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Theoretical investigation of characteristics of allowed dipole 2–2 transitions in beryllium isoelectronic sequence is per-
formed applying two different theoretical methods: the relativistic many-body perturbation theory and the configuration inter-
action method. The data on oscillator strengths are obtained for ions with nucleus charge ranging from 4 till 29. The calculated
data reveal a very good coincidence of these two methods almost for all investigated ions. The comparison of results of the
present work with experimental and theoretical data of other authors for N III and Fe XXIII shows that the level of accuracy of
the obtained oscillator strength values is high enough for interpretation of the experimental data as well as for modelling of the
different types of plasma.
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1. Introduction

Few-electron systems are simple objects allowing
one to perform the wide computations of spectral char-
acteristics with rather an exact account of the correla-
tion and relativistic effects. One of such kind of sys-
tems is the four-electron ions of the beryllium isoelec-
tronic sequence. They constantly attract attention of
both experimentalists and theorists. Numerous publica-
tions devoted to investigations of both the energy spec-
tra and the transition characteristics confirm this. The
data for the particular ions are presented in papers [1–
12] and references therein. The aim of the present work
is to investigate the allowed 2–2 transitions in the long
(Z = 4, . . ., 29) beryllium isoelectronic sequence cal-
culated within two different approaches: the relativistic
many-body perturbation theory (PT) and the configura-
tion interaction method (CI).

In the following section a short description of two
applied methods is presented. An explicit description
of the configuration interaction method on the basis of
transformed radial orbitals is available in papers [13–
21]. A detailed specification of the relativistic many-
body perturbation theory used in this work is presented
in [22]. In the third section the obtained results are
discussed and compared with the data presented in the
NIST database. In addition, the data for N IV and

Fe XXIII are widely compared with results obtained
from literature. The main conclusions are made at the
end of the paper.

2. The methods of calculations

2.1. Configuration interaction

The transition probabilities were calculated by the
configuration interaction method on the basis of trans-
formed radial orbitals with a variable parameter (TRO)
[13]. First of all the Hartree–Fock equations were
solved for the configuration 1s22s2p. Further these ra-
dial orbitals (RO) were used to obtain TROs which de-
scribed the virtual excitations of electrons to the shells
with 3 ≤ n ≤ 10 and l ≤ 6. TROs are formed out of
the Hartree–Fock functions as follows:

PTRO(nl|r) =

N

(

f(k, m, B|r) PHF(n0l0|r) −
∑

n′<n

P (n′l|r) ×

∞
∫

0

P (n′l|r) f(k, m, B|r) PHF(n0l0|r) dr

)

. (1)
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Here N is a normalization factor. The first term in
the brackets represents the transformation itself and the
second one is necessary to ensure the orthogonality of
the radial orbitals. An exponential transformation of
the form

f(k, m, B|r) = rk exp (−Brm) ,

where k ≥ l − l0 , k > 0 , m > 0 , B > 0 , (2)

was used as the transforming function. The criterion in
determining the optimal values of the integer parame-
ters k and m and the real parameter B is the maximum
of the averaged energy correction, expressed in the sec-
ond order of perturbation theory:

∆E(K0, K
′) = (3)

∑

TLST ′

(2L + 1)(2S + 1)〈K0TLS‖H‖K ′T ′LS〉2

g(K0)
[

Ē(K ′) − Ē(K0)
] .

The analytical expressions of the mean values pre-
sented in the numerator and the denominator in (3) are
available in [14, 15].

The basis of 46 TROs was set. Using TROs one
may obtain high precision results for both the energy
spectra and the transition characteristics (see for exam-
ple the results of calculations for highly charged ions:
Cl X [23], K XI [24], S X, [25], Ca IX [26], Ar X
[27], Fe XXII [28]). TROs were also successfully ap-
plied investigating the two-electron transitions in the
boron isoelectronic sequence [29] studied in the present
work as well. These radial orbitals are not inferior to
the best orbitals for CI, i. e. the solutions of the mul-
ticonfiguration Hartree–Fock–Jucys equations [30], in
respect of their effectiveness. We gave these equations
the name of Adolfas Jucys traditionally, as he was the
first to obtain the general form of the equations used to-
day. A detailed comparison of the properties of TROs
to the solutions of Hartree–Fock–Jucys equations has
been performed in [19].

The obtained basis of ROs is used to describe both
the even and the odd configurations. Naturally the
initial Hartree–Fock radial orbitals are not quite ade-
quate for the even configurations (1s22s2 and 1s22p2)
as the Hartree–Fock equations have been solved for the
configuration 1s22s2p. However, this incorrectness is
rapidly removed when the configuration superposition
is performed. Moreover, when calculating the transi-
tion characteristics, the same RO basis for the descrip-
tion of both the initial and final configurations enables
one to avoid problems concerned with the need for ac-

count of the non-orthogonality of the basis in the case
when they are not the same.

The one-electron and two-electron virtual excita-
tions of all electrons from the investigated configura-
tions to all possible states within the predetermined
RO basis were used to obtain the admixed configura-
tions. Then 1321 even and 991 odd admixed configu-
rations were formed. However, there is no necessity to
take into account all possible admixed configurations
as their importance is far from being the same. In order
to evaluate the input of the particular admixed configu-
rations K ′ to the wave function of the adjusted configu-
ration K0 [14, 15, 18] the averaged weight coefficients
are used:

W (K0, K
′) = (4)

∑

TLST ′

(2L + 1)(2S + 1)〈K0TLS‖H‖K ′T ′LS〉2

g(K0)
[

Ē(K ′) − Ē(K0)
]2 .

Only those configurations with averaged weight ex-
ceeding 10−8 are used in this calculation. As follows
from our experience [20, 21], the value of the selection
criterion allows us to take into account all necessary
configurations. It is known that the correlation effects
decrease together with the growth of the ionization de-
gree. Correspondingly, the number of the selected ad-
mixed configurations is changing along the investigated
isoelectronic sequence. Thus the number has decreased
to 862 for the even admixed configurations and to 634
for the odd ones, when Z = 4. That is, in both cases the
number of configurations is reduced by a third approx-
imately. In the case when Z = 29 the number of the
admixed configurations decreased to 540 and 357 cor-
respondingly after selection. It is seen that the number
of accounted even admixed configurations for this de-
gree of ionization amounts to approximately one third
of the number for neutral beryllium and even more for
the odd ones. The number of the even admixed con-
figurations is greater than that of the odd ones in all
cases. It is caused by the fact that two even configu-
rations and only one odd configuration are adjusted. It
is necessary to mention that a part of the admixed con-
figurations for the 1s22s2 adjusted configuration coin-
cides with the admixed configurations for the config-
uration 1s22p2. At the same time, taking into account
the corrections to both these configurations enables one
to consider not only the two-electron excitations, but
also the excitations of a higher order, due to the strong
mixing of 1s22s2 and 1s22p2.
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The selected configurations contain a big number of
terms. This causes a necessity to calculate and to diago-
nalize huge matrices of the energy operator. In the case
Z = 4 all even configurations contain 26010 terms and
all odd ones 18140 terms. The number of terms can be
reduced to 5695 and 4059 correspondingly if one takes
into consideration the fact that the operator of electron
Coulomb interaction used for account of the correlation
effects is diagonal not only with respect to the total mo-
mentum J , but also with respect to the total orbital and
spin momenta LS. The number of the accounted terms
can be reduced by approximately two times down to
2693 and 2084 after rearranging the virtual electrons by
moving them to the beginning of the list of active shells
as it is described in [16, 17]. In this way the amount
of the accounted terms decreases by almost ten times
comparing to the initial one. The analogous reduction
of the number of terms was performed for all degrees
of ionization.

The reduced system of terms was used to form
the energy operator matrix within the Breit–Pauli ap-
proach. The methods described in [16, 20] were used
to reduce the order of matrices and to accelerate their
formation and diagonalization. The eigenenergies
and eigenfunctions obtained after diagonalization were
used for calculating the characteristics of the electric
dipole transitions between the investigated configura-
tions. In calculations the computer programs from the
complex [31] were used along with our own codes.

2.2. Perturbation theory

The atomic systems satisfy the Schrödinger equation

H |Ψ〉 = E |Ψ〉 , (5)

where H is the “no-pair” Hamiltonian given by

H = H0 + VI , (6)

Here the model Hamiltonian H0 is given by

H0 =
∑

i

h(i) , (7)

with

h = c α · p + (β − 1)mc2 + Vnuc(r) + U(r) . (8)

In Eq. (8), the nuclear Coulomb potential, Vnuc(r), in
general includes the effect of the finite size of the nu-
cleus. The model potential U(r) accounts approxi-
mately for the effect of the electron–electron interac-
tions. In the present calculations, we choose to be the

frozen-core Hartree–Fock potential. In Eq. (6), the per-
turbation VI is given by

VI =
∑

i<j

Λ+
1

rij

Λ+ −
∑

i

Λ+ U(ri) Λ+ , (9)

where Λ+ is the positive-energy projection operator.
We expand the exact wave function |Ψ〉 and the exact

energy E in powers of VI:

E = E(0) + E(1) + . . . , (10)

|Ψ〉 = |Ψ(0)〉 + |Ψ(1)〉 + . . . . (11)

Substituting Eqs. (10) and (11) into (5) one gets
(

H0 − E(0))|Ψ(0)〉 (12)

and
(

H0 − E(0))|Ψ(1)〉 =
(

E(1) − VI

)

|Ψ(0)〉 . (13)

We now limit the discussion to atoms with two va-
lence electrons outside a closed core. A zeroth-order
wave function describing an atomic state with angular
momentum JM may be written as

|Ψ
(0)
JM 〉 =

∑

(vw)∈P

Cvw|Φ
(0)
vw〉 , (14)

where Cvw and |Φ
(0)
vw〉 are the configuration weight

coefficients and the configuration wave functions, re-
spectively. The configurations included in the zeroth-
order wave function span the model space P . In the
present calculations, we include all possible configu-
rations within the n = 2 complex in the model space.
The reference states are described by multiconfigura-
tion wave functions that take account of the valence–
valence correlations. The core–valence and core–core
correlations are treated by perturbation. It is possible in
this way to take into account strongly interacting con-
figurations to all orders and treat the weakly interacting
ones by means of low-order perturbation.

The transition amplitude is the reduced matrix ele-
ment of the transition operator

T (ω) = −c α · A(ω) , (15)

where ω is the photon energy. The photon energy can
also be expanded in powers of VI:

ω = ω(0) + δω(1) + . . . , (16)

where ω(0) is the zeroth-order photon energy, while
δω(1) is the first-order correction to the photon energy.
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Consequently, the transition operator can also be ex-
panded in powers of VI:

T (ω) = T (0)(ω) + T (1)(ω) + . . . , (17)

where

T (0)(ω) = T (ω(0)) (18)

and

T (1)(ω) = δω(1) dT (ω(0))

dω
. (19)

The first-order transition amplitude is given by

〈F‖T (ω)‖I〉(1) = 〈Ψ
(0)
F ‖T (ω(0))‖Ψ

(0)
I 〉 . (20)

The second-order transition amplitude is

〈F‖T (ω)‖I〉(2) = 〈Ψ
(1)
F ‖T (ω(0))‖Ψ

(0)
I 〉

+ 〈Ψ
(0)
F ‖T (ω(0))‖Ψ

(1)
I 〉

+ δω(1)
〈

Ψ
(0)
F

∥

∥

∥

∥

dT (ω(0))

dω

∥

∥

∥

∥

Ψ
(0)
I

〉

, (21)

The detailed description of the used method is available
in [22]. The absorption oscillator strength is

fFI =
6c2

ω(2JI + 1)
|〈F‖T (ω)‖I〉|2 , (22)

where I and F are the lower and upper levels, respec-
tively. The Einstein A coefficient for the emission pro-
cess from F to I is

A =
2ω2

c3

2JI + 1

2JF + 1
fFI . (23)

The analogous definitions of the physical values have
been used within the CI method as well.

3. Discussion of the results

The symmetrized oscillator strengths gf (the abso-
lute values of oscillator strengths f multiplied by the
statistical weight g) of the allowed transitions 2s2–2s2p

and 2s2p–2p2 of the beryllium isoelectronic sequence
for ions with the nucleus charge from 4 to 29, obtained
by the described calculations, are presented in Table 1.
As seen from the table the results of both methods are
in good coincidence for the vast majority of the nu-
clear charges. In most cases the mean deviations do not
exceed a few tenths of a percent. An essential differ-
ence of values of the oscillator strengths appears only
for some transitions between the levels of singlet terms
(2s2p 1P1 – 2s2 1S0, 2p2 1S0 – 2s2p 1P1, 2p2 1D2 –

2s2p 1P1) from the neutral beryllium to doubly ion-
ized carbon. It happens because taking into account the
correlation effects is much more complicated in such
systems both for the perturbation theory method and
for the configuration interaction. It is necessary to per-
form appreciably more extensive and complex calcula-
tions to get the more precise values of the mentioned
oscillator strengths. In the case of the CI method one
can make the results more accurate by using the solu-
tions of the Hartree–Fock–Jucys equations but not the
Hartree–Fock functions to describe the adjusted config-
urations themselves. The mentioned deviations vanish
rapidly as the ionization degree grows.

Table 1 also contains the oscillator strengths taken
from the NIST [32] database when they are available
there. The deviations of the NIST data from the results
of theoretical calculations do not exceed few percent
for the majority of lines. Here the deviations are less
than 1% in many cases. Only some lines of the ions
B II, F VI, and Ne VII are exceptional in this context.
These values of the oscillator strengths of the ions are
marked out in bold italic in the table. The values are not
only essentially different from the data of the present
work, but also obviously out of the isoelectronic se-
quence, as it is clearly seen from Table 1. Most likely
the mentioned deviations are caused by the fact that the
data on these transition characteristics are not renewed
for a long period as it follows from [32].

The transition probabilities data are not presented
in the table in order to shorten it. However the com-
parison of those values was performed as well. The
mean deviations of the transition probabilities almost
coincide in their values with the corresponding devia-
tions of the oscillator strengths starting from the dou-
bly ionized carbon. Yet the tendency of the increase
of mismatch between the transition probabilities cal-
culated by two different methods springs up starting
from the nucleus charges exceeding 20. These mis-
matches can reach few percent whereas the oscillator
strengths remain in a much better coincidence when
Z = 29. The noted behaviour is connected to a dif-
ference of dependence of the oscillator strengths and
transition probabilities on transition energy. The ex-
perimental energy values were used while performing
the calculations within the PT approach. Consequently,
the increase of mismatches of the transition probability
values is caused by the errors when calculating the en-
ergy differences within the Breit–Pauli approximation.
It is quite natural, as the relativistic corrections are de-
termined up to the second order of the fine structure
constant on the basis of non-relativistic ROs within this
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Table 1. Oscillator strengths (gf ) of the 2–2 transitions in the beryllium isoelectronic sequence.

Z PT CI NIST PT CI NIST PT CI NIST

2s2p 1P1 – 2s2 1S0 2p2 1S0 – 2s2p 1P1 2p2 1D2 – 2s2p 1P1

4 1.200 1.394 1.380 0.786 0.901 0.381 0.213
5 0.926 0.999 1.100 0.603 0.646 0.360 0.585 0.541 1.980
6 0.725 0.759 0.759 0.492 0.486 0.486 0.573 0.592 0.545
7 0.592 0.611 0.611 0.408 0.400 0.399 0.525 0.522 0.514
8 0.500 0.511 0.512 0.348 0.342 0.342 0.474 0.472 0.470
9 0.441 0.620 0.306 0.299 0.165 0.432 0.429 0.810
10 0.382 0.388 0.056 0.267 0.392
11 0.347 0.335 0.244 0.241 0.240 0.360 0.361 0.360
12 0.310 0.314 0.314 0.222 0.219 0.219 0.333 0.334 0.333
13 0.287 0.278 0.203 0.201 0.200 0.312 0.311 0.312
14 0.262 0.265 0.266 0.188 0.186 0.193 0.291 0.291 0.300
15 0.244 0.247 0.240 0.175 0.173 0.274 0.274 0.294
16 0.229 0.231 0.164 0.162 0.259 0.259
17 0.216 0.218 0.153 0.246 0.246
18 0.204 0.206 0.145 0.144 0.234
19 0.195 0.196 0.137 0.137 0.223 0.222
20 0.186 0.188 0.131 0.130 0.213 0.212
21 0.179 0.180 0.182 0.125 0.124 0.135 0.204 0.203 0.214
22 0.172 0.173 0.175 0.119 0.119 0.129 0.195 0.193 0.204
23 0.166 0.168 0.169 0.115 0.114 0.123 0.186 0.185 0.194
24 0.161 0.163 0.164 0.110 0.110 0.118 0.178 0.177 0.185
25 0.157 0.158 0.159 0.107 0.106 0.113 0.171 0.169 0.177
26 0.153 0.154 0.155 0.103 0.103 0.109 0.164 0.163 0.169
27 0.150 0.151 0.152 0.100 0.100 0.105 0.158 0.157 0.162
28 0.147 0.148 0.149 0.097 0.097 0.103 0.153 0.152 0.157
29 0.144 0.145 0.095 0.095 0.149 0.148

2p2 3P0 – 2s2p 3P1 2p2 3P1 – 2s2p 3P2 2p2 3P1 – 2s2p 3P1

4 0.450 0.454 0.453 0.560 0.568 0.570 0.336 0.341 0.342
5 0.342 0.345 0.330 0.429 0.431 0.415 0.257 0.258 0.237
6 0.272 0.273 0.272 0.340 0.341 0.340 0.204 0.205 0.204
7 0.225 0.225 0.225 0.281 0.281 0.281 0.169 0.169 0.169
8 0.191 0.191 0.191 0.238 0.238 0.238 0.143 0.143 0.143
9 0.166 0.166 0.156 0.207 0.207 0.190 0.125 0.125 0.117
10 0.146 0.147 0.151 0.182 0.183 0.188 0.110 0.110 0.113
11 0.131 0.131 0.131 0.163 0.164 0.163 0.0987 0.0989 0.0984
12 0.119 0.119 0.118 0.148 0.148 0.147 0.0897 0.0898 0.0894
13 0.109 0.109 0.108 0.135 0.135 0.135 0.0822 0.0823 0.0819
14 0.100 0.100 0.102 0.124 0.124 0.126 0.0759 0.0761 0.0771
15 0.0930 0.0933 0.115 0.115 0.0708 0.0708
16 0.0867 0.0872 0.107 0.107 0.0663 0.0664
17 0.0819 0.101 0.0625
18 0.0768 0.0773 0.0940 0.0946 0.0591 0.0592
19 0.0729 0.0732 0.0885 0.0893 0.0561 0.0563
20 0.0690 0.0697 0.0835 0.0846 0.0537 0.0538
21 0.0660 0.0665 0.0678 0.0795 0.0804 0.0820 0.0516 0.0516 0.0528
22 0.0630 0.0637 0.0660 0.0755 0.0765 0.0775 0.0495 0.0497 0.0507
23 0.0606 0.0611 0.0624 0.0720 0.0731 0.0740 0.0477 0.0480 0.0489
24 0.0582 0.0589 0.0597 0.0690 0.0700 0.0705 0.0462 0.0465 0.0474
25 0.0561 0.0568 0.0573 0.0660 0.0671 0.0675 0.0450 0.0451 0.0459
26 0.0543 0.0550 0.0555 0.0635 0.0645 0.0650 0.0438 0.0439 0.0447
27 0.0525 0.0533 0.0540 0.0610 0.0621 0.0620 0.0426 0.0429 0.0435
28 0.0507 0.0518 0.0522 0.0585 0.0598 0.0600 0.0417 0.0420 0.0426
29 0.0492 0.0504 0.0565 0.0578 0.0411 0.0411

Continued on next page
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Table 1 (continued).

Z PT CI NIST PT CI NIST PT CI NIST

2p2 3P1 – 2s2p 3P0 2p2 3P2 – 2s2p 3P2 2p2 3P2 – 2s2p 3P1

4 0.450 0.454 0.455 1.685 1.703 1.700 0.561 0.568 0.570
5 0.343 0.345 0.330 1.285 1.292 1.250 0.429 0.431 0.420
6 0.273 0.273 0.272 1.020 1.024 1.021 0.342 0.342 0.341
7 0.225 0.225 0.225 0.844 0.843 0.281 0.282 0.281
8 0.191 0.191 0.191 0.715 0.716 0.716 0.239 0.239 0.239
9 0.166 0.166 0.160 0.620 0.622 0.550 0.209 0.208 0.198
10 0.147 0.147 0.151 0.550 0.550 0.565 0.185 0.185 0.201
11 0.132 0.132 0.132 0.493 0.493 0.491 0.166 0.166 0.165
12 0.120 0.120 0.120 0.447 0.447 0.445 0.151 0.151 0.150
13 0.110 0.110 0.110 0.409 0.409 0.408 0.139 0.139 0.139
14 0.102 0.102 0.104 0.377 0.377 0.382 0.129 0.129 0.131
15 0.0955 0.0955 0.350 0.349 0.360 0.121 0.121 0.120
16 0.0898 0.0898 0.326 0.325 0.114 0.114
17 0.0849 0.303 0.108
18 0.0807 0.285 0.284 0.103 0.102
19 0.0771 0.0771 0.267 0.265 0.0987 0.0981
20 0.0740 0.0740 0.249 0.247 0.0951 0.0943
21 0.0713 0.0714 0.0733 0.232 0.230 0.238 0.0918 0.0911 0.0945
22 0.0691 0.0691 0.0709 0.216 0.214 0.221 0.0891 0.0883 0.0918
23 0.0671 0.0671 0.0688 0.200 0.198 0.204 0.0870 0.0860 0.0894
24 0.0655 0.0655 0.0670 0.184 0.182 0.188 0.0852 0.0841 0.0873
25 0.0641 0.0641 0.0656 0.169 0.168 0.175 0.0837 0.0827 0.0858
26 0.0630 0.0629 0.0643 0.155 0.154 0.158 0.0828 0.0817 0.0849
27 0.0620 0.0633 0.142 0.142 0.145 0.0822 0.0812 0.0843
28 0.0613 0.0612 0.0625 0.131 0.131 0.133 0.0822 0.0812 0.0843
29 0.0607 0.0606 0.120 0.121 0.0822 0.0816

approach. Moreover, the obtained data corroborate the
fact that the Breit–Pauli approach in conjunction with
the CI method can be successfully used for the calcula-
tions of the transition characteristics of atoms ionized
20 and more times.

As mentioned earlier, there are numerous publica-
tions devoted to the theoretical and experimental in-
vestigations of particular transitions in the ions of
beryllium isoelectronic sequence found in the litera-
ture. A consistent comparison of all available data
would have increased the size of this work substantially
and it would obviously exceed the framework of the
task. Therefore we content ourselves with a compari-
son of results of the present work with the data obtained
in literature only for the cases of two widely investi-
gated ions: N IV from the beginning of the investigated
sequence and Fe XXIII from the end of it.

The oscillator strengths and probabilities of the
emissive transitions for the nitrogen ion are presented
in Table 2. In the table these values are compared with
the results of calculations obtained within the multicon-
figuration Hartree–Fock approach (MCHF), i. e. using
the Hartree–Fock–Jucys equations, the configuration
interaction method performed by the computer code

CIV3 [33], the multiconfiguration Dirac–Fock approx-
imation (MCDF), and the relativistic many-body per-
turbation theory (RMBPT) from paper [9]. The exper-
imental data are also presented [2, 3]. The values from
this work are in a very good coincidence with the re-
sults presented in [6] for all the transitions 2p2 3PJ –
2s2p 3PJ ′ , therefore they are only partially presented
in the table. As seen from the table, the results of this
work agree well with the CIV3, MCHF, MCDF, and the
experimental data. Then the CI approach demonstrates
a little higher precision of the results. It happens be-
cause the correlation corrections are taken into account
more accurately due to the higher number of interact-
ing configurations within the approach. The reasons of
the existing deviations from the results of perturbation
theory presented in [9] are explained in [35].

The data on transition characteristics within the
Fe XXIII ion are presented in Table 3. In this case the
investigated theoretical methods are in a quite good co-
incidence among them and with the experimental data.
At the same time it is seen that the deviations of values
of the transition probabilities between CI and PT are
higher than the corresponding deviations of the oscil-
lator strengths. The reason of this mismatch has been
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Table 2. Characteristics of electron transitions in N IV.

gf A (109 s−1) Method Ref.

2s2p 1P1 – 2s2 1S0

0.5920 2.25 PT Present work
0.6107 2.32 CI Present work
0.609 2.31 CIV3 [6]
0.609 2.13 MCHF [6]
0.6099 MCDF [34]
0.6117 MCDF [8]

1.94 RMBPT [9]
0.619±0.022 exp. [2]

2.4±0.1 exp. [3]

2p2 1S0 – 2s2p 1P1

0.4080 2.99 PT Present work
0.3997 2.92 CI Present work
0.400 2.93 CIV3 [6]
0.396 2.89 MCHF [6]

2.84 RMBPT [9]
2.9±0.2 exp. [3]

0.390±0.033 exp. [2]

2p2 1D2 – 2s2p 1P1

0.5250 0.237 PT Present work
0.5217 0.236 CI Present work

0.229 RMBPT [9]
0.24±0.2 exp. [3]

0.540±0.027 exp. [2]

2p2 3P1 – 2s2p 3P2

0.281 0.730 PT Present work
0.281 0.730 CI Present work
0.281 0.731 CIV3 [6]
0.280 0.729 MCHF [6]

2p2 3P0 – 2s2p 3P1

0.225 1.76 PT Present work
0.225 1.76 CI Present work
0.223 1.76 CIV3 [6]
0.224 1.75 MCHF [6]

2p2 3P1 – 2s2p 3P1

0.169 0.440 PT Present work
0.169 0.440 CI Present work
0.169 0.440 CIV3 [6]
0.168 0.439 MCHF [6]

discussed earlier. The comparison of data for other ions
found in the literature but not presented in the paper in
order to make it shorter reveals the same behaviour.

4. Conclusion

The performed calculations of characteristics of
the allowed 2–2 transitions in the ions of beryllium
isoelectronic sequence revealed, that both approxima-
tions used in the paper (relativistic many-body pertur-
bation method and configuration interaction method on
the basis of the transformed radial orbitals) produce the

Table 3. Characteristics of electron transitions in
Fe XXIII.

gf A (109 s−1) Method Ref.

2s2p 1P1 – 2s2 1S0

0.1530 19.3 PT Present work
0.1541 19.0 CI Present work
0.1539 MCDF [8]

19.0jh RMBPT [9]
0.156±0.015 exp. [3]

2p2 1S0 – 2s2p 1P1

0.1029 30.9 PT Present work
0.1028 30.2 CI Present work

30.8 RMBPT [9]
0.096±0.014 exp [3]

2p2 1D2 – 2s2p 1P1

0.1638 44.6 PT Present work
0.1627 43.6 CI Present work

45.0 RMBPT [9]

results in a very good coincidence within a wide range
of the nucleus charges. In addition, the applied con-
figuration interaction method enables one to obtain a
little more precise results for the neutral beryllium and
first ions. At the same time the reliability of results ob-
tained using the perturbation theory is higher when the
charge of the nucleus approaches 30. It is caused by
a more precise account of the relativistic effects within
this theory.

The performed comparison showed that the results
are in a quite good coincidence with the experimental
and theoretical data of other authors. All these facts
and the mutual agreement of the output of two methods
enable us to assert that the applied methods are reli-
able enough and the obtained results can be used for
interpretation of the experimental data as well as for
modelling of the different types of plasma.
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DVIEJŲ TEORINIŲ METODŲ LYGINIMAS NAGRINĖJANT 2–2 ŠUOLIUS BERILIO
IZOELEKTRONINĖJE SEKOJE
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Santrauka
Atliktas teorinis leistinų elektrinių dipolinių šuolių 2–2 tyrimas

berilio izoelektroninei sekai. Branduolių krūviams nuo 4 iki 29 ty-
rimas atliktas dviem artiniais – konfigūracijų superpozicija ir trik-
džių teorija. Gautas geras šuolių tikimybių ir osciliatorių stiprių,
gautų skirtingais teoriniais metodais, tarpusavio sutapimas esant

įvairiems jonizacijos laipsniams. Literatūros duomenų N III ir
Fe XXIII jonams palyginimas su šio darbo rezultatais patvirtina
pakankamai aukštą pastarųjų patikimumą.

Taip pat nurodytas esminis gautų osciliatorių stiprių nesutapi-
mas su NIST duomenų bazės duomenimis kai kurioms B II, F VI ir
Ne VII jonų linijoms.


