
Similar dependences were observed for other directions
of k. Comparison between Figs. 5 and 6 shows that the
well depth has small effect on the form of spin surface
and the strongest dependence comes from the length
of the in-plane wave vector |k| =

√

k2
x + k2

y . Singu-
larities appear in those cases where the spin surfaces
reduce to lines. For example, this happens at k = 0 in
the HH1 subband. In this case the injection from the
ferromagnetic contacts with spins polarized in the QW
plane will be hard, since the spin lengths in the fer-
romagnetic source / drain and 2D channel do not match
each other. However, for perpendicular polarization the
spin matching, in principle, is possible. In the case of
LH1 subband an opposite situation is observed, where
at k = 0.024 Å−1 line-shaped spin surface lies in the
QW plane. Thus, in this case an efficient injection will
occur if the source and drain magnetization lies in the
QW plane. If in the initial Hamiltonian (9) more than
four bands are included, the mentioned singular lines
will blow up to cigar-shaped spin surfaces.
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(a) (b) (c)

(d) (e) (f)
Fig. 6. The same as in Fig. 5 but for AlAs / GaAs QW.

4. Conclusion

In contrast to the standard FET, where only charge
transport between the electrodes matters, in the spin-
FET the properties of the wave function in the channel
should be known to describe properly the spin injec-
tion, propagation, and collection. The concept of the
spin surface allows to solve partially these problems at
a quantum mechanical level. Although the spin sur-
face describes spin properties of a freely propagating
electron or hole and thus the interface matching prob-
lem is circumvented, nonetheless, the knowledge of the
spin surfaces in channel and electrodes allows one to
make some useful decisions about spin-FET properties.
Specifically, the knowledge of the spin surface, first of
all, allows one to understand spin properties of the bal-
listic hole in the channel, where the spin transforms
during a carrier flight from source to drain. Second,
the interface quality depends on many factors that are
frequently unknown to experimenter. The knowledge
of the spin surfaces allows one to make some conclu-
sions about the spin injection and collection efficiency
in the source / drain electrodes. The standard preces-
sion Eq. (3) can be used only to describe electron spin
dynamics on spherical spin surface and is not suitable
for holes. If needed, the problem may be further simpli-
fied by neglecting the Rashba Hamiltonian which does

not influence the form of the spin surface. Since it is
the Rashba Hamiltonian that takes into account the SO
interaction, which is equivalent to some effective mag-
netic field, in the latter case the information about the
direction of the quantization axis will be lost.

In conclusion, a number of important parameters
that determine the operation of the spin-FET were
listed and analysed critically. The paper shows that
this list is not complete and should be supplemented by
properties of the spin surfaces which have been found
to be rather complicated in the case of 2D channels.
There is a hope that the optimization of spin-FET pa-
rameters listed in Sec. 2 will be more fruitful if in the
analysis one also takes into account the shapes of spin
surface.
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KODĖL NEVEIKIA SUKINIO TRANZISTORIUS?

A. Dargys

Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka
Sukinio tranzistorius yra vienas iš spintronikos prietaisų, pa-

siūlytas dar 1990 m., kurio veikimas grindžiamas unikaliomis
laisvojo elektrono ir skylės sukinio savybėmis puslaidininkiuose.
Tokiame tranzistoriuje elektrinio laidumo moduliacija, panašiai
kaip optiniame poliarizaciniame moduliatoriuje, valdoma elekt-
riniu lauku, pakeičiant elektrono sukinio poliarizaciją. Ryšys
tarp elektrinio lauko ir sukinio sukuriamas per sukinio ir orbi-
tos sąveiką. Deja, iki šiol nepavyko pagaminti veikiančio suki-

nio tranzistoriaus, nors moduliacijos galimybės buvo pademonst-
ruotos. Pranešime trumpai apžvelgtas tokio tranzistoriaus veikimo
principas, pagrindiniai parametrai, lemiantys jo veikimą, ir sunku-
mai, su kuriais susiduriama, bandant pagaminti tranzistorių. Ypa-
tingas dėmesys kreipiamas į dvimatės protakos sukinio savybes,
tam pasitelkiant autoriaus pasiūlytą sukinio paviršiaus koncepciją.
Parodyta, kaip sukinio paviršiaus pavidalas priklauso nuo protakos
energinio spektro ir balistinės skylės greičio protakoje. Taip pat
parodyta, kaip galima pasinaudoti sukinio paviršiais, optimizuojant
sukinio injekciją iš feromagnetiko į dvimatę protaką.


