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We consider a second order linear resonator inserted in the negative feedback loop of the chaotic Duffing—Holmes oscillator
for stabilizing unstable periodic orbit. Mathematical model is discussed and numerical simulations are presented. An ana-
logue electronic controller is described. Experiments have been performed with an electronic version of the Duffing—Holmes
oscillator. Stabilization of periodic oscillations can be achieved with a small control force.
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1. Introduction

17 years ago Edward Ott, Celso Grebogi, and
James Yorke launched a new and very intriguing activ-
ity in nonlinear dynamics, called ‘Controlling Chaos’
[1], still attractive nowadays. It inspired many other
researchers to develop alternative control algorithms
[2-4]. One of the most successful techniques is
the time-continuous delayed feedback control (DFC)
method, also known as Pyragas’ method [5-7]. Practi-
cal implementation of the DFC method requires a delay
line in the feedback circuit. At high frequencies (hun-
dreds of megahertz) the delay line is either simply a
coaxial transmission cable or a micro-strip line. How-
ever, at lower frequencies the delay unit is rather com-
plicated and inconvenient device. In the present pa-
per we suggest an extremely simple technique for con-
trolling unstable periodic orbits embedded in chaotic
systems. The basic idea behind the method is to re-
place the feedback loop containing a delay line with
the second order resonant negative feedback (RNF2)
where the resonator is tuned to the main frequency of
the unstable orbit. As a result the negative feedback
damps all the oscillations except the desired periodic
orbit. To be specific we consider the chaotic Duffing—
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Holmes oscillator [8-10] and employ a second order
LC filter similarly to the very recently described tech-
nique of synchronization of one-way coupled simple
periodic oscillators [11].

2. Mathematical model and numerical results

The Duffing—Holmes two-well oscillator [§-10] is
given either by the second order nonlinear equation

i+bi—z+2°=asnwt (1)

or by the set of two first order equations

T=y,

y=—by+z—2°+asinwt. 2)
In Egs. (1), (2) b is the damping coefficient, a and w is
the amplitude and frequency of external periodic force,
respectively. Characteristic frequency of the nonlin-
ear oscillator, applicable in the vicinity of the unforced
(a = 0) stable steady states xg = %1, i.e. close to the
bottoms of the wells, is wg = 21/2,

Let us couple the nonlinear Duffing—Holmes oscil-
lator with a damped second order linear oscillator, de-
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Fig. 1. Block diagram of the control technique.

scribed by dynamical variables x1, 1, damping param-
eter by, and characteristic frequency wi:

T=y,

—by+z— 2+ asinwt — k(y — 1),

1 =wi(y1 — biz1),

th=wi[-r1 + k1 (y-y1)] - (3)
Here the coupling coefficients k and k1 may be differ-
ent. Equations (3) can be presented in the following

form:

F+bi—ax42d=asinwt —kF(&,i1,21),
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Fig. 3. Waveforms from Eq. (3). Parameters are the same as in
Fig. 2. Control is activated at the time moment ¢ = 300. The lower
trace is intentionally shifted down by value —3.

where the control feedback term F’ is given by

&)

F(a’c,i:l,xl) =z — —Jvl — blxl .
w1
Control set-up containing linear resonator in the
negative feedback loop of the nonlinear oscillator is
sketched in Fig. 1. Numerical results obtained from
Eq. (3) using the simulation program Mathematica are
shown in Figs. 2 and 3.

3. Experimental set-up

The suggested control technique has been tested ex-
perimentally using the set-up depicted in Fig. 4. The
subcircuit composed of the operational amplifier OA1,

Y
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Fig. 2. Simulated results from Eq. (3). (a) Phase portraits, (b) Poincaré sections: (left) without control, k& = k1 = 0, (right) under control,
k =2, k1 = 1. Other parameter values: a = 0.45,b=0.1,b; = 0.0, w = 1.3, w1 = w.
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Fig. 4. Circuit diagram of the Duffing—Holmes oscillator with a

controller in the feedback loop. w =27 f, L = 19 mH, C = 470 nF

(fo = 1.7 kHz), L1 = 47 mH, C; =240 nF (f1 = 1.5kHz), R =

ZOQ,TZSIQ,R1 :R2:R5:10kQ,R4:R5:1kQ,R6:
510 €2. Here S is an electronic switch.

the R-L—C resonator, the resistors R1-R3 and the
diodes D1, D2 is an electronic implementation of the
nonautonomous Duffing—Holmes oscillator described
in detail elsewhere [12]. It is used in [13] and is similar
in a sense to the Young-Silva circuit [14], but is essen-
tially simpler. The rest of the circuit is the controller.
The basic element is the resonant filter r—-L.1-C1. The
OAZ2 based stage is a differentiator and the OA3 stage
is an adder. The input signal of the differentiator is the
voltage across the capacitor C, Vi, = V[, the output
signal Vou = —R* - C* - VC x —& = —y. The val-
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ues of R* and C* are set so that R*C* = (LC)'/2.
The control coefficients k£ and k7 are related to the cir-
cuit element values as follows: k& = Rs/Rg, k1 =

(L1/C1)'/2/Rg.

4. Experimental results

The photos demonstrating a settled behaviour of the
free-running oscillator (switch S is in the opened po-
sition) and the controlled oscillator (S is closed) are
shown in Fig. 5. Closed loop and a single dot in the
right-hand plots of the phase portraits and the Poincaré
sections, respectively, confirm that the RNF2 method
successfully stabilizes period-1 orbit. A snapshot of
the waveform including transient process is presented
in Fig. 6. The experimental results are in a good agree-
ment with the simulated plots in Figs. 2, 3.

5. Concluding remarks

Stabilization of the periodic orbit in the Duffing—
Holmes oscillator has been already demonstrated in
earlier papers both numerically [5] and experimentally
[15] using the DFC method. As mentioned in the In-
troduction the RNF2 method has been recently suc-
cessfully applied to extend the region of synchroniza-
tion of two simple periodic oscillators [11]. In the
present paper we have described a similar RNF2 ana-
logue controller and have applied it to stabilize unstable

(b)

Fig. 5. Experimental plots. (a) Phase portraits, (b) Poincaré sections: (left) without control, (right) under control. A =200mV, f = 1.5 kHz,
f1 = f = 1.5 kHz.
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Fig. 6. Experimental waveforms. Upper trace is the output signal

Ve (t) and lower trace is the control signal k F'(t), taken across

resistor R6. Parameters are the same as in Fig. 5. Fine vertical line

in the photo divides the regions where control is off (S opened) and
control is on (S closed).

periodic orbit in a chaotic electronic circuit that mimics
the Duffing—Holmes oscillator [12]. In contrast to the
DFC method the residual control signal in the RNF2
method does not vanish. However, it appears to be suf-
ficiently small (about 10% compared to the main sig-
nal). In the RNF2 method only the first harmonic of
the stabilized periodic orbit remains unchanged, but its
higher harmonics may be slightly affected. Detailed
numerical and experimental analysis (not discussed in
the previous sections) shows that the main component
of the residual control force is just the second har-
monic. Therefore the RNF2 controller can be easily
improved by inserting in the feedback loop an addi-
tional second order resonator with the resonance fre-
quency twice higher as that of the main resonator.

We would like to make some remarks concerning
control of chaos via so-called dynamical vibration ab-
sorber (DVA) [2, 16]. The DVA method is similar in a
sense to the RNF2 method. A linear “physically small”
[2] oscillator (a resonant absorber) is coupled to the
main chaotic oscillator. It can change the overall dy-
namics, thus suppressing chaos and stabilizing periodic
orbits. The DVA method has been tested numerically
[2,16] by applying it to the Duffing—Ueda oscillator
[17], which is similar to the Duffing— Holmes oscil-
lator, but without the term ‘—z’ in Eq. (1) and there-
fore has a simpler single-well potential. The control
force in the DVA method is different from that of the
RNF2 method. It exploits the difference of coordi-
nates F' o< (x — x1), instead of the difference of their
derivatives, e. g. F' given by Eq. (5). Finally, Kapita-
niak [2, 16] misleadingly attributes the DVA method to
chaos control methods “without feedback”.
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NESTABILIOS PERIODINES ORBITOS STABILIZAVIMAS CHAOTINIAME DUFFING’O IR
HOLMES’0O OSCILIATORIUJE ANTROS EILES REZONANSINIU NEIGIAMU GRIZTAMUOJU
RYSIU
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Santrauka

Apraséme labai paprasta nestabiliy periodiniy orbity, esanciy
chaotiniuose atraktoriuose, stabilizavimo blida, paremta antros ei-
lés rezonansiniu neigiamu griZztamuoju rySiu (RNGR?2). Skirtingai
nuo Pyrago uZdelstojo griZztamojo rySio (UGR) metodo, RNGR2
metode panaudojama ne vélinimo linija, bet antros eilés rezonato-
rius. Toks metodas jau anks¢iau buvo pritaikytas periodiniy vir-
pesiy generatoriy sinchronizacijos riboms i$plésti. PanaSiai kaip ir
UGR metode, naudojant RNGR2 metoda nereikia Zinoti valdomo-
sios sistemos modelio, taciau eksperimentiskai realizuoti RNGR2
valdiklj yra Zymiai lengviau nei UGR valdiklj.

Siame darbe i¥nagrinéjome igorinés periodinés jégos veikiama
netiesini Duffing’o ir Holmes’o osciliatoriy, kuris placiame para-
metry ruoZe elgiasi chaotiskai. Pateikéme diferencialiniy lygciy
skaitinius sprendinius. Metoda iSbandéme ir eksperimentiskai.
Siam tikslui sukdréme analoginji RNGR2 valdikli. Jo pagrindinis

elementas yra antros eilés LC virpesiy konturas, kurio rezonansi-
nis daZnis atitinka iSorinés periodinés jégos daznj. RNGR?2 val-
diklj pritaikéme elektroninio Duffing’o ir Holmes’o osciliatoriaus
valdymui. Prijungus valdiklj, po neilgo pereinamojo proceso osci-
liatorius pereina i§ chaotiniy virpesiy i periodiniy virpesiy rezima.
Periodiniy virpesiy daZnis Siuo atveju sutampa su iSorinés jégos
dazniu, t.y. stabilizuojama pirmoji nestabili periodiné orbita. Nau-
dojant RNGR2 metoda, valdancioji jéga nevirsta nuline kaip UGR
metode, bet iSlieka baigtinio dydZio (apie 10%, lyginant su oscilia-
toriaus iSé¢jimo signalu). RNGR2 metodas nekeicia tik pirmosios
periodiniy virpesiy harmonikos, bet gali keisti aukStesniasias har-
monikas. Skaitiniai ir eksperimento rezultatai rodo, kad valdancios
jégos sudétyje vyrauja antrosios harmonikos sandas, todél RNGR2
valdikli nesunku patobulinti, jjungiant papildoma antros eilés rezo-
natoriy, suderintg antrajai harmonikai, t.y. paverCiant jj RNGR4
valdikliu.



