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The model with competing exchange J and dipole–dipole D interactions on 2D hexagonal lattice is studied using Monte
Carlo method. We calculate the energy, specific heat, order parameter, and susceptibility of the system close to the phase
transition point Tc from stripe phase to isotropic stripe phase. This allows us to determine phase transition points for different
values of exchange and dipole–dipole interaction ratio η = J/D and calculate the phase diagram for transitions to stripe phases
AFh of different stripe width h. By using histogram method we determine the order of the transition at Tc. The first order
phase transition was found to AF1 and AF2 phases and the second order one to AF3 and AF4 phases, with tricritical point
being close to the AF2 and AF3 phase boundary in the phase diagram. We also calculate the structure factor above and below
Tcs to AF1, AF2, AF3, and AF4 phases. Studying the dynamical properties of the model we have found that in AF1 phase
and in a part of AF2 phase the spin relaxation corresponds to the Ising model dynamics. In phases AF3 and AF4 the dynamics
slows down, and stripe domain growth with time is proportional to log t. With further increase of parameter η and approaching
the ferromagnetic phase the dynamics satisfies the Ising model dynamics again.
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1. Introduction

Self-organized domain structures in form of droplets,
bubbles, or stripes are often found in two-dimensional
systems with long-range electrostatic, magnetic, or
elastic interactions. For example, electrostatic dipole
interactions induce stripe-like phases in Langmuir mul-
tilayers in water–air interface [1]. Three types of
competing O–Cu interactions, with repulsive long
range forces caused by substrate mediated elasticity,
are responsible for Cu–O stripes in partly O-covered
Fe(110) [2]. Strain and domain wall effects cause the
formation of periodic domain structures in the oldest of
known ferroelectrics, Rochelle salt [3].

In certain magnetic thin films and nanostructures
long-range dipole–dipole interactions between mag-
netic spins are as important as short-range exchange
interactions. If these two forces are competing (e. g.
exchange interactions are ferromagnetic (FM) and
dipole–dipole interactions are antiferromagnetic (AF)),
∗ The report presented at the 37th Lithuanian National Physics Con-
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the periodic magnetic domain structure, consisting of
stripes with one magnetization direction alternating
with stripes of opposite direction, might occur in the
system. The width of stripes h in units of lattice spac-
ing a depends on a ratio of these interactions. If dipole
interactions are dominating the stripes are narrow, if
short range interactions are prevailing the stripes are
broad or FM phase occurs. The best known experi-
mental realization of a magnetic striped system is ul-
trathin films of Fe / Cu(001). In these films magnetiza-
tion switching from perpendicular to in-plane direction
is found with increase of film thickness [4]. At very
small film thickness, when magnetization is perpendic-
ular to film plane, different topological stripe defects as
well as direct transition between isotropic and straight
stripe phases [5] and even inverse transition effects [6]
are found.

Surface (perpendicular) anisotropy of very thin films
(in a range 2.3–5.3 monolayers of Fe in Fe / Cu(001) [4])
prevails over in-plane anisotropy of thicker films,
caused by dipole–dipole interaction, thus making the
magnetic moments in an ultrathin film analogous to
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Ising spins. This fact allows for a simple theoreti-
cal description of magnetic properties of these films in
terms of a FM Ising model plus only one additional
dipolar term decaying with distance as r−3. The first
Monte Carlo calculation using this model on a square
lattice, in which stripe phases of different widths were
found at low temperature, was performed by McIsaak
et al [7]. Very soon the same group [8] found that stripe
phase melting with increase of temperature happens via
the intermediate isotropic phase with short range or-
der and perpendicular corners between stripe domains.
The finding of this intermediate phase confirmed ear-
lier prediction of Abanov et al [9] (obtained using the
continuous approximation) that the transition stripe–
paramagnetic phase has to be mediated by the phase
called “tetragonal liquid”.

Classifying the phases and using liquid crystals ter-
minology (in terms of topological defects), the follow-
ing situation might be expected in a system with com-
peting exchange and long-range interactions [10]: at
low temperature the smectic (stripe) phase possesing
both long-range orientational and spatial order is ob-
served. At finite temperature it may contain bound
pairs of dislocations in a form of stripe termination and
therefore slight distortion of nearby stripes. Spatial or-
der in this phase decays algebraically with distance. At
higher temperature the phase transition from smectic
to nematic phase might occur. In nematic phase orien-
tational order is maintained, spatial order depends on
distance exponentially and unbinding of dislocations
into pairs of disinclinations is observed. A disinclina-
tion is the point at which two domains, in which the
stripes are oriented in different directions, meet and
terminate. At still higher temperature the transition to
tetragonal phase on a square lattice or transition to hex-
atic phase on hexagonal (triangular) lattice is expected.
In these phases orientational order is lost and magnetic
moments have the symmetry of the underlying lattice.
The transition to the tetragonal or hexatic phase is char-
acterized by the unbinding of disinclinations.

Thus in agreement with predictions of Abanov [9],
stripe–tetragonal phase transition was found in calcula-
tions for a square lattice [8], but in contrast to these pre-
dictions the phase transition sequence stripes–nematic–
tetragonal was not found.

In recent years different aspects of the Ising model
with competing exchange and dipolar interactions were
studied on a square lattice. Gleiser et al found the
metastable phase in between AF1 (h=1) and AF2 (h=2)
phases of the phase diagram [11] and calculated the
dynamics of domain growth in this region [12]. In

Ref. [13] two different types of magnetization relax-
ation were found. Calculations of thermodynamic
properties and structure factor on very large lattices
were performed in Ref. [14]. The type of transition
into the stripe phase was analysed in Refs. [15, 16].

Stoycheva and Singer [17, 18] performed the only
study we know of this model on a hexagonal lattice.
Visual evidence suggests that the type of the stripe
melting transition they obtain is Kosterlitz–Thouless
type unbinding of dislocations of the stripe phase
into disinclinations of the isotropic (hexatic) phase.
They showed, by using both Monte Carlo calcula-
tions and analytical theory, that decreasing repulsion
(dipole–dipole) strength leads to crossover from defect-
mediated stripe melting to usual spin-disordering. They
were trying to demonstrate Kosterlitz–Thouless mech-
anism of transition at stripe melting point: by increas-
ing the size of the lattice up to 76, they showed that the
peak of heat capacity at the transition point decreases
with system size.

The Ising model with competing short-range and
long-range interactions and the planar (XY , Kosterlitz–
Thouless) model with p-fold symmetry breaking orien-
tational field [19, 20] are rather similar. For the pla-
nar model very different predictions for the cases p =
4 (square lattice) and p = 6 (hexagonal lattice) are
drawn. In the latter case the phase transition sequence
disordered → isotropic quasiliquid → ordered phase is
anticipated with decrease of temperature [19, 20]. In
the case of a square lattice the intermediate phase is
expected to have a vanishingly small stability region.
Therefore it is not obvious at all that the study of a
stripe melting transition on a square lattice would give
similar results as that on a hexagonal lattice.

In this paper we study Ising model with competing
exchange and dipolar interactions on a hexagonal lat-
tice. The Hamiltonian of the model has the form

H = −J
∑

〈i6=j〉

sisj + D
∑

〈i 6=j〉

sisj

r3
ij

, (1)

where J is a FM interaction constant and the first sum
is restricted to pairs of the nearest neighbour spins. In
the second sum D is dipolar interaction constant and
site indices i and j run over all N sites of a hexagonal
lattice. In Hamiltonian (1) we consider the sum over
every pair of spins in dipolar term just once. The spin
variables si = ±1, and the spins are supposed to be
aligned out of plane. By using Monte Carlo method,
in Section 2 we calculate the thermodynamic parame-
ters of the model, determine the phase transition point
Tc to the stripe phase for different values of interaction
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parameter η = J/D, and present the phase diagram.
Further everywhere the temperature T = kBT (K)/D
and the interaction parameter η are in dimensionless
units. By applying the histogram method we calculate
the order of the phase transition into phases of differ-
ent stripe widths in Section 3. We present the structure
factor of our system (below, at, and above Tc) in Sec-
tion 4. The dynamic properties of the model are studied
in Section 4.

2. Phase transition thermodynamics and phase
diagram

To obtain the phase transition point Tc into the stripe
phase we calculate the temperature dependence of the
energy per spin E = H/N , the specific heat CV =
(1/T 2)(〈E2〉−〈E〉2), the order parameter, and the sus-
ceptibility of the model (1) for four main phases AF1,
AF2, AF3, and AF4. We perform the calculations by
Monte Carlo method using Metropolis algorithm on a
hexagonal lattice of N = 48×48 spins, including the
long-range dipolar interactions up to the distance of
24a. The size of the lattice and the cut-off we found

optimal for calculations of the phase transition thermo-
dynamics and dynamics, since further increase of lat-
tice does not add to accuracy of Tc determination.

The order parameter is constructed to find the orien-
tational alignment in stripe interfaces. For the square
lattice the order parameter defining the phase transition
from stripe phase to isotropic melted stripe phase has
the form |(nh − nv)/(nh + nv)|, where nh(nv) is the
number of horizontal (vertical) bonds between antipar-
alel neighbouring spins [8]. For hexagonal lattice it is
convenient to use its analogue in a form proposed in
Ref. [17]

g2 =

〈
∣

∣

∣

∣

1

N

∑

i,j

δsi,−sj
e2iθi,j

∣

∣

∣

∣

〉

, (2)

where delta function δsi,−sj
retains only nearest-neigh-

bour spin pairs of opposite (interface) spins. The vector
joining such a pair makes the angle θi,j with a reference
direction, and i is imaginary unit. The parameter g2 =
0.5 in a stripe phase and zero in isotropic or disordered
phase. Thus the susceptibility is obtained from the for-
mula χ = (1/T )(〈g2

2〉 − 〈g2〉2).

Fig. 1. Temperature dependences of mean energy close to the Tc point for (a) AF1, (b) AF2, (c) AF3, and (d) AF4 phases.
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The stripe melting transition point Tc is found from
temperature dependences of specific heat and suscep-
tibility. The E(T ) dependences in thin stripe phases
AF1 and AF2 are also good indications of the Tc point.
In Fig. 1 we present E(T ) dependences in all four AF
phases. It is seen that the energy in the phase transi-
tion region of phases AF1 and AF2 changes abruptly,
in contrast to the E(T ) dependence for phases with
broader stripes which is inclined and much stronger in-
fluenced by the fluctuations. The same tendency might
be seen in temperature dependences of order parame-
ter (Fig. 2). Correspondingly the peaks at Tc of CV (T )
and χ(T ) are sharp and narrow at the transitions to AF1
and AF2 phases and more flat at those to AF3 and AF4
(see Figs. 3 and 4) and even broader stripe phases.

Using thus obtained Tc data at different η values we
present in Fig. 5 the phase diagram of the model (1) for
hexagonal lattice. Determination of the stripe phases
with h > 4 for hexagonal lattice is rather difficult, be-
cause thicker stripes do not anymore maintain the stripe
configuration with fixed thickness. Due tue stronger
fluctuations and defects the thickness of the stripe is
spacially alternating in low temperature stripe phase
as well as in isotropic melted stripe phase. Compar-

ing our phase diagram with the similar diagrams ob-
tained for the square lattice [7, 11, 14], we can notice
that the phase boundaries AF2–AF3, AF3–AF4, and
AF4–AF(with h > 4) roughly correspond to those ob-
tained for the square lattice multiplied by 3/2, the ra-
tio of number of nearest neighbours in hexagonal and
square lattices [21]. We did not find such a correspon-
dence for the AF1–AF2 boundary.

3. Transition order

Analysis of temperature dependences of main tran-
sition parameters in four AF stripe phases indicates that
in the AF1 and AF2 phases the stripe melting transition
is, most likely, of the first, while in the h > 2 phases
it is of the second order. The study of the transition
order for the square lattice using fourth order cumulant
and histogram methods [16, 15] determined the weak
first order transition for the AF2 phase and second or-
der transition for the AF3 phase. The transition order in
the AF1 phase was not unambigously defined, since the
twin-peaked structure was not found in energy distribu-
tion P (E) at the transition point. In our calculation of

Fig. 2. Temperature dependences of specific heat close to the Tc point for (a) AF1, (b) AF2, (c) AF3, and (d) AF4 phases.
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Fig. 3. Temperature dependences of order parameter close to the Tc point for (a) AF1, (b) AF2, (c) AF3, and (d) AF4 phases.

the energy histograms for hexagonal lattice we observe
twin-peak P (E) structure in the AF1 and AF2 phases
and single peak structure for the AF3 and AF4 phases
(see Fig. 6). Therefore the transition to the AF1 phase
should also be attributed to the first order phase transi-
tions, and the tricritical point separating first and sec-
ond order phase transitions on the phase diagram has to
be roughly at the AF2 and AF3 phase boundary. Fig-
ure 6(c) in a way corroborates the latter statement, be-
cause at η = 1.55, which is very close to this bound-
ary, the higher-T phase peak structure with a lower-T
phase shoulder with decrease of temperature continu-
ously changes into lower-T phase peak and higher-T
phase shoulder. This behaviour is very similar to the
P (E) dependences at transition point of a 2D 4-state
Potts model which has the second order phase transi-
tion very close to the tricritical point in T versus states
number dependence. The 2D 5-state Potts model has
the twin-peak P (E) structure, indicating weak first or-
der phase transition [22].

4. Structure factor

We calculated the structure factor above and below
transition temperatures to the AF1, AF2, AF3, and AF4
phases. The structure factor peaks in k space at T ≈ Tc

reflect the degeneracy of the system induced by the
underlying lattice. At T < Tc they show the domi-
nant stripe direction (see Fig. 7). The coordinates of
the peaks in k space allows to distinguish between the
phases of different stripe widths. Temperature depen-
dences of the structure factor intensities are good in-
dications of the phase transition point. The structure
factor has the form

S(k) =
〈
∣

∣

∣

∑

r

S(r) eikr

∣

∣

∣

2〉

, (3)

where r = am1x + am2(x/2 +
√

3y/2) and k =
2π[n1x + (2n1 − n2)y/

√
3]/a are the basic vectors of

direct and inverse hexagonal lattice respectively, x and
y are unit vectors, and n1,2, m1,2 are whole numbers.

Above the phase transition to the AF1 phase small
peaks are observed on a boundary of the hexagon in-
dicating 6-fold degeneracy of the hexagonal system
(Fig. 7(c)). At T ≈ Tc (Fig. 7(b)) six peaks might



326 A. Joknys and E.E. Tornau / Lithuanian J. Phys. 47, 321–332 (2007)

Fig. 4. Temperature dependences of susceptibility close to the Tc point for (a) AF1, (b) AF2, (c) AF3, and (d) AF4 phases.

Fig. 5. Phase diagram in (T, η = J/D) coordinates. Insets: snapshots of domains just above and below phase transition points for η = 1.1
(AF2), η = 2 (AF4), and η = 3.3 (AF8–12). Black dots represent spins up, while white dots are for spins down.
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Fig. 6. Energy distribution histograms for several temperature values at the phase transition point: (a) η = 0.3 (AF1 phase), (b) η = 1.0
(AF2 phase), (c) η = 1.55 (AF3 phase), and (d) η = 2.0 (AF4 phase).

(a) (b) (c)

Fig. 7. Typical structure factor peaks for AF1 phase (here η = 0.3): (a) T < Tc, (b) T ≈ Tc, and (c) T > Tc.

be well-distinguished in k space points (0,±2π/
√

3),
(π,±π/

√
3), and (−π,±π/

√
3). At these values of

temperature the system still did not “decide” to which
of three directions of the hexagonal lattice to orient
the stripe. At still lower temperature (Fig. 7(a)) dom-
inant stripe direction is chosen: intensity of peaks at

(π,±π/
√

3) is growing at expense of that of other
peaks and at Tc attain the maximum value almost by
jump. The temperature dependence of these peaks’
intensity have almost one-to-one correspondence with
the temperature dependence of the order parameter of
the AF1 phase (Fig. 3(a)).
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Fig. 8. Energy relaxation at η = 0.25 in the AF1 phase: (a) semilog plot and (b) log–log plot. Quench temperatures are shown near the
corresponding curves. Dashed line shows the Ising model dynamics.

The situation is similar in other phases at T ≈
Tc. In AF2 phase the peaks are at (0,±π/

√
3),

(π/2,±π/(2
√

3)), and (−π/2,±π/(2
√

3)), i. e. the
sides of occuring hexagon in k space are two times
shorter than those of the AF1 phase hexagon. Corre-
spondingly the peaks in the AF3 phase are at (0,±2π/
(3
√

3)), (π/3,±π/(3
√

3)), and (−π/3,±π/(3
√

3)), in
AF4 phase at (0,±π/(2

√
3)), (π/4,±π/(4

√
3)), and

(−π/4,±π/(4
√

3)). At T < Tc only one pair of those
peaks remains and increases up to the maximum value.
It should be noted that in the AF3 and AF4 phases ad-
ditional pair of smaller peaks are also found as in the
calculations of the structure factor for the square lat-
tice [7, 14].

5. Dynamics

We have also studied the dynamical properties of
the model (1). The system was annealed at high tem-
peratures and then quenched to temperatures below the
transition temperature Tc (to avoid the fluctuations, we
usually used the temperature T < 0.6 Tc as a quench
temperature). We monitored how the energy E(t) of
a disordered system relaxes to the ground state stripe
phase energy E(∞), here t is the time measured in
Monte Carlo steps (MCS) per site. The final curves are
obtained by averaging over 20–50 E(t) dependences.
It is known that for the Ising-type models (e. g. when
D = 0 in (1)) the size of a ferromagnetic domain R
grows with time as R ∼ ∆E−1 ∼ t0.5 [23–25], where
∆E = E(t) − E(∞). The same result was found
studying the dynamics of the AF1 stripe domain on a
square lattice [12]. Here we study the dynamics for all
the phases found in the phase diagram for hexagonal
lattice (Fig. 5), presenting the results for AF1, AF2,
AF3, and AF4.

In Fig. 8 we present the time dependences of the
normalized energy difference ∆EN = ∆E/[E(0) −
E(∞)] for η = 0.25. The Fig. 8(a) represents typ-
ical dynamics of the AF1 phase: for higher quench
temperature the curve immediately goes down to sat-
uration, while for lower temperature critical slowing
down at starting times is clearly seen. In log–log scale
(Fig. 8(b)) we can recognize the Ising model dynamics.
The growth of the AF1 phase domain is demonstrated
in Fig. 9 as a series of snapshots at different moments
of time.

In Fig. 10 we show the energy relaxation curves for
three values of the interaction parameter η (0.25, 0.33,
and 0.5) which are in the AF1 phase region of the phase
diagram. It is interesting to note that for any chosen
temperature inside the AF1 phase, the data points for
all 3 values of η fall onto one curve, indicating that
the dynamics inside the AF1 phase is the same for all
η values, and the domain growth in this phase follows
the ∼ t0.5 law. The dynamics in the AF2 phase is more
complicated. The curves are concave and sloppy in-
dicating some saturation for highest temperature as in
the AF1 phase, but the relaxation is clearly slower (see
Fig. 11). Some curves obtained for higher values of
temperature even satisfy the exponential dependence,
but still no definite answer about the relaxation dynam-
ics can be given. We consider this behaviour as inter-
mediate between the Ising-type dynamics of the AF1
phase and much slower dynamics of the broader stripe
phases.

Time dependences of ∆EN for AF3 and AF4 phases
are presented in Fig. 12. The dynamics is slow and up
to 105 MCS/s clearly follows the ∆E(t) ∼ (log t)−1

dependence. This law still holds for phases with h = 5
and 6. For higher values of η it has to give way to
Ising model dynamics again, since at higher values of η
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Fig. 9. Snapshots of the growth of the AF1 phase domain at different times measured by Monte Carlo steps per site. Black and white dots
represent stripes of different orientation. White lines show borders of different domains.

Fig. 10. Energy relaxation for three η values in the AF1 phase and three values of quench temperature: (a) semilog plot and (b) log–log plot.
Dashed line shows the Ising model dynamics.

phases with very broad stripes or FM phase occur. The
calculations of ∆EN (t) for the phase at η = 3.3 (h is
varying and might be between 8 and 12) confirmed this
prediction. Obviously it must also hold for the stripes
that are broader than the lattice size used in our calcu-
lations.

6. Discussion

It should be noted that in AF1, AF2, AF3, and AF4
phases and the isotropic short-range stripe phases, to

which those mentioned phases pass above the transi-
tion point, the stripe width is fixed and it does not vary
with temperature up to very high temperature. The sit-
uation is different for higher values of η: stripe width
is varying and cannot be unambigously defined in AFh

with h ≥ 6 (compare the snapshots of insets in Fig. 5 at
the transition point in AF2, AF4, and AF8–12 phases).
Varying stripe width in broader-stripe phases might be
related to higher Tcs and correspondingly stronger fluc-
tuations in the system. On the other hand, variation of
stripe width is also observed at lower temperature, thus
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Fig. 11. Energy relaxation in the AF2 phase at η = 1.1: (a) semilog plot and (b) log–log plot. Quench temperatures are shown near the
corresponding curves. Dashed line shows the Ising model dynamics.

Fig. 12. Semilog plots of energy relaxation in the AF3 and AF4
phases. Upper curves at η = 2 (AF4 phase), lower curves at η =
1.67 (AF3 phase). AF4 curves are vertically shifted for clarity
by 0.5. Quench temperatures are shown near the corresponding

curves.

the underlying reason could be related to effects of elas-
ticity, dislocations, or defects which can stronger man-
ifest themselves in large-domain systems.

Monitoring the stripe structures above the transition
point, we did not find any indication of the paramag-
netic phase – the phase above the transition point was
isotropic short-range stripes (hexatic) phase in a whole
range of η values of our phase diagram. According
to predictions of the analytic theory [17], the melting
of narrow and average-width stripes proceeds through
isotropic short-range stripes phase, while the melting
of very broad stripes is related to spin disordering. Two
examples of intermediate short-range stripe phase used
in calculation on a square lattice [8] were taken for
stripe phases of average widths, h = 4 and 8. In our
calculations we still see the transition from isotropic to
straight stripes at η ≤ 5. At η = 5 we find two broad
stripes in our 48×48 pattern (h ≈ 10–15), but no spin

Fig. 13. Width of stripe domains for η = 3.3 and relaxation for
105 MCS/s after a quench to different temperatures: (a) T = 0.09,

(b) T = 0.3, and (c) T = 0.9.

disordering (paramagnetic phase). At η = 10 either FM
phase, or the phase with the stripe width larger than the
lattice size is observed.

Studying the dynamics of the stripe phase at η =

3.3, we found one interesting feature which was not
observed for phases AF1–AF4: the size h of stripe
domains after a quench to different temperatures and
relaxation for 105 MCS/s was clearly different: very
small for quench to very low T (h = 3–4) and more
or less characteristic of these η values (h ≈ 8–12) for
quench to T ≈ Tc/2 (see Fig. 13). This shows that
critical slowing down at low T and large values of η

is much stronger than that for small η. Moreover, it
demonstrates the process of stripe growth which could
not be observed at small η, because the stripes in phases
AF1–AF4 are too thin. Thus, the phase grows first
forming thin stripes and then making them thicker and
thicker until they reach the h value characteristic of
given η value.

Studying snapshots for η = 3.3 at high and lower
temperatures, a slight ripening of stripes is also ob-
served with decrease of temperature, the fact well doc-
umented in experiments [4, 5].
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7. Summary

We have studied by using Monte Carlo method the
magnetic spins system on a hexagonal lattice, where
the spins interact by means of ferromagnetic exchange
J and dipole–dipole D interactions. The stripe melt-
ing phase transition from stripe phase to short-range
isotropic stripe phase with extended domains, within
which the spins are ordered but do not possess direc-
tional and translational symmetries of the striped phase,
is obtained from temperature dependences of specific
heat and susceptibility for different values of the inter-
action ratio η = J/D. This transition at temperature
point Tc proceeds via straightening of stripes due to a
symmetry breaking field which removes the degener-
acy of stripe orientations induced by hexagonal lattice
and introduces the long-range stripe order. Stripe width
h in a stripe phase AFh depends on η = J/D. We
obtained the phase diagram of the system for differ-
ent AFh phases. By using histogram method we deter-
mined the existence of the first order (to the AF1 and
AF2 phases) and the second order (to the AF3 and AF4
phases) phase transitions. We calculated temperature
dependences of the structure factor above and below
phase transition points to AF1, AF2, AF3, and AF4
phases. We have also studied the dynamical proper-
ties of the chosen model by quenching the spin sys-
tem equilibrated at high temperatures to T < Tc and
following how the energy E(t) of a disordered sys-
tem relaxes to the ground state stripe phase energy
E(∞). For the Ising-type models (e. g. when D =
0) the size of ferromagnetic domain grows as R ∼
(E(t)−E(∞))−1 ∼ t0.5, where t is the time measured
in MC steps. We have found that in AF1 phase and in a
part of AF2 phase relaxation dynamics corresponds to
the Ising model dynamics. However, with increase of
η value (in phases AF3 and AF4) the dynamics slows
down and relaxation is ∆E(t) ∼ (log t)−1. Therefore
it cannot be excluded that the dynamics in this region
belongs not to Ising model universality class, but to that
of more complicated models, e. g. planar (Kosterlitz–
Thouless) model. With further increase of η, when the
domain size becomes comparable to the lattice size and
we approach the ferromagnetic phase in the phase dia-
gram, the dynamics satisfies the t−0.5 law again.
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MAGNETINIŲ JUOSTŲ TERMODINAMINIŲ IR DINAMINIŲ SAVYBIŲ MODELIAVIMAS
DVIMATĖJE HEKSAGONINĖJE GARDELĖJE
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Santrauka
Kai kuriuose plonuose magnetikų sluoksniuose ir nanodari-

niuose, be artiveikių pamaininių sąveikų tarp magnetinių sukinių,
veikia ir toliveikės dipolinės jėgos. Jeigu šios dvi sąveikos yra kon-
kuruojančios (pvz., pamaininė yra feromagnetinė (FM), o sąveika
tarp dipolių – antiferomagnetinė (AF)), sistemoje gali atsirasti be-
sikartojančios vienos krypties sukinių juostos, atskirtos tokio pat
storio priešingos krypties sukinių juostomis, vadinamos dryžiais.
Tokios juostos randamos ne tik magnetikuose, pvz., iš dalies deguo-
nimi padengtame Fe(110) ar labai plonuose Fe / Cu(001) sluoks-
niuose. Jos būdingos daugeliui saviformavimo būdu atsiradusių fi-
zikinių ir net biologinių sistemų.

Šiame darbe mes modeliavome sukinių sistemą su konkuruo-
jančiomis pamaininėmis ir dipolinėmis sąveikomis heksagoninėje
gardelėje. Sukiniai yra gardelės mazguose, jų kryptis statmena gar-
delės plokštumai. Sukinių sąveikos energija E = −J

∑

i,j
sisj +

D
∑

i,j
sisj/r3

ij . Čia J – FM pamaininių sąveikų konstanta, o D –
dipolinių sąveikų konstanta. Dvi magnetinio sukinio būsenos gar-
delės i mazge yra aprašomos sukinio kintamuoju σi = ±1. Pirma
suma apima artimiausius kaimynus, antra – visus gardelės mazgus.
Monte Karlo metodu mes apskaičiavome minėtos sukinių sistemos
energijos, šiluminės talpos, tvarkos parametro ir magnetinio jautrio
priklausomybes nuo temperatūros. Iš šių parametrų anomalijų nu-
statėme fazinio virsmo taškus Tc tarp juostų fazės, pasižyminčios
tolimąja tvarka, ir susisukusių juostų fazės, pasižyminčios tik arti-
mąja tvarka. Žemose temperatūrose atsiranda įvairaus pločio juostų

fazės, o juostos plotis h (gardelės konstantos vienetais) priklauso
nuo J/D santykio. Tokiu būdu mes apskaičiavome fazinę dia-
gramą temperatūros ir parametro J/D koordinatėse įvairaus pločio
juostų dariniams (AF1 (h = 1), AF2 (h = 2) ir t. t.). Histogramų
metodu nustatėme, kad fazinėje diagramoje egzistuoja ir pirmos (į
AF1 ir AF2 sritis), ir antros (į AF3 ir AF4 sritis) rūšies faziniai
virsmai. Taip pat apskaičiavome sistemos struktūrinio faktoriaus
priklausomybes nuo temperatūros, kai temperatūra yra aukštesnė ir
žemesnė už fazinio virsmo į AF1, AF2, AF3 ir AF4 fazes tempe-
ratūrą. Struktūrinis faktorius parodo, kaip dėl heksagoninės garde-
lės išsigimusi sistema, mažėjant temperatūrai, palaipsniui praranda
išsigimimą ir pasirenka vieną iš trijų galimų juostų orientacijų.

Mes taip pat nagrinėjome dinamines modelio savybes. Aukš-
toje temperatūroje atkaitinta sukinių sistema buvo staigiai užgrūdi-
nama, ją patalpinant žemoje (T < Tc) temperatūroje, o toliau se-
kama, kaip netvarkios sistemos energija E(t) relaksuoja į pagrin-
dinę juostų būsenos energiją E(∞). Yra žinoma, kad Izingo tipo
modeliuose (pvz., kai g = 0 (1)) FM domeno dydis virsmo aplin-
koje auga taip: R ∝ 1/∆E ∝ t0,5, kur ∆E = E(t) − E(∞)
o t yra laikas, matuojamas Monte Karlo žingsnių skaičiumi. Nu-
statėme, kad AF1 fazėje ir dalyje AF2 fazės sukinių relaksacinė
dinamika atitinka minėtą Izingo modelio dėsnį. Tačiau didėjant J
vertei (AF3 ir AF4 fazėse) relaksacija yra kitokia: 1/∆E ∝ ln t.
Todėl gali būti, kad dinamika toje srityje priklauso nebe Izingo, o
Kosterlico ir Tauleso fazinių virsmų klasei. Toliau didinant J ir
fazinėje diagramoje artėjant prie FM fazės, dinamika vėl tenkina
∆E ∝ t−0,5 dėsnį.


