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A weakly nonlinear self-sustained oscillator can be synchronized by an external force only in a certain domain of parame-
ters. We exploit unstable periodic orbits and extend this domain via a small control perturbation. The controller is constructed
as a backward time replica of the original oscillator that has the same periodic orbits but with the opposite stability properties.
The control is achieved by synchronizing the original oscillator with its backward time replica. We demonstrate these ideas
both theoretically and experimentally.
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1. Introduction

Control problems have been discussed by engineers
and applied mathematicians for more than half a cen-
tury [1, 2]. However, the idea of noninvasive methods,
i. e. methods where the control force vanishes when the
target state is reached, has been emphasized by physi-
cists only one and a half decade ago in the context
of controlling chaos [3] and becomes one of the most
rapidly developing subfields in applied nonlinear sci-
ence. This subfield has boosted an enormous amount
of work on control problems related to stabilization of
unstable periodic orbits (UPOs) embedded in strange
attractors of chaotic systems (see [4] and references
therein) and leads to new concepts like external force
and delayed feedback control techniques [5].

In this paper, we consider the problem of control-
ling synchronization in a forced self-sustained oscilla-
tor. Very often in practical application the need arises
to control the properties of oscillations. Usually control
assumes an enhancement in regularity of motion. Sup-
pose that our aim is to maintain the synchronous regime
of a periodically driven self-sustained oscillator. Due
to drift of parameters the system may leave the syn-
chronization domain and a kind of beat phenomenon
may occur. However, outside this domain the system
has unstable periodic orbits that can be stabilized by
∗ The report presented at the 37th Lithuanian National Physics Con-

ference, 11–13 June 2007, Vilnius, Lithuania.

a small feedback perturbation, and thus the domain of
synchronization can be extended with only small con-
trol force. In a recent paper [6] we have considered
this problem in the framework of the delayed feedback
control technique. Here we apply an external force (or
proportional feedback) technique [5] to stabilize UPOs
coexisting with the quasiperiodic attractor. In this tech-
nique, the control perturbation is proportional to the
difference between the actual state of the system and
the state corresponding to the desired UPO. An experi-
mental implementation of this technique is usually dif-
ficult since it requires a design of a special periodic
oscillator which generates a signal in the form of the
desired UPO [7]. Here we show that such an oscillator
can be constructed as a backward time replica of the
original oscillator [8]. The backward time replica has
the same periodic orbits as the original oscillator but
with the opposite stability properties (i. e., unstable pe-
riodic orbits of the original oscillator coincide with sta-
ble periodic orbits of the backward time replica). Then
by coupling the original oscillator with its backward
time replica one can stabilize the desired UPO and ex-
tend the domain of synchronization.

The rest of the paper is organized as follows. In Sec-
tion 2, we describe an analytical theory of the applied
control technique and numerically demonstrate its per-
formance for a forced van der Pol oscillator. Then the
experimental implementation of the technique for an
electronic self-sustained oscillator is presented. The
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Fig. 1. Block diagram of the backward time control technique.

paper is finished with conclusions presented in Sec-
tion 3.

2. Theory of the backward time control technique

The block diagram of the backward time control
technique is presented in Fig. 1. To be specific we
demonstrate its performance for a weakly nonlinear
van der Pol oscillator subjected to an external periodic
force. Consider the following system

ẍ + ω2

0x + ε(x2 − 1)ẋ = a sin(ωt) + k(u̇ − ẋ) , (1)

ü + ω2

cu − ε(u2 − 1)u̇ =−a sin(ωt) . (2)

The left-hand side of Eq. (1) represents the standard
van der Pol equation. The parameter ω0 is the charac-
teristic frequency of self-sustained oscillations, and ε is
responsible for the strength of nonlinearity of the oscil-
lator. The first term in the right-hand side is an exter-
nal periodic force (a is the amplitude and ω is the fre-
quency) and the second term describes the control per-
turbation. The parameter k is a feedback gain. Equa-
tion (2) represents a backward time controller. This
equation is derived from Eq. (1) by changing the sign
of time, i. e., by the transformation t → −t. The char-
acteristic frequency ωc of the controller should slightly
differ from the frequency ω0 of the original oscillator.
The exact relation between these two frequencies will
be presented latter.

In the following we consider Eqs. (1) and (2) as
weakly nonlinear oscillators, i. e., systems that can be
presented as linear oscillators with frequencies ω0 and
ωc (the first two terms in Eqs. (1) and (2)) subject to
small perturbations (the remaining terms in the same
equations). Specifically, we suppose that the following
inequalities are met:

ε

ω0

¿ 1 ,
a

ω2
0

¿ 1 ,
k

ω0

¿ 1 ,

|ω − ω0|
ω0

¿ 1 ,
|ω − ωc|

ω0

¿ 1 . (3)

For weakly nonlinear systems, there are many mathe-
matically rigorous ways (e. g., a method of averaging,
a multiscale expansion, and other asymptotic methods)
to obtain approximate solutions. We will apply the
method of averaging. First we rewrite Eqs. (1) and (2)
in a normal form:

ẋ = y , (4)

ẏ =−ω2

0x − ε(x2 − 1)y + a sin(ωt) + k(v − y) , (5)

u̇ = v , (6)

v̇ =−ω2

cu + ε(u2 − 1)v − a sin(ωt) . (7)

As Eqs. (4), (5) and (6), (7) are close to those of lin-
ear oscillators, we can expect that the solutions have
a nearly harmonic form. Since these are forced sys-
tems, we look for solutions with the characteristic fre-
quency ω:

x =
A(t)eiωt + A∗(t)e−iωt

2
, (8)

u =
B(t)eiωt + B∗(t)e−iωt

2
. (9)

Here A(t) and B(t) are new variables, slowly vary-
ing complex amplitudes. Since they are complex, we
need two relations to have one-to-one correspondence
between (x, y) and A as well as between (u, v) and B.
It is convenient to introduce the following relations be-
tween y and A and between v and B:

y = iω
A(t)eiωt − A∗(t)e−iωt

2
, (10)

v = iω
B(t)eiωt − B∗(t)e−iωt

2
. (11)

Substituting Eqs. (8)–(11) in system (4)–(7) we obtain
the equations for the complex amplitudes, which after
averaging over the period T = 2π/ω of fast oscillations
take the form

Ȧ =
ω2 − ω2

0

2iω
A − ε

2
A

(

|A|2
4

− 1

)

− a

2ω

+
k

2
(B − A) , (12)
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Ḃ =
ω2 − ω2

c

2iω
B +

ε

2
B

(

|B|2
4

− 1

)

+
a

2ω
. (13)

The second and the third terms in Eqs. (12) and (13)
are equal but opposite in signs. To make the first terms
equal and opposite in sign we require ω2 − ω2

c =
−(ω2 − ω2

0
) or

ω2

c = 2ω2 − ω2

0 . (14)

In a real experiment, this requirement can be kept by
tuning the frequency ωc in such a way as to minimize
the amplitude of the control perturbation k(v−y). Un-
der requirement (14), the amplitude equation (13) be-
comes an exact backward time copy of the amplitude
equation (12) for k = 0. Thus for k = 0, these equa-
tions have equivalent fixed points but their eigenvalues
are of opposite signs. The same is true for the peri-
odic orbits of systems (4), (5) and (6), (7) and their
Floquet exponents (FEs). Therefore, if the original os-
cillator (4), (5) has an UPO with positive real parts of
both FEs, then the same periodic orbit, but stable, with
the opposite sign of FEs, will have the backward time
replica (6), (7). The stability of such orbits in the con-
trolled (k 6= 0) oscillator (4), (5) is defined by equation

Ȧ =
ω2 − ω2

0

2iω
A− ε

2
A

( |A|2
4

−1

)

− a

2ω
+

k

2
(A0−A) .

(15)
Here A0 = B0 is a steady state solution of both Eq. (13)
and Eq. (12), which is stable for Eq. (13) and unstable
for Eq. (12) for k = 0. Equation (15) is derived from
Eq. (12) by substitution B = B0 = A0, i. e., we sup-
pose that in Eq. (13) the amplitude B has reached its
stable steady state, B = B0.

By choosing an appropriate scale for the amplitude

A = 2z (16)

and introducing new parameters

α =
a

2εω
, ν =

ω2 − ω2
0

εω
≈ 2

ω − ω0

ε
, κ =

k

ε
. (17)

Eq. (15) can be simplified to

2

ε
ż = −iνz − z(|z|2 − 1) − α + κ(z0 − z) , (18)

where z0 = A0/2.
Now we analyse the solutions of Eq. (18). The bi-

furcation diagram in the plane of parameters (ν, α) is
shown in Fig. 2. Since it is symmetrical with respect to
the ν and α axis, only the part ν ≥ 0, α ≥ 0 is pre-
sented. We start the analysis with finding the stationary

Fig. 2. The bifurcation diagram of Eq. (18). The thick dashed lines
are defined by Eq. (23). The region between these lines correspond
to three periodic orbits. Outside this region there is only one peri-
odic orbit. The thick solid line is the hyperbola (26) defining the
Hopf bifurcation of the uncontrolled oscillator. The broken lines
represent the hyperbolas (27) for different values of the control gain
κ. The solid dot (ν, α) = (0.9, 0.6) and square (ν, α) = (0.25, 0.3)
show the sets of parameters which will be used in the following

analysis to demonstrate the backward time control performance.

solutions of the uncontrolled system. Setting ż = 0 and
z = z0 we obtain

−iνz0 − z0(|z0|2 − 1) − α = 0 . (19)

We introduce the notations

s = |z0|2, fν(s) = s
[

(s − 1)2 + ν2
]

. (20)

Then the stationary values of s can be found by solving
the cubic equation

fν(s) = α2 (21)

with respect to s. Knowing s, from Eq. (19) one can
determine the steady state value z0 = −α/(s−1+iν).

Solutions of the cubic equation (21) define station-
ary periodic orbits of the forced system. The period
of these orbits is equal to the period T of the external
force, and the amplitude (the radius in the (x, y) plane)
is |A0| = 2|z0| = 2

√
s. Equation (21) has three real

roots provided

α2

1(ν) < α2 < α2

2(ν) , (22)

α2

1,2(ν) =
2

27

[

9ν2 + 1 ∓ (1 − 3ν2)3/2
]

, (23)

or one real root otherwise. Thus the forced van der Pol
oscillator has either three or one periodic orbit(s). The
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region with three orbits is between thick dashed lines
in Fig. 2. Outside this region there is only one periodic
orbit.

To determine the stability of periodic orbits, we have
to linearize Eq. (18). As a result we obtain the charac-
teristic equation
(

2λ

ε
+ κ

)2

−2(1−2s)

(

2λ

ε
+ κ

)

+f ′

ν(s) = 0 . (24)

Here λ is the eigenvalue of the linearized Eq. (18),
which coincides with the FE of the corresponding peri-
odic orbit, s is the solution of the cubic equation (21),
and

f ′

ν(s) = (3s − 1)(s − 1) + ν2 (25)

is the derivative of the function fν(s) defined in
Eq. (20).

First we discuss the stability of periodic orbits of the
uncontrolled system for κ = 0. The stability of periodic
orbit depends on the value of s, i. e., on the amplitude
of the orbit |A0| = 2

√
s. Two different types of bi-

furcations may occur in the system. For f ′

ν(s) = 0 we
have a tangent (saddle-node) bifurcation, and for s =
1/2 a Hopf bifurcation arises. The condition f ′

ν(s) = 0
defines the boundaries α2 = α2

1,2(ν) of the region with
three periodic orbits in the (ν, α) plane (dashed solid
lines in Fig. 2). When crossing into this region two
additional orbits of saddle and node types occur. The
saddle orbit has two real FEs of different signs. Such
an orbit cannot be stabilized by the backward time con-
trol technique since it remains an unstable saddle or-
bit for the the backward time replica. The condition
of the Hopf bifurcation s = 1/2 defines the minimal
amplitude of the stable orbit Amin =

√
2. The orbits

with amplitude |A0| < Amin are unstable. In the (ν, α)
plane, this condition defines the hyperbola

α2 = fν(1/2) =
ν2

2
+

1

8
, (26)

which is shown by a solid line in Fig. 2. Above this line
the oscillator is synchronized with the external force.
Below this curve, in the region of a single periodic so-
lution, the synchronization is lost and we usually have
a quasiperiodic behaviour.

To demonstrate the performance of the backward
time controller we choose two points in the bifurcation
diagram, one in the region of a single periodic orbit,
(ν, α) = (0.9, 0.6), marked by a solid dot in Fig. 2, and
another in the region of three periodic orbits, (ν, α) =
(0.25, 0.3), marked by a solid square. For these sets of
parameters, the orbits of the uncontrolled oscillator in

Fig. 3. Examples of periodic orbits of the forced uncontrolled os-
cillator. (a) The case of a single UPO corresponding to the set
of parameters (ν, α) = (0.9, 0.6) marked by a solid dot in Fig. 2.
The amplitude of the orbit is |A0| ≈ 1.034 and its FEs λ0 ≈
(0.233±0.430i)ε. (b) The case of three periodic orbits for (ν, α) =
(0.25, 0.3) corresponding to a solid squire in Fig. 2. The largest
orbit (solid line) is stable, the middle orbit (open circles) is of a
saddle type, and the smallest orbit is unstable with |A0| ≈ 0.645

and λ0 ≈ (0.396±0.114i)ε.

the (x, y) plane are shown in Fig. 3. The stable orbit is
marked by a solid line. Note that it is an unstable orbit
for the backward time controller. The saddle orbit is
marked by open circles. It remains the saddle orbit for
the controller as well. Finally, unstable orbits having a
pair of complex conjugate exponents with the positive
real part are marked by dashed lines. They are stable
for the backward time replica. Below we consider their
stabilization in the controlled original oscillator.

The FEs of the controlled oscillator satisfy Eq. (24).
The condition of the Hopf bifurcation for κ 6= 0 reads
s = (1 − κ)/2. Now instead of Eq. (26) we have

α2 = (1 − κ)
(1 + κ)2 + 4ν2

8
. (27)

Again this relation defines the hyperbolas in the (ν, α)
plane. In Fig. 2, they are shown by broken lines for
different values of κ. Above these curves the corre-
sponding orbits of the controlled oscillator are stable.
It follows that for κ ≥ 1 one can stabilize an UPO for
any choice of the parameters (ν, α). Thus the domain
of synchronization of the forced self-sustained oscilla-
tor can be extended to the whole plane of parameters
(ν, α).

For a fixed value of parameters (ν, α), the threshold
of stability of a given UPO can be easily obtained from
Eq. (24). Denote the FE of the uncontrolled UPO for
κ = 0 by λ0. Then the FE of the controlled periodic
orbit is λ = λ0 − κε/2 = λ0 − k/2. For the real part
of the FE we obtain

Reλ = Reλ0 −
k

2
. (28)
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Fig. 4. Numerical simulation of Eqs. (4)–(7) for (ν, α) = (0.9, 0.6).
The values of other parameters are ε = 0.1, ω0 = 1, ω ≈ 1.0460,
ωc ≈ 1.1883, a ≈ 0.126, k = 0.15. The control perturbation is
switched on at the moment tc = 40T , i. e., k = 0 for t < tc and
k = 0.15 for t > tc. The backward time controller stabilizes an
UPO shown in Fig. 2 (a). (a) Dynamics of the output variable y.
(b) Dynamics of the difference y − v, which for t > tc is propor-

tional to the control perturbation.

The threshold of stability k0 is defined by condition
Reλ = 0, which yields

k0 = 2Reλ0 = ε(1 − 2s) = ε

(

1 − |A0|2
A2

min

)

. (29)

For k > k0, the backward time controller stabilizes
the desired UPO. Thus the synchronous regime of the
forced van der Pol oscillator can be maintained with
only small control force outside the domain of synchro-
nization.

To support the above analytical theory we have
performed numerical simulations of the original sys-
tem (4)–(7). The results for the set of parameters
(ν, α) = (0.9, 0.6) is shown in Fig. 4. This set corre-
sponds to a single UPO shown in Fig. 2(a). For ε = 0.1,
the FEs of this orbit are λ0 ≈ 0.0233±0.0430i. It fol-
lows from Eq. (29) that the threshold of stabilization is
k0 ≈ 0.0466. Figure 4 shows successful stabilization of
this orbit for k = 0.15. Without control (t < tc = 40T )
the forced oscillator exhibits a beat phenomenon. The
control perturbation removes the beat, and after a tran-
sient the synchronous regime with the external force is
restored. The control perturbation becomes extremely
small whenever the oscillator reaches a previously un-
stable orbit.

Figure 5 shows a control of the oscillator for the
set of parameters (ν, α) = (0.25, 0.3), ε = 0.1, when
the system has three periodic orbits, as presented in
Fig. 2(b). The largest orbit with the amplitude |A0| ≈
2.12 is stable. It corresponds to the synchronized peri-

Fig. 5. Same diagrams as in Fig. 4 but for (ν, α) = (0.25, 0.3).
The values of other parameters are ε = 0.1, ω0 = 1, ω ≈ 1.0126,
ωc ≈ 1.0506, a ≈ 0.061, k = 0.15. The control perturbation is
switched on at the moment tc = 20T . The backward time controller

stabilizes the smallest UPO shown in Fig. 2 (b) by dashed line.

Fig. 6. Experimental results.

odic motion of the system that is observed without con-
trol for t < tc = 20T . The smallest orbit with the am-
plitude |A0| ≈ 0.645 is unstable; its two complex con-
jugate FEs are λ0 ≈ (0.0396±0.0114i). The stabiliza-
tion threshold of this orbit is k0 ≈ 0.0792. The back-
ward time controller switches the system from synchro-
nized motion with the large amplitude to another syn-
chronized motion with the small amplitude. When this
new synchronization regime is settled the feedback per-
turbation almost vanishes.

Performance of the applied control technique has
been demonstrated using the experimental set-up shown
in Fig. 6 of Ref. [8]. The experimental results are pre-
sented in Fig. 6. They are similar to the theoretical re-
sults shown in Fig. 4. The circuit parameters are chosen
in such a way that without control the self-sustained os-
cillator is not synchronized with an external force and
beat phenomenon is observed at the output. The control
signal taken from a backward time controller stabilizes
an unstable periodic orbit. As a result the synchroniza-
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tion with an external force is achieved with only small
control perturbation.

3. Conclusions

In this paper, we have applied a backward time con-
trol technique to stabilize unstable periodic orbits of a
forced self-sustained oscillator close to a supercritical
Hopf bifurcation. By means of this control the domain
of synchronization can be extended for any values of
the frequency detuning as well as the amplitude of the
external force. The backward time control technique
can be also used to change the synchronization regime
from periodic oscillations with a large amplitude to pe-
riodic oscillations with a small amplitude. The control
is achieved by using only a small feedback perturba-
tion.

The analytical theory of the backward time control
is presented for a specific problem of a forced van der
Pol oscillator. We have obtained simple analytical ex-
pressions for the dependence of the Floquet exponents
on the control gain and determined the threshold value
of stability. The analytical approach is based on the av-
eraging method, a classical method of the nonlinear dy-
namics developed for weakly nonlinear oscillators, and
can be applied for any forced self-sustained oscillator
close to the Hopf bifurcation. Thus the main results are
suitable for a wide class of dynamical systems.

We have demonstrated experimentally the efficiency
of the backward time control technique for an elec-
tronic circuit. A good agreement with the theoretical
results has been obtained. The fact that the method
works in a real experiment confirms its robustness
against noise and small mismatch of the parameters in
the controller and controlled system.

We have recently considered [6] the problem of con-
trolling a forced self-sustained oscillator in the frame-
work of the delayed feedback control technique. The
main differences between the delayed feedback and
the backward time control approaches are as follows.
The delayed feedback control is reference-free; it does
not require the knowledge of the model of the con-
trolled system. In the ideal case, the feedback per-
turbation vanishes when the desired synchronous state
is reached. In contrast, in the backward time control
technique we need a knowledge of the model equa-
tions when designing the backward time replica of the
system. Here the control perturbation vanishes only
in a quasiharmonic approximation (for averaged equa-
tions), but is not exactly equal to zero (although it is ex-
tremely small) for the original nonlinear system. How-

ever, the backward time control has some advantages.
It is more efficient than the the delayed feedback con-
trol. Here the Floquet exponents of the controlled orbits
decrease linearly with the increase of the control gain
and can reach arbitrarily large negative values, while in
the delayed feedback the stabilization is possible only
in a certain interval of the control gain and the Floquet
exponents cannot take large negative values. Thus in
the backward time control the system approaches the
desired synchronous state mach more faster than in the
delayed feedback (compare Fig. 4 of this paper with
Fig. 10 of Ref. [6]).
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SINCHRONIZACIJOS VALDYMAS APGRĘŽTO LAIKO VALDIKLIU

T. Pyragienė, K. Pyragas, A. Tamaševičius, G. Mykolaitis

Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka
Neinvazinio valdymo idėja buvo suformuluota [3] darbe, kuris

davė pradžią naujai mokslo krypčiai – chaoso valdymui. Buvo at-
kreiptas dėmesys į tai, kad chaotinis atraktorius yra sudarytas iš
begalinės aibės nestabilių periodinių orbitų. Jas galima stabilizuoti
nykstamai maža grįžtamojo ryšio jėga, ir tuo pačiu chaotinį sis-
temos judėjimą paversti periodiniu. Neseniai nestabilių periodi-
nių orbitų stabilizacijos idėja buvo apibendrinta kvaziperiodinėms
sistemoms. Pasirodo, kad kvaziperiodiniam judėjimui taip pat yra
būdingos nestabilios periodinės orbitos. Kai neautonominis savai-
minių virpesių osciliatorius yra mūšos režime, galima stabilizuoti

jo nestabilias periodines orbitas ir tuo pačiu neinvaziškai praplėsti
sinchronizacijos ribas. Tam buvo pritaikytas žinomas uždelstojo
grįžtamojo ryšio metodas [6].

Siekiant greičiau grąžinti sistemą į sinchronizacijos režimą, ki-
taip negu uždelstojo grįžtamojo ryšio metodo atveju, mes pasiū-
lėme naują neinvazinio valdymo algoritmą. Šio metodo idėja re-
miasi pagalbinio osciliatoriaus, kurio lygtys sutampa su pirmojo os-
ciliatoriaus lygtimis, tik laiko ženklas yra priešingas, konstravimu.
Sinchronizuojant pirmąjį osciliatorių su pagalbiniu, galima stabili-
zuoti jo nestabilią periodinę orbitą ir taip priversti jį sinchronizuotis
su išorine periodine jėga.


