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A simple controller based on a second order active filter is applied to extend the synchronization region of a forced weakly
nonlinear self-sustained oscillator. The controller stabilizes unstable periodic orbits that exist in the uncontrolled system outside
the synchronization region. The control algorithm is non-invasive in the sense that it uses only small control perturbations. We
present analytical and numerical results as well as an experimental demonstration.
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1. Introduction

Synchronization is a natural property of interacting
self-sustained oscillators, intensively studied in many
physical, chemical, and biological systems [1]. Syn-
chronization effects are widely used in engineering, for
example, for improvement of the line width of a high-
power generator with the help of a low-power genera-
tor having a narrower spectral line. In biological sys-
tems, abnormal physiological oscillations (e. g. heart
beat disorders) can be normalized via synchronization
by appropriate external or internal stimuli [2].

In many practical applications the need arises to con-
trol the synchronization phenomenon. The engineers
and applied mathematicians have been dealing with
control problems for a long time and a huge amount
of knowledge has been gathered [3, 4]. An idea of
non-invasive control has been emphasized by physicists
one and a half decade ago in the context of controlling
chaos [5]. The non-invasive control assumes that the
control force vanishes when the target state is reached.
The key idea is based on exploiting inherent unstable
periodic orbits (UPOs) embedded in a strange attractor
of chaotic system; these UPOs can be stabilized with
only tiny perturbations. Following the pioneering pa-
per [5], many different control techniques of such type
have been proposed (see [6] and references therein).
The non-invasive control techniques are attractive not
∗ The report presented at the 37th Lithuanian National Physics Con-
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only because they require less energy cost, but their
intervention into the controlled system is minimal as
well. The latter property is particularly important for
application to biological systems.

We have recently adapted the idea of non-invasive
control for extending the synchronization region of a
periodically forced self-sustained oscillator [7, 8]. It
is common knowledge that a weakly nonlinear self-
sustained oscillator can be synchronized by an external
force only in a certain region of parameters, namely,
when the amplitude of the external force is sufficiently
large and the frequency detuning is sufficiently small.
Outside the region of synchronization the oscillator
exhibits a quasi-periodic motion, however, the quasi-
periodic regime is characterized by the presence of
UPOs. These UPOs can be stabilized by a tiny feed-
back perturbation and thus the region of synchroniza-
tion can be extended non-invasively. We have con-
sidered two methods of non-invasive control. One of
them [7] uses the well-known delayed feedback con-
trol (DFC) algorithm [9], and another [8] is based on
constructing a backward time replica of the original os-
cillator that has the same UPOs as the original but with
opposite stability properties. Both methods have some
advantages and shortcomings and the specific choice of
the method is dictated by the convenience of the situa-
tion. The DFC is a model-independent algorithm while
the backward time control (BTC) method requires the
knowledge of the system equations. Here we apply an
alternative model-independent control algorithm [10],
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Fig. 1. Block diagram of a control technique based on a second
order active filter.

which is simpler to implement in experiment than the
DFC. In this method, a second order active filter is em-
ployed instead of a delay line used in the DFC method.
We analyse both stable and unstable filters and show
that in some situations the unstable filter may be more
appropriate than the stable one.

The remainder of the paper is as follows. Section 2
is devoted to the description of the control algorithm
and the problem formulation. In Section 3, we derive
amplitude equations for the controlled weakly nonlin-
ear van der Pol oscillator and perform linear stability
analysis. Section 4 is devoted to numerical and exper-
imental demonstrations of the system dynamics under
control. The paper is finished with conclusions in Sec-
tion 5.

2. Control algorithm and problem formulation

Consider a self-sustained oscillator driven by an ex-
ternal periodic force. In a certain region of parame-
ters, the oscillator is synchronized by the external force,
however, due to drift of parameters the synchroniza-
tion may be lost and a beat phenomenon may appear.
Suppose that our aim is to maintain the synchronous
regime in the presence of the drift. Imagine that we
cannot control the parameters of the external force, but
there is some dynamic variable of the oscillator accessi-
ble for experimental observation and we can influence
the dynamics of the oscillator through some accessible
input. We seek to construct a feedback controller that
makes the synchronization region as large as possible.
We want to achieve this non-invasively by exploiting
the UPOs lying outside the synchronization region.

To control the synchronization region we introduce
a controller based on a second order active filter. The
block diagram of the control technique is shown in
Fig. 1. By ω0 and ωc are denoted the characteristic fre-
quencies of the self-sustained oscillator and the filter,
respectively; a is the amplitude and ω is the frequency
of external force, k is the strength of the feedback sig-
nal.

In our theoretical considerations, we specify a self-
sustained oscillator by the van der Pol equation. Then
the theoretical model of the control technique dia-
grammed in Fig. 1 can be presented in the form

ẍ + ω2
0x + ε(x2 − 1)ẋ = a sin(ωt) −

− k(ẋ − qu̇ − pu) , (1)

ü + ω2
cu + bu̇ = ẋ . (2)

The left-hand side of Eq. (1) represents the standard
van der Pol equation. The parameter ε is responsible
for the strength of nonlinearity of the oscillator. The
first term in the right-hand side is an external periodic
force and the second term describes the control pertur-
bation. Equation (2) defines the controller, a second or-
der filter described by dynamic variables u and u̇. We
suppose that ẋ is an observable output of the oscilla-
tor and use it as an input of the filter in the right-hand
side of Eq. (2). The output of the filter ẋ − qu̇ − pu
(the last term in the right-hand side of Eq. (1)) is con-
structed as a linear combination of the input variable ẋ
and dynamic variables of the filter u and u̇. The values
of the parameters p and q will be determined below.
The parameter b is the damping coefficient of the filter.
We will consider both the positive and negative values
of this parameter, which correspond respectively to the
stable and unstable filter. Here we show that the un-
stable filter can improve the controller performance for
small amplitudes of the driving force.

3. Amplitude equations and linear stability analysis

The system (1)–(2) admits an analytical treatment if
the following inequalities are met:

ε

ω0

¿ 1 ,
a

ω2
0

¿ 1 ,
k

ω0

¿ 1 ,
|b|
ω0

¿ 1 ,

|ω − ω0|
ω0

¿ 1 ,
|ω − ωc|

ω0

¿ 1 . (3)

In this case Eqs. (1)–(2) describe weakly perturbed
harmonic oscillators with eigenfrequencies ω0 and ωc

close to the frequency ω of the external force, or more
precisely, the system is close to a Hopf bifurcation. For
such a system we can apply the method of averaging.
First we rewrite Eqs. (1)–(2) as a system of ordinary
differential equations of the first order

ẋ = y , (4)
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ẏ =−ω2
0x − ε(x2 − 1)y +

+ a sin(ωt) − k(y − qv − pu) , (5)

u̇ = v , (6)

v̇ =−ω2
cu − bv + y . (7)

We look for solutions of the system (4)–(7) in the form

x =
1

2

[

A(t)eiωt + A∗(t)e−iωt
]

,

y =
iω

2

[

A(t)eiωt − A∗(t)e−iωt
]

, (8)

u =
1

2

[

B(t)eiωt + B∗(t)e−iωt
]

,

v =
iω

2

[

B(t)eiωt − B∗(t)e−iωt
]

. (9)

Here A(t) and B(t) are new variables, slowly vary-
ing complex amplitudes. Putting Eqs. (8)–(9) into sys-
tem (4)–(7) and averaging over the period T = 2π/ω
of fast oscillations we obtain the equations for the com-
plex amplitudes

Ȧ =
ω2 − ω2

0

2iω
A − ε

2
A

( |A|2
4

− 1

)

− a

2ω
−

− k

(

1

2
A − q

2
B − p

2iω
B

)

, (10)

Ḃ =
ω2 − ω2

c

2iω
B − b

2
B +

1

2
A . (11)

For k = 0, the steady state solutions of Eq. (10) de-
fine the stationary amplitudes A0 of a forced oscillator
without control. The control algorithm will be non-
invasive if the control perturbation does not change
these stationary solutions. The requirement is fulfilled
if the right-hand side of Eq. (11) and the control pertur-
bation (the last term proportional to k in Eq. (10)) turns
to zero simultaneously. This happens if the following
equalities take place:

q = b , p = ω2
c − ω2 . (12)

Conditions (12) represent the main requirement for the
controller parameters which makes the control algo-
rithm non-invasive. In the following we suppose that
these conditions are satisfied.

To simplify Eqs. (10)–(11) we rescale the ampli-
tudes

A = 2Z , B = 2W (13)

and introduce new parameters

α =
a

2εω
, ν =

ω2 − ω2
0

εω
≈ 2

ω − ω0

ε
,

κ =
k

ε
, νc =

ω2 − ω2
c

εω
, γ =

b

ε
. (14)

Then Eqs. (10)–(11) take the form

2

ε
Ż =−iνZ − Z(|Z|2 − 1) − α − κ

2

ε
Ẇ , (15)

2

ε
Ẇ =−iνcW − γW + Z . (16)

The parameters ν and νc define the frequency detuning
of the van der Pol oscillator and filter, respectively; κ is
a rescaled value of the control gain, and γ is a rescaled
value of the filter damping.

We start the analysis of the system (15)–(16) from
finding stationary solutions. Setting Ż = 0, Ẇ = 0
and Z = Z0, W = W0 we obtain

−iνZ0 − Z0(|Z0|2 − 1) − α = 0 , (17)

W0 =
Z0

iνc + γ
. (18)

The stationary values of the oscillator amplitude Z0 are
defined by Eq. (17), which does not depend on the filter
variables. Thus the controller does not change the pe-
riodic solutions of the forced oscillator with period T ,
however, as will be apparent below, it can change their
stability. To solve Eq. (17) we introduce the notations

s = |Z0|2 , fν(s) = s
[

(s − 1)2 + ν2
]

. (19)

Then the stationary values of s can be found by solving
the cubic equation

fν(s) = α2 (20)

with respect to s. Knowing s, from Eqs. (17)–(18) one
can easily determine the steady state values Z0 and W0.
Note that the radius of periodic orbit in the (x, y) plane
is defined by |A0| = 2|Z0| = 2

√
s. Equation (20) has

three real roots provided

α2
1(ν) < α2 < α2

2(ν) , (21)

α2
1,2(ν) =

2

27

[

9ν2 + 1 ∓ (1 − 3ν2)3/2

]

(22)
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Fig. 2. The bifurcation diagrams of a forced oscillator (a) without control, and under control with the use of (b, c) stable and (d) unstable
filters. The dashed lines are defined by Eq. (22). The region between these lines correspond to three periodic orbits. Outside this region
there is only one periodic orbit. The solid line is the hyperbola (31) defining the Hopf bifurcation of the uncontrolled oscillator. Examples
of periodic orbits in different regions of the bifurcation diagram are shown in (a). The synchronization region of the uncontrolled oscillator

(the original Arnold tongue) is shown in grey. Extended areas of the synchronization region due to control are depicted in dark grey.

or one real root otherwise. Thus the forced van der
Pol oscillator has either three or one periodic orbit(s).
Figure 2(a) shows the bifurcation diagram of the un-
controlled oscillator (κ = 0) in the plane of parameters
(ν, α). Since it is symmetrical with respect to the ν
and α axes, only the part ν ≥ 0, α ≥ 0 is presented.
The region with three orbits is between thick dashed
lines. Outside this region there is only one periodic or-
bit. Some typical periodic orbits (in the (x, y) plane)
taken from different regions of the bifurcation diagram
at some fixed values of the parameters (ν, α) are shown
in Fig. 2(a).

To determine the stability of periodic orbits, we lin-
earize Eqs. (15)–(16) around the stationary solution
Z = Z0, W = W0 and obtain the characteristic equa-
tion

Λ4 + a3Λ
3 + a2Λ

2 + a1Λ + a0 = 0 . (23)

Here we use the notation Λ = 2λ/ε, where λ is the

eigenvalue of the linearized Eqs. (15)–(16), which co-
incides with the Floquet exponent (FE) of the corre-
sponding periodic orbit. The coefficients of the poly-
nomial in Eq. (23) are

a0 = (ν2
c + γ2)f ′

ν(s) , (24)

a1 = 2γf ′

ν(s) + 2(ν2
c + γ2)(2s − 1) +

+ 2[γ(2s − 1) − ννc]κ , (25)

a2 = f ′

ν(s) + 4γ(2s − 1) + ν2
c + γ2 +

+ 2(γ + 2s − 1)κ + κ2 , (26)

a3 = 2(γ + 2s − 1 + κ) , (27)
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where s is the solution of the cubic equation (20) and

f ′

ν(s) = (3s − 1)(s − 1) + ν2 (28)

is the derivative of the function fν(s) defined in
Eq. (19).

First we discuss the stability of periodic orbits of the
uncontrolled system for κ = 0. In this case the fourth
order polynomial (23) can be presented as a product of
two second order polynomials and the eigenvalues are
defined by two independent quadratic equations

Λ2 − 2(1 − 2s)Λ + f ′

ν(s) = 0 , (29)

Λ2 + 2γΛ + ν2
c + γ2 = 0 . (30)

They define the eigenvalues of two independent sub-
systems: Eq. (29) corresponds to the uncontrolled os-
cillator, while Eq. (30) describes the eigenvalues of
the free filter. The eigenvalues of the free filter are
Λ1,2 = −γ ± iνc. The characteristic Eq. (29) defin-
ing the stability of periodic orbits of the uncontrolled
oscillator depends on the parameter s, i. e., on the am-
plitude of the orbit |A0| = 2

√
s. Two different types

of bifurcations may occur in the system. For f ′

ν(s) =
0 we have a tangent (saddle-node) bifurcation, and for
s = 1/2 a Hopf bifurcation occurs. The Hopf bifurca-
tion defines the minimal amplitude of the stable orbit
Amin =

√
2. The orbits with amplitude |A0| < Amin

are unstable. In the (ν, α) plane, this condition defines
the hyperbola

α2 = fν

(

1

2

)

=
ν2

2
+

1

8
, (31)

which is shown by a solid line in Fig. 2(a). Above
this line the oscillator is synchronized with the exter-
nal force. The condition of the saddle-node bifurca-
tion f ′

ν(s) = 0 defines the boundaries α2 = α2
1,2(ν)

of the region with three periodic orbits in the (ν, α)
plane (dashed solid lines in Fig. 2(a)). In this region
the largest orbit is stable, while two other orbits are un-
stable. The middle orbit is of a saddle type; it satisfies
the condition f ′

ν(s) < 0 and has two real FEs of differ-
ent signs. The smallest orbit is unstable and has a pair
of complex conjugate FEs. In Fig. 2(a) the stable or-
bits are depicted by solid lines, the unstable orbits with
a pair of complex conjugate FEs are shown by dashed
lines, and the saddle orbit is marked by open circles.
The grey region in the (ν, α) plane, where at least one
orbit is stable, corresponds to the synchronized motion
of the oscillator and is known as the Arnold tongue.

We now analyse the stability of periodic orbits for
the closed feedback loop when κ 6= 0. The stability

conditions of the polynomial (23) can be determined
from the Hurwitz criterion

a0 > 0 , a3 > 0 , a3a2 − a1 > 0 ,

a3(a1a2 − a0a3) − a2
1 > 0 . (32)

If these inequalities are satisfied, all the roots of
Eq. (23) are in the left half-plane, ReΛ < 0. From the
first inequality a0 > 0 and Eq. (24) it follows that the
necessary stability condition is f ′

ν(s) > 0. In the fol-
lowing we analyse the stability of UPOs with complex
conjugate pair of FEs, which are depicted in Fig. 2(a)
by dashed lines. Figures 2(b–d) show an extension of
the Arnold tongue due to the stabilization of these or-
bits. The regions of stability are obtained from con-
ditions (32) for νc = 0 (ωc = ω) and different values
of parameters γ and κ. In this paper we do not anal-
yse the case νc 6= 0, which leads to non-symmetrical
bifurcation diagram with respect to the transformation
ν → −ν. The cases (b) and (c) correspond to a stable
filter (γ > 0), while the case (d) represents an unstable
filter (γ < 0). The analysis show that if we fix γ and
increase κ then the region of synchronization first in-
creases and then again decreases. In other words, for
a fixed γ, there exists an optimal value κmax for which
this region is maximal. In the figures we show max-
imal synchronization regions for different values of γ
and κ = κmax. From Figs. 2(b) and (c) we see that
in the case of a stable filter the Arnold tongue can be
essentially enlarged if the damping coefficient γ is suf-
ficiently small. This can be partially explained by a
frequency domain analysis of the transfer function of
the filter

H(Ω) =
ω2 − Ω2

ω2
c − Ω2 + iΩεγ

. (33)

For ωc = ω and small γ, the transfer function is ap-
proximately equal to unity, H(Ω) ≈ 1, almost for
all frequencies Ω, except a narrow window close to
Ω ≈ ω, and it vanishes for Ω = ω. Thus the controller
does not change the first harmonic of a periodic orbit
of the frequency ω and provides a negative feedback
for all other frequencies.

The stable filter is ineffective to stabilize small pe-
riodic orbits in the region where the system has three
periodic orbits. As evident from Fig. 2(d), the region
of small amplitudes α can be effectively controlled by
the unstable filter (γ < 0). It is interesting to note that
the unstable filter inverts the synchronization region;
the large periodic orbits in the original Arnold tongue
become unstable, and the small orbits inside and out-
side the original Arnold tongue become stable.
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Fig. 3. Dependence of roots of Eq. (23) on the control gain: (a, b)
for a stable filter in the region of a single UPO, (ν, α) = (0.9, 0.6),
νc = 0, γ = 0.25, and (c, d) for an unstable filter in the region of

three periodic orbits, (ν, α) = (0.25, 0.6), νc = 0, γ = −0.5.

Different optimization problems of the control al-
gorithm may arise depending on the application. Be-
sides the extension of the synchronization region one
may require to minimize the time needed for synchro-
nization. To solve this problem we have to analyse the
roots of the fourth order polynomial (23) in dependence
of the parameters. Figure 3 shows the dependence of
the roots on the feedback strength κ for two points in
the bifurcation diagram, one taken in the region of a
single periodic orbit, (ν, α) = (0.9, 0.6), marked by
a solid dot in Fig. 2(a), and another in the region of
three periodic orbits, (ν, α) = (0.25, 0.3), marked by
a solid square in the same figure. In both cases there
is an interval of κ for which the real parts of all roots
of the polynomial (23) are negative, ReΛ < 0. In
this interval the system converges to a previously un-
stable orbit and the synchronization with an external
force is restored. The characteristic time of this conver-
gence (the time of synchronization) can be estimated as
τ = 1/|Reλmax| = 2/(ε|ReΛmax|), where Λmax is the
leading FE (at a given value of κ), i. e., the FE with the
maximal real part.

From Fig. 3(a) we see that for a set of parameters
(ν, α) = (0.9, 0.6), γ = 0.25, νc = 0, the UPO is stabi-
lized in the interval of the control gain κ1 < κ < κ2,
where κ1 ≈ 0.53 and κ2 ≈ 1.5. The optimal value of
the control gain is κopt ≈ 0.7, since it corresponds to
the minimal value of the leading FE, and thus provides

Fig. 4. Numerical simulation of Eqs. (4)–(7) for (ν, α) =
(0.9, 0.6). The control perturbation is switched on at the moment
tc = 40T , i. e., k = 0 for t < tc and k = 0.07 for t > tc.
(a) Dynamics of the output variable y. (b) Dynamics of the control

perturbation k(y − bv).

the fastest convergence to the stabilized orbit. Similar
results are obtained in the region of three periodic or-
bits with the use of an unstable filter. Figures 3(c) and
(d) show an evolution of the FEs of the smallest orbit
for a set of parameters (ν, α) = (0.25, 0.3), γ = −0.5,
and νc = 0. Now the interval of stability is infinite,
κ1 < κ < ∞, κ1 ≈ 1.525, and the optimal value of the
control gain is κopt ≈ 2.55.

4. Dynamics of the controlled system

To support the above linear analysis we have per-
formed numerical simulations of the original nonlin-
ear system (4)–(7). The results for a set of parameters
(ν, α) = (0.9, 0.6) and ε = 0.1 are shown in Fig. 4. In
this case the uncontrolled system has a single UPO with
the amplitude |A0| ≈ 1.034 and the FEs λ0 = εΛ0/2 ≈
0.0233±0.0430i. To stabilize this orbit we use a stable
controller with the parameter γ = 0.25 or b = εγ =
0.025. We demonstrate successful stabilization for an
optimal value of the control gain k = kopt = εκopt =
0.07. Without control (t < tc = 40T ) the forced
oscillator exhibits a beat phenomenon. The control
perturbation removes the beat, and after a transient
the synchronous regime with the external force is re-
stored. The control perturbation becomes extremely
small whenever the oscillator reaches a previously un-
stable orbit.

Figure 5 shows a control of the oscillator for a set
of parameters (ν, α) = (0.25, 0.3), ε = 0.1, when the
system has three periodic orbits. The largest orbit
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Fig. 5. Same diagrams as in Fig. 4 but for (ν, α) = (0.25, 0.3).

Fig. 6. Experimental results for the stable controller.

with the amplitude |A0| ≈ 2.12 is stable. It corre-
sponds to the synchronized periodic motion of the sys-
tem that is observed without control for t < tc = 40T .
The smallest orbit with the amplitude |A0| ≈ 0.645
is unstable; its two complex conjugate FEs are λ0 ≈
(0.0396±0.0114i). This orbit is impossible to stabilize
with the stable filter and therefore we use an unstable
controller with the parameter b = εγ = −0.05. Again
we show the dynamics for an optimal value of the con-
trol gain k = kopt = εκopt = 0.255. The unstable con-
troller switches the system from synchronized motion
with a large amplitude to another synchronized motion
with a small amplitude. When this new synchroniza-
tion regime is settled the feedback perturbation almost
vanishes.

The suggested control technique has been demon-
strated experimentally using the setup depicted in
Fig. 6 of Ref. [10]. The experimental results are pre-
sented in Figs. 6 and 7. They are in a good agreement
with the numerical results shown in Figs. 4 and 5, re-
spectively.

Fig. 7. Same results as in Fig. 6 but for the unstable controller.

5. Conclusions

We have applied a simple model-independent method
for non-invasive control of synchronization region of a
periodically forced self-sustained oscillator. The con-
troller is based on a second order active filter incor-
porated in the feedback loop, which stabilizes unsta-
ble periodic orbits lying outside the synchronization re-
gion. By the method of averaging the analytical condi-
tions for the controller parameters have been derived,
which guarantee an extension of the synchronization
region with only small control perturbation. We have
considered both the stable and unstable filters and have
shown that the unstable filter is more efficient in the
case of small amplitudes of the driving force.

Although our theoretical analysis is restricted to the
case of a specific example of the van der Pol oscillator,
the main results and the theoretical approach presented
here are valid for any self-sustained oscillator close to
the Hopf bifurcation point. In our analysis, we have
considered sinusoidal external force, however, the re-
sults can be easily generalized for non-sinusoidal peri-
odic force. In the vicinity of the Hopf bifurcation only
the first harmonic of the external force is relevant such
that all formulas remain valid with the only difference
that the force amplitude has to be interpreted as the am-
plitude of the first harmonic (see Ref. [1]).

We have demonstrated experimentally the efficiency
of the control technique for an electronic circuit. A
good agreement with the theoretical results has been
obtained for both stable and unstable controllers. The
experimental results demonstrate the universality of
the applied algorithm, since the experimental self-
sustained oscillator differs from the van der Pol oscil-
lator. The experiment also confirms the robustness of
the method against noise and small inaccuracy in the
controller parameters.
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To compare this method with two other recently pro-
posed DFC [7] and BTC [8] methods, we first note that
the present method as well as the DFC are based on
model-independent algorithms, while the BTC requires
the knowledge of the system equations. However, the
BTC algorithm is most efficient in the sense that it pro-
vides the fastest convergence to the stabilized periodic
orbit in the extended region of synchronization. Thus
if the model equations of the oscillator are known the
best choice would be the BTC algorithm. In the case
of unknown model equations the DFC or the present
method can be chosen. The present method has an ob-
vious advantage of a simple experimental implementa-
tion. It is superior to the DFC in the region of small
amplitudes of the external force when using an unsta-
ble filter. The DFC advantage is that in an ideal case
it turns the control perturbation exactly to zero. For
the present method, the control perturbation vanishes
only in approximation of averaged equations. For the
DFC method, all harmonics of the unstable orbit pass
through the feedback loop unchanged, while the second
order filter preserves unchanged only the first harmonic
and may change higher harmonics. However, close to
the Hopf bifurcation the higher harmonics are small
and the control perturbation in the present method is
also extremely small.
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SINCHRONIZACIJOS VALDYMAS ANTROS EILĖS FILTRO VALDIKLIU
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Santrauka
Vienas labiausiai nagrinėjamų netiesinės dinamikos objektų yra

sąveikaujantys savaiminių virpesių osciliatoriai. Tokiose sistemose
stebimi įdomūs reiškiniai. Sinchronizacija yra vienas iš jų. Dėl
praktinės ir mokslinės svarbos sinchronizacija tapo viena iš in-
tensyviai nagrinėjamų netiesinės dinamikos sričių. Kai sistemos
parametrai dreifuoja, pageidaujamas sinchronizacijos režimas gali
išnykti ir atsirasti mūšos reiškinys. Sinchronizaciją galima atstatyti,
panaudojant neinvazinio valdymo metodus – žinomą uždelstojo
grįžtamojo ryšio metodą [7] ir neseniai pasiūlytą apgręžto laiko val-
diklį [8].

Kartais valdomos sistemos modelis yra nežinomas. Šiuo atveju
apgręžto laiko valdiklis netinka, o uždelstojo grįžtamojo valdymo
metodo realizavimas nėra labai paprastas. Mes pasiūlėme naują
neinvazinio valdymo algoritmą, kuriam modelio žinojimas nerei-
kalingas ir kurį paprasta eksperimentškai įgyvendinti. Naujas val-
dikis yra sukonstruotas taikant antros eilės filtrą. Sinchronizuojant
originalųjį osciliatorių su filtru, galima stabilizuoti jo nestabilią pe-
riodinę orbitą ir tokiu būdu priversti jį sinchronizuotis su išorine
periodine jėga.


