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The dipole non-harmonic electromagnetic fields are derived from the Hertzian vectors expressed using an orthonormal basis
set of the finite-energy Hermite–Gaussian functions. Upon application of the Fourier transform operation’s eigendecomposi-
tion, four sets of the expansion coefficients are introduced. The time and space-limited function describing the dipole excitation
as well as its Fourier transform are then expressed through the appropriate couples of introduced functions. The numerical cal-
culation of dipole-radiated fields produced by a given Hertzian vector are presented and their properties are discussed.

Keywords: antennas, electromagnetic fields, signal transmission

PACS: 84.40.Ba, 84.40.Ua, 03.50.De

1. Introduction

The propagation of ultra-wideband electromagnetic
signals can be formulated in terms of a generalized
time-scale analysis. The analysis is natural to elec-
tromagnetic fields for the following fundamental rea-
son: Maxwell’s equations in free space are invariant
under a group of transformations called the confor-
mal group C, which includes space-time translations,
dilatations, and rotations. In fact, these transforma-
tions taken together essentially characterize free elec-
tromagnetic waves. The structure of these equations
also makes it possible to extend their solutions analyti-
cally to a certain domain in complex space-time, where
conformal transformations act as unitary operators [1].

As long as the boundaries and material media are
symmetric, the signal sources and fields may be de-
composed into constituents that individually imitate the
symmetry of the environment. Usually a vector field
is decomposed into a lamellar component having zero
curl and solenoidal component having zero divergence
(known as Helmholtz decomposition). The Hertzian
potentials emerge as the consequence of symmetry ap-
plication to electromagnetic fields and sources [2].

The introduction of potential functions replaces the
solution process dealing with two coupled first order
∗ The report presented at the 37th Lithuanian National Physics Con-
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Maxwell’s equations by the one dealing with two un-
coupled second order equations.

Recently we reported [3] that the wave equation so-
lution representing Hertzian dipole fields can be ex-
pressed by a couple of different functions that are ex-
panded in terms of basis set of Hermite–Gaussian func-
tions. This approach allows for a unified form to rep-
resent the dipole electromagnetic fields of different ori-
gin, whether stationary or variable. The sum of the two
introduced functions describes behaviour of time and
space-limited electromagnetic pulses, while the differ-
ence of the functions reflects the dipole field, formally
being its Fourier transform.

The purpose of this work is to define the eigende-
composition sets of the Fourier transform operation,
then, using its elements and their arrays, to define a
short impulse excitation function, and to compute the
electric and magnetic fields radiated by an excited point
dipole source.

2. Theoretical basis

2.1. Hertzian potentials

The Hertzian potentials are introduced when we
choose the Lorentz gauge to remove the arbitrariness of
the divergence of the vector potential. Thus we should
be able to write both the electric and magnetic fields in
terms of a single potential function.
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A choice of the Lorentz gauge condition allows the
vector and scalar potentials to act as finite-velocity
waves. Actually it establishes a relationship between
vector and scalar potentials, thus it is possible to write
both the electric and magnetic fields in terms of a single
potential function [2]. Usually the Hertzian potentials
with electric ~πe and magnetic ~πm vectors are applied.

These potentials already incorporate the physical
laws of wave propagation, and they can be used to
construct arbitrary electromagnetic waves by superpo-
sition. Since the physical laws are now built into the
potentials, we can concentrate on choosing the coeffi-
cient function for a given field.

2.2. Dipole field representation

We aim to compute the electric and magnetic fields
radiated by a point dipole source having any temporal
variation of the polarization current. Since electromag-
netic fields are completely described using either ~πe or
~πm, we apply an electric Hertzian potential, which at
the distance r from the source located at r = 0 can be
expressed as

~πe = ~p
f(β)

4πr
, (1)

where the function f(β) defines temporal and spatial
potential’s dependence; β = kct − kr, ~p is the dipole
moment vector, k is the propagation coefficient (in the
case of harmonic field, k =

√

k2
x + k2

y + k2
z = 2π/λ is

the wave number, λ is the wavelength), c = 1/
√

ε0µ0

is the phase velocity of electromagnetic field in vac-
uum.

The electromagnetic field of this dipole is defined by
the formulae
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which, in the case of harmonic excitation, coincide with
well-known dipole field’s expressions [4]. We denote
here β0 = kct, ~r0 = ~r/r. The last term in (2) reflects
the inner electric dipole field at r = 0 like in the case
of a static dipole [4].

For physically realizable pulsed signals we need a
basis set of functions with finite norms and energies.
Functions of this kind are the Hermite–Gaussian func-
tions which constitute an orthonormal basis.

2.3. Finite-energy signal expansion

At r 6= 0 the Hertzian vector (1) satisfies the wave
equation for any function with requisite order deriva-
tives. Because the wave equation’s operators are all lin-
ear and hence the wave equation obeys the principle of
superposition, the linear set of functions also will form
the solution. The Hermite–Gaussian functions [5]

φn(β) =
1

√

2nn!
√

π
e−β2/2 Hn(β) (4)

constitute an orthonormal basis for the set of finite-
energy functions. Thus any finite-energy dependence
of dipole moment can be expanded in the form

f(β) =
∞
∑

n=0

an φn(β) , (5)

where expansion coefficients are

an =

∞
∫

−∞

f(β) φn(β) dβ . (6)

The coefficients constitute the representation of the
dipole field expressed through the function f(β) in the
Hermite–Gaussian basis set. The major part of energy
represented by the nth order Hermite–Gaussian func-
tion is concentrated in the arguments interval between
−(2n + 1)1/2 and (2n + 1)1/2.

It is well known [6] that the Hermite–Gaussian func-
tions φn(β) are eigenfunctions of the fractional Fourier
transform operation with eigenvalues λn = exp(inθ).
It means that the fractional Fourier transform of an is a
simple replacement of an by einθ · an, where θ varies
between 0 and 2π. The act of obtaining these coeffi-
cients is a transformation from continuous to discrete
basis. Thus for any function of type (4) its fractional
Fourier transform takes the form

f(θ, β) =
∞
∑

n=0

an einθ φn(β) . (7)

When β = const, and denoting anφn(const) = bn,
we have

f(θ, const) =
∞
∑

n=0

bn einθ , (8)
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which means that f(θ, const) is a periodic function.
So, it is possible to interpret the wave propagation as a
continuously unfolding fractional Fourier transforma-
tion [5].

The eigenfunctions of the ordinary Fourier trans-
form constitute an orthonormal basis for the space of
finite-energy signals. The nth Hermite–Gaussian func-
tion has the eigenvalue λn = exp(inπ/2) and n zero
crossings. Since we know that exp(inπ/2) = in, we
can also write the Fourier transform as follows:

f(π/2, β) =
∞
∑

n=0

an in φn(β) =

=
∞
∑

n=0

a4n φ4n(β) −
∞
∑

n=0

a4n+2 φ4n+2(β) + (9)

+ i

[ ∞
∑

n=0

a4n+1 φ4n+1(β) −
∞
∑

n=0

a4n+3 φ4n+3(β)

]

.

In the similar form we decompose the function f(β) ≡
f(0, β):

f(0, β) =
∞
∑

n=0

a4n φ4n(β) +
∞
∑

n=0

a4n+2 φ4n+2(β) +

+
∞
∑

n=0

a4n+1 φ4n+1(β) +
∞
∑

n=0

a4n+3 φ4n+3(β) . (10)

It is also not difficult to see that in the Hermite–
Gaussian representation the function and its Fourier
transform are different linear combinations of the same
functions.

3. Numerical examples

In this section, an eigendecomposition [7] of known
functions cos(β) and sin(β) is presented. For conve-
nience of further considerations we define four sets of
coefficients:

h0(n) =
2n
∑

k=0

(−1)k 24n−2k

(4n − 2k)! · k!
, (11)
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2n
∑
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, (13)
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∑
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(4n − 2k + 3)! · k!
. (14)

The time-limited cos(0, β, m) and sin(0, β, m) func-
tions are represented using an appropriate couple of the
functions

f0(β, m) =
m
∑

n=0

√

(4n)!

24n
h0(n) φ4n(β) , (15)

f1(β, m) =
m
∑

n=0

√

(4n + 1)!

24n+1
h1(n) φ4n+1(β) , (16)

f2(β, m) =
m
∑

n=0

√

(4n + 2)!

24n+2
h2(n) φ4n+2(β) , (17)

f3(β, m) =
m
∑

n=0

√

(4n + 3)!

24n+3
h3(n) φ4n+3(β) . (18)

For a finite number m in summation (15)–(18), we have
expressions for cos and sin functions:

cos(0, β, m) =

√

2

√
π

e
[f0(β, m) − f2(β, m)] , (19)

sin(0, β, m) =

√

2

√
π

e
[f1(β, m) − f3(β, m)] . (20)

Their Fourier transforms are

cos(π/2, β, m) =

√

2

√
π

e
[f0(β, m) + f2(β, m)] , (21)

sin(π/2, β, m) =

√

2

√
π

e
[f1(β, m) + f3(β, m)] . (22)

At m = ∞ cos(0, β, m) = cos(β), sin(0, β, m) =
sin(β).

A numerical example of finite-energy cos(0, β, m)
and its Fourier transform F (cos(0, β, m)) calculated as
linear combinations of functions f0(β, m) and f2(β, m)
is presented in Fig. 1.

An example of dipole-radiated electric field pro-
duced by the Hertzian vector represented by a differ-
ence of functions f0(β, m)−f2(β, m) with parameters
mapping a finite cos-like pulse (see Fig. 1(a)) in the di-
rection perpendicular to the dipole axis is presented in
Fig. 2.

From the result, it is clear that the radiated signal
has a component of intermodulation interference. The
intermodulation distortion amplitude depends on the
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Fig. 1. Representation of (a) cos(0, β, m) and (b) its Fourier trans-
form, m = 24.

Fig. 2. Dipole-radiated electric field of short finite cos-like excita-
tion at distance kr = 31, m = 24.

number m in summation (15)–(18). It vanishes when
m tends to 0. The interference originates from the im-
perfection of restricted cos(0, β, m) function. It is also
determined by the second order derivative which de-
fines the field in far-zone. For a perfect harmonic sig-
nal second order derivative is the same function and no
distortion is predicted. The filtering technique is re-
quired to eliminate the interference. This topic will be
investigated in the future.

4. Conclusion

It has been shown that the propagation process of
time and space-limited electromagnetic signals can be
described by a couple of proposed functions that are
expanded in terms of basis set of the Hermite–Gaussian
functions.

The approach also suggests a possible calculation
procedure for modelling radiation properties of a de-
vice antenna in near and far-zone as a superposition
of fields of a finite number of localized dipole sources
having various combinations and numbers in the set of
discrete functions.

An intermodulation interference in a signal propaga-
tion process is predicted which originates from the im-
perfect representation of a restricted signal and is due to
the properties of second order derivatives of functions
which define the field.
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DIPOLIO LAUKO IŠRAIŠKA ERMITO IR GAUSO BAZINĖMIS FUNKCIJOMIS
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Santrauka
Tirtas trumpu dipolinio momento impulsu sužadinto taškinio

dipolio išspinduliuotas elektromagnetinis laukas. Elektrinis ir mag-
netinis laukai apskaičiuoti pritaikius žinomą procedūrą iš elektri-
nio arba magnetinio Herco vektoriaus, kuris šalia dipolio užrašo-
mas Ermito ir Gauso ortonormuotų funkcijų φn(β) bazėje. Pritai-
kius Furjė operatoriaus skleidimo tikrinėmis funkcijomis operaciją,
gaunami keturi skleidimo koeficientų rinkiniai. Paėmus atitinkamą
rinkinių porą, aprašomas baigtinis erdvėje ar laike dipolio suža-

dinimas arba jo Furjė atvaizdas. Skaitmeniškai tirti taip sužadinto
taškinio dipolio išspinduliuoti laukai. Nustatyta, kad baigtinės truk-
mės impulsu sužadinto dipolio išspinduliuotas laukas tolimojoje
srityje, skirtingai negu jį žadinant harmoniniu lauku, turi intermo-
duliacinį „triukšmų“ sandą. Jo amplitudė priklauso nuo skleidimo
narių skaičiaus ir mažėja jam artėjant į nulį. Intermoduliaciniai
signalo iškraipymai tolimojoje zonoje susiję su žadinančiojo sig-
nalo baigtinumu ir funkcijos, aprašančios laukus, antrųjų išvestinių
savybėmis.


