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Theoretical investigation of characteristics of allowed dipole 2-2 transitions in beryllium isoelectronic sequence is performed
applying two different theoretical methods: the relativistic many-body perturbation theory and the configuration interaction
method. The data on oscillator strengths are obtained for ions with nucleus charge ranging from 4 till 29. The calculated data
reveal a very good coincidence of these two methods almost for all investigated ions. The comparison of results of the present
work with experimental and theoretical data of other authors for N III and Fe XXIII shows that the level of accuracy of the
obtained oscillator strength values is high enough for interpretation of the experimental data as well as for modelling of the
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different types of plasma.
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1. Introduction

Few-electron systems are simple objects allowing
one to perform the wide computations of spectral char-
acteristics with rather an exact account of the correla-
tion and relativistic effects. One of such kind of sys-
tems is the four-electron ions of the beryllium isoelec-
tronic sequence. They constantly attract attention of
both experimentalists and theorists. Numerous publica-
tions devoted to investigations of both the energy spec-
tra and the transition characteristics confirm this. The
data for the particular ions are presented in papers [1—
12] and references therein. The aim of the present work
is to investigate the allowed 2-2 transitions in the long
(Z =4, ...,29) beryllium isoelectronic sequence cal-
culated within two different approaches: the relativistic
many-body perturbation theory (PT) and the configura-
tion interaction method (CI).

In the following section a short description of two
applied methods is presented. An explicit description
of the configuration interaction method on the basis of
transformed radial orbitals is available in papers [13—
21]. A detailed specification of the relativistic many-
body perturbation theory used in this work is presented
in [22]. In the third section the obtained results are
discussed and compared with the data presented in the
NIST database. In addition, the data for N IV and
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Fe XXIII are widely compared with results obtained
from literature. The main conclusions are made at the
end of the paper.

2. The methods of calculations
2.1. Configuration interaction

The transition probabilities were calculated by the
configuration interaction method on the basis of trans-
formed radial orbitals with a variable parameter (TRO)
[13]. First of all the Hartree—Fock equations were
solved for the configuration 1522s2p. Further these ra-
dial orbitals (RO) were used to obtain TROs which de-
scribed the virtual excitations of electrons to the shells
with 3 <n < 10and! < 6. TROs are formed out of the
Hartree—Fock functions as follows:

PTRo(n”T‘) =

N(f(k:,m,B|r) Pur(nolo|r) — > P(n/lr) x

n'<n

/P(n’l\r) f(k,m, B|r) Par(nolo|r) dr). €))
0
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Here N is a normalization factor. The first term in the
brackets represents the transformation itself and the sec-
ond one is necessary to ensure the orthogonality of the
radial orbitals. An exponential transformation of the
form

f(ka mvB’T) = Tk eXp (_Brm) )

where £k >1—1lp, k>0, m>0, B>0, (2)

was used as the transforming function. The criterion in
determining the optimal values of the integer parame-
ters k and m and the real parameter B is the maximum
of the averaged energy correction, expressed in the sec-
ond order of perturbation theory:

AE(K()?K/) = (3)

S (2L +1)(28 + 1)(KoTLS||H||K'T'LS)?
TLST’

9(Ko)[E(K") — E(Ko)]

The analytical expressions of the mean values presented
in the numerator and the denominator in (3) are avail-
able in [14, 15].

The basis of 46 TROs was set. Using TROs one
may obtain high precision results for both the energy
spectra and the transition characteristics (see for exam-
ple the results of calculations for highly charged ions:
Cl X [23], K XTI [24], S X, [25], CaIX [26], Ar X [27],
Fe XXII [28]). TROs were also successfully applied
investigating the two-electron transitions in the boron
isoelectronic sequence [29] studied in the present work
as well. These radial orbitals are not inferior to the best
orbitals for CI, i. e. the solutions of the multiconfigura-
tion Hartree—Fock—Jucys equations [30], in respect of
their effectiveness. We gave these equations the name
of Adolfas Jucys traditionally, as he was the first to ob-
tain the general form of the equations used today. A
detailed comparison of the properties of TROs to the so-
lutions of Hartree—Fock—Jucys equations has been per-
formed in [19].

The obtained basis of ROs is used to describe both
the even and the odd configurations. Naturally the
initial Hartree—Fock radial orbitals are not quite ade-
quate for the even configurations (152252 and 1s5%2p?)
as the Hartree—Fock equations have been solved for the
configuration 1522s2p. However, this incorrectness is
rapidly removed when the configuration superposition
is performed. Moreover, when calculating the transi-
tion characteristics, the same RO basis for the descrip-
tion of both the initial and final configurations enables
one to avoid problems concerned with the need for ac-

count of the non-orthogonality of the basis in the case
when they are not the same.

The one-electron and two-electron virtual excitations
of all electrons from the investigated configurations to
all possible states within the predetermined RO basis
were used to obtain the admixed configurations. Then
1321 even and 991 odd admixed configurations were
formed. However, there is no necessity to take into ac-
count all possible admixed configurations as their im-
portance is far from being the same. In order to evaluate
the input of the particular admixed configurations K’
to the wave function of the adjusted configuration K
[14, 15, 18] the averaged weight coefficients are used:

W (Ko, K') = “)

> (2L +1)(28 + 1)(KoTLS||H||K'T'LS)?
TLST'

9(Ko)[E(K") — E(Ko))?

Only those configurations with averaged weight ex-
ceeding 1078 are used in this calculation. As follows
from our experience [20, 21], the value of the selection
criterion allows us to take into account all necessary
configurations. It is known that the correlation effects
decrease together with the growth of the ionization de-
gree. Correspondingly, the number of the selected ad-
mixed configurations is changing along the investigated
isoelectronic sequence. Thus the number has decreased
to 862 for the even admixed configurations and to 634
for the odd ones, when Z = 4. That is, in both cases the
number of configurations is reduced by a third approx-
imately. In the case when Z = 29 the number of the
admixed configurations decreased to 540 and 357 cor-
respondingly after selection. It is seen that the number
of accounted even admixed configurations for this de-
gree of ionization amounts to approximately one third
of the number for neutral beryllium and even more for
the odd ones. The number of the even admixed con-
figurations is greater than that of the odd ones in all
cases. It is caused by the fact that two even configura-
tions and only one odd configuration are adjusted. It is
necessary to mention that a part of the admixed configu-
rations for the 15%2s? adjusted configuration coincides
with the admixed configurations for the configuration
1522p2. At the same time, taking into account the cor-
rections to both these configurations enables one to con-
sider not only the two-electron excitations, but also the
excitations of a higher order, due to the strong mixing
of 152252 and 1522p2.

The selected configurations contain a big number of
terms. This causes a necessity to calculate and to diago-
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nalize huge matrices of the energy operator. In the case
Z =4 all even configurations contain 26010 terms and
all odd ones 18140 terms. The number of terms can be
reduced to 5695 and 4059 correspondingly if one takes
into consideration the fact that the operator of electron
Coulomb interaction used for account of the correlation
effects is diagonal not only with respect to the total mo-
mentum J, but also with respect to the total orbital and
spin momenta LS. The number of the accounted terms
can be reduced by approximately two times down to
2693 and 2084 after rearranging the virtual electrons by
moving them to the beginning of the list of active shells
as it is described in [16,17]. In this way the amount
of the accounted terms decreases by almost ten times
comparing to the initial one. The analogous reduction
of the number of terms was performed for all degrees
of ionization.

The reduced system of terms was used to form the
energy operator matrix within the Breit—Pauli approach.
The methods described in [16, 20] were used to reduce
the order of matrices and to accelerate their formation
and diagonalization. The eigenenergies and eigenfunc-
tions obtained after diagonalization were used for cal-
culating the characteristics of the electric dipole transi-
tions between the investigated configurations. In calcu-
lations the computer programs from the complex [31]
were used along with our own codes.

2.2. Perturbation theory
The atomic systems satisfy the Schrodinger equation
H|W) = B|), 5)
where H is the “no-pair” Hamiltonian given by
H=Hy+W, (6)

Here the model Hamiltonian Hj is given by
Ho = h(i), (M
i

with
h=ca-p+ (6 —1)me+ Vae(r) + U(r). (8)

In Eq. (8), the nuclear Coulomb potential, Vyyc(r), in
general includes the effect of the finite size of the nu-
cleus. The model potential U(r) accounts approxi-
mately for the effect of the electron—electron interac-
tions. In the present calculations, we choose to be the

frozen-core Hartree—Fock potential. In Eq. (6), the per-
turbation 17 is given by

1

Vi=> A+7A+*Z AU Ay 9)
i<j u i

where A is the positive-energy projection operator.

We expand the exact wave function | V) and the exact
energy F in powers of V:

E=EO 4+ p® 4 | (10)

W) = 0Oy 4 ey 4 (11)
Substituting Egs. (10) and (11) into (5) one gets
(Ho — B)[w©) (12)
and
(Ho _ E(O))|\1j(1)> — (E(l) _ VI)]\II(O)> . (13)

We now limit the discussion to atoms with two va-
lence electrons outside a closed core. A zeroth-order
wave function describing an atomic state with angular
momentum J M may be written as

e = 3 Cuulel), (14)
(vw)eP

where C,,, and \(IDQ(}%) are the configuration weight
coefficients and the configuration wave functions, re-
spectively. The configurations included in the zeroth-
order wave function span the model space P. In the
present calculations, we include all possible configura-
tions within the n = 2 complex in the model space.
The reference states are described by multiconfigura-
tion wave functions that take account of the valence—
valence correlations. The core—valence and core—core
correlations are treated by perturbation. It is possible in
this way to take into account strongly interacting con-
figurations to all orders and treat the weakly interacting
ones by means of low-order perturbation.

The transition amplitude is the reduced matrix ele-
ment of the transition operator

T(w) =—ca-Aw), (15)

where w is the photon energy. The photon energy can
also be expanded in powers of Vi:

w=w® 4+ 5u® 4 | (16)

where w(©) is the zeroth-order photon energy, while
6w is the first-order correction to the photon energy.
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Consequently, the transition operator can also be ex-
panded in powers of V1:

TwW) =TOWwW) +THwW)+..., A7)
where
TO(w) = T(w®) (18)
and
T (w) = &JDM : (19)

dw
The first-order transition amplitude is given by

(FIT@IDY = (P72, 20y
The second-order transition amplitude is

(FITW)IN® = (@7 @)w)
+ (U7 (@) w D)

dT (w©®
o).

The detailed description of the used method is available
in [22]. The absorption oscillator strength is

_ 6¢2
N w(2Jr+1)
where I and F' are the lower and upper levels, respec-
tively. The Einstein A coefficient for the emission pro-
cess from F' to [ is
202 2J7+1
B 2Jp+1
The analogous definitions of the physical values have
been used within the CI method as well.

+ 5w <\p;0>

fri (FIT@IDZ, @2

frr. (23)

3. Discussion of the results

The symmetrized oscillator strengths ¢ f (the abso-
lute values of oscillator strengths f multiplied by the
statistical weight ¢) of the allowed transitions 25%—252p
and 2s2p-2p? of the beryllium isoelectronic sequence
for ions with the nucleus charge from 4 to 29, obtained
by the described calculations, are presented in Table 1.
As seen from the table the results of both methods are
in good coincidence for the vast majority of the nu-
clear charges. In most cases the mean deviations do not
exceed a few tenths of a percent. An essential differ-
ence of values of the oscillator strengths appears only
for some transitions between the levels of singlet terms
(2s2p Py — 252 1Sq, 2p? 1Sy — 2s2p Py, 2p? Dy —

252p 'P;) from the neutral beryllium to doubly ionized
carbon. It happens because taking into account the cor-
relation effects is much more complicated in such sys-
tems both for the perturbation theory method and for
the configuration interaction. It is necessary to perform
appreciably more extensive and complex calculations
to get the more precise values of the mentioned oscil-
lator strengths. In the case of the CI method one can
make the results more accurate by using the solutions of
the Hartree—Fock—Jucys equations but not the Hartree—
Fock functions to describe the adjusted configurations
themselves. The mentioned deviations vanish rapidly
as the ionization degree grows.

Table 1 also contains the oscillator strengths taken
from the NIST [32] database when they are available
there. The deviations of the NIST data from the results
of theoretical calculations do not exceed few percent for
the majority of lines. Here the deviations are less than
1% in many cases. Only some lines of the ions B II,
F VI, and Ne VII are exceptional in this context. These
values of the oscillator strengths of the ions are marked
out in bold italic in the table. The values are not only
essentially different from the data of the present work,
but also obviously out of the isoelectronic sequence, as
it is clearly seen from Table 1. Most likely the men-
tioned deviations are caused by the fact that the data
on these transition characteristics are not renewed for a
long period as it follows from [32].

The transition probabilities data are not presented in
the table in order to shorten it. However the compari-
son of those values was performed as well. The mean
deviations of the transition probabilities almost coin-
cide in their values with the corresponding deviations of
the oscillator strengths starting from the doubly ionized
carbon. Yet the tendency of the increase of mismatch
between the transition probabilities calculated by two
different methods springs up starting from the nucleus
charges exceeding 20. These mismatches can reach
few percent whereas the oscillator strengths remain in a
much better coincidence when Z = 29. The noted be-
haviour is connected to a difference of dependence of
the oscillator strengths and transition probabilities on
transition energy. The experimental energy values were
used while performing the calculations within the PT
approach. Consequently, the increase of mismatches
of the transition probability values is caused by the er-
rors when calculating the energy differences within the
Breit—Pauli approximation. It is quite natural, as the
relativistic corrections are determined up to the second
order of the fine structure constant on the basis of non-
relativistic ROs within this approach. Moreover, the
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z PT CI NIST PT CI NIST PT CI NIST
252p 'P1 - 25% 1S 2p% 1S - 252p 1Py 2p® 'Dy —252p 'Py

4 1200 1394 1380 0.786  0.901 0.381 0213

5 0926 0999 1100 0603 0646 0.360 0585  0.541  1.980
6 0725 0759 0759 0492 0486 0486 0573  0.592  0.545
7 0592 0611 0611 0408 0400 0399 0525 0522 0514
8 0.500 0511 0512 0348 0342 0342 0474 0472 0470
9 0441  0.620 0306 0299 0.165 0432 0429 0.810
10 0382 0.388  0.056 0.267 0.392

11 0347 0335 0244 0241 0240 0360 0361  0.360
12 0310 0314 0314 0222 0219 0219 0333 0334 0333
13 0287 0278 0203 0201 0200 0312 0311 0312
14 0262 0265 0266 0.188 0.186 0.193 0291 0291  0.300
15 0244 0247 0240 0.175 0.173 0274 0274  0.294
16 0229 0.231 0.164  0.162 0259  0.259

17 0216 0218 0.153 0246  0.246

18 0204  0.206 0.145  0.144 0.234

19 0195 0.196 0.137  0.137 0223 0222

20 0186  0.188 0.131  0.130 0213 0212

21 0179 0.180 0.182  0.125 0.124 0135 0204 0203 0214
22 0172 0173 0.175 0119 0.119 0129 0.195 0.193  0.204
23 0.166 0.168 0.169 0.115 0114 0.123 0.186 0.185  0.194
24 0161 0.163 0.164 0110 0.110 0.118 0178  0.177  0.185
25 0157 0.158 0.159 0107 0.106 0.113 0171 0.169  0.177
26 0.153  0.154 0155 0103 0.103 0.109 0.164 0.163  0.169
27 0150 0.151 0.152 0.100 0.100 0105 0.158 0.157  0.162
28 0.147 0.148 0.149 0.097 0.097 0.103 0153 0.152  0.157
29 0.144  0.145 0.095  0.095 0.149  0.148

2p? 3Py — 252p 3Py 2p? 3Py — 252p 3P 2p? 3Py — 252p 3Py

4 0450 0454 0453 0560 0.568 0570 0336 0341 0342
5 0342 0345 0330 0429 0431 0415 0257 0258  0.237
6 0272 0273 0272 0340 0341 0340 0204 0205 0.204
7 0225 0225 0225 0281 0281 0281 0169 0.169  0.169
8§ 0.191 0191 0.191 0238 0238 0238 0.143 0143  0.143
9 0166 0166 0.156 0207 0207 0190 0125 0.125 0.117
10 0.146  0.147 0.151 0.182 0.183 0.18  0.110 0.110  0.113
11 0131 0.131 0131 0.163 0.164 0.163 0.0987 0.0989 0.0984
12 0119 0.119 0118 0.148  0.148  0.147 0.0897 0.0898 0.0894
13 0109 0109 0.108 0.135 0.135 0.135 0.0822 0.0823 0.0819
14 0100 0.100 0.102 0.124 0.124 0.126 0.0759 0.0761 0.0771
15 0.0930 0.0933 0.115  0.115 0.0708  0.0708

16 0.0867 0.0872 0.107  0.107 0.0663  0.0664

17 0.0819 0.101 0.0625

18  0.0768 0.0773 0.0940  0.0946 0.0591  0.0592

19 0.0729 0.0732 0.0885  0.0893 0.0561  0.0563

20 0.0690 0.0697 0.0835 0.0846 0.0537  0.0538

21 0.0660 0.0665 0.0678 0.0795 0.0804 0.0820 0.0516 0.0516 0.0528
22 0.0630 0.0637 0.0660 0.0755 0.0765 0.0775 0.0495 0.0497 0.0507
23 0.0606 0.0611 0.0624 0.0720 0.0731 0.0740 0.0477 0.0480 0.0489
24 0.0582 0.0589 0.0597 0.0690 0.0700 0.0705 0.0462 0.0465 0.0474
25 0.0561 0.0568 0.0573 0.0660 0.0671 0.0675 0.0450 0.0451 0.0459
26 0.0543 0.0550 0.0555 0.0635 0.0645 0.0650 0.0438 0.0439 0.0447
27 0.0525 0.0533 0.0540 0.0610 0.0621 0.0620 0.0426 0.0429 0.0435
28 0.0507 0.0518 0.0522 0.0585 0.0598 0.0600 0.0417 0.0420 0.0426
29 0.0492 0.0504 0.0565 0.0578 0.0411 0.0411

Continued on next page
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Table 1 (continued).

Z PT CI NIST PT CI NIST PT CI NIST
2p? 3Py — 252p 3Py 2p? 3Py — 252p 3P 2p? 3Py — 252p 3Py

4 0.450 0.454 0455 1.685 1.703 1.700 0.561 0.568 0.570
5 0.343 0.345 0.330 1285 1.292 1250 0.429 0.431 0.420
6 0.273 0.273 0272 1.020 1.024 1.021 0.342 0.342 0.341
7 0.225 0.225 0.225 0.844 0.843  0.281 0.282 0.281
8 0.191 0.191 0.191 0715 0.716 0.716  0.239 0.239 0.239
9 0.166 0.166 0.160  0.620 0.622 0.550 0.209 0.208 0.198
10 0.147 0.147 0.151  0.550 0.550 0.565 0.185 0.185 0.201
11 0.132 0.132 0.132 0493 0493 0491 0.166 0.166 0.165
12 0.120 0.120 0.120 0447 0.447 0445 0.151 0.151 0.150
13 0.110 0.110 0.110 0409 0.409 0.408 0.139 0.139 0.139
14 0.102 0.102 0.104 0377 0377 0382 0.129 0.129 0.131
15  0.0955 0.0955 0.350 0349 0360 0.121 0.121 0.120
16 0.0898 0.0898 0.326 0.325 0.114 0.114

17 0.0849 0.303 0.108

18 0.0807 0.285 0.284 0.103 0.102

19 0.0771 0.0771 0.267 0.265 0.0987  0.0981

20 0.0740 0.0740 0.249  0.247 0.0951 0.0943

21 0.0713 0.0714 0.0733 0.232 0.230 0.238 0.0918 0.0911 0.0945
22 0.0691 0.0691 0.0709 0216 0.214 0.221 0.0891 0.0883 0.0918
23 0.0671 0.0671 0.0688 0.200 0.198 0.204 0.0870 0.0860 0.0894
24 0.0655 0.0655 0.0670 0.184 0.182 0.188 0.0852 0.0841 0.0873
25 0.0641 0.0641 0.0656 0.169 0.168 0.175 0.0837 0.0827 0.0858
26 0.0630 0.0629 0.0643 0.155 0.154 0.158 0.0828 0.0817 0.0849
27 0.0620 0.0633 0.142 0.142 0.145 0.0822 0.0812 0.0843
28 0.0613 0.0612 0.0625 0.131 0.131 0.133 0.0822 0.0812 0.0843
29 0.0607 0.0606 0.120  0.121 0.0822  0.0816

obtained data corroborate the fact that the Breit—Pauli
approach in conjunction with the CI method can be suc-
cessfully used for the calculations of the transition char-
acteristics of atoms ionized 20 and more times.

As mentioned earlier, there are numerous publi-
cations devoted to the theoretical and experimental
investigations of particular transitions in the ions of
beryllium isoelectronic sequence found in the literature.
A consistent comparison of all available data would
have increased the size of this work substantially and
it would obviously exceed the framework of the task.
Therefore we content ourselves with a comparison of re-
sults of the present work with the data obtained in liter-
ature only for the cases of two widely investigated ions:
N IV from the beginning of the investigated sequence
and Fe XXIII from the end of it.

The oscillator strengths and probabilities of the emis-
sive transitions for the nitrogen ion are presented in Ta-
ble 2. In the table these values are compared with the
results of calculations obtained within the multiconfig-
uration Hartree—Fock approach (MCHF), i. e. using the
Hartree—Fock—Jucys equations, the configuration inter-
action method performed by the computer code CIV3
[33], the multiconfiguration Dirac—Fock approximation

(MCDF), and the relativistic many-body perturbation
theory (RMBPT) from paper [9]. The experimental
data are also presented [2,3]. The values from this
work are in a very good coincidence with the results
presented in [6] for all the transitions 2p% 3Py — 2s2p
3P/, therefore they are only partially presented in the
table. As seen from the table, the results of this work
agree well with the CIV3, MCHF, MCDF, and the ex-
perimental data. Then the CI approach demonstrates a
little higher precision of the results. It happens because
the correlation corrections are taken into account more
accurately due to the higher number of interacting con-
figurations within the approach. The reasons of the ex-
isting deviations from the results of perturbation theory
presented in [9] are explained in [35].

The data on transition characteristics within the
Fe XXIII ion are presented in Table 3. In this case the
investigated theoretical methods are in a quite good co-
incidence among them and with the experimental data.
At the same time it is seen that the deviations of val-
ues of the transition probabilities between CI and PT
are higher than the corresponding deviations of the os-
cillator strengths. The reason of this mismatch has been
discussed earlier. The comparison of data for other ions
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Table 2. Characteristics of electron transitions in N IV.
gf A10°s™Y)  Method Ref.

252p Py - 25% 1S

0.5920 2.25 PT Present work

0.6107 2.32 CI Present work
0.609 2.31 CIV3 [6]
0.609 2.13 MCHF [6]
0.6099 MCDF [34]
0.6117 MCDF [8]
1.94 RMBPT 9]
0.61940.022 exp. [2]
2.440.1 exp. [3]

2p? 1Sy —252p 'Py

0.4080 2.99 PT Present work
0.3997 2.92 CI Present work
0.400 2.93 CIV3 [6]
0.396 2.89 MCHF [6]
2.84 RMBPT 9]
2.940.2 exp. [3]
0.39040.033 exp. 2]

2p® 1Dy —252p 'Py

0.5250 0.237 PT Present work
0.5217 0.236 CI Present work
0.229 RMBPT [9]
0.2440.2 exp. [3]
0.5404:0.027 exp. 2]

2p2 3p, — 252p 3p,

0.281 0.730 PT Present work
0.281 0.730 CI Present work
0.281 0.731 CIV3 [6]
0.280 0.729 MCHF [6]

2p2 3Py — 252p 3p,

0.225 1.76 PT Present work
0.225 1.76 CI Present work
0.223 1.76 CIV3 [6]
0.224 1.75 MCHF [6]

2p? 3Py — 252p 3Py

0.169 0.440 PT Present work
0.169 0.440 CI Present work
0.169 0.440 CIV3 [6]
0.168 0.439 MCHF [6]

found in the literature but not presented in the paper in
order to make it shorter reveals the same behaviour.

4. Conclusion

The performed calculations of characteristics of the
allowed 2-2 transitions in the ions of beryllium iso-
electronic sequence revealed, that both approximations
used in the paper (relativistic many-body perturbation
method and configuration interaction method on the ba-
sis of the transformed radial orbitals) produce the re-
sults in a very good coincidence within a wide range of

Table 3. Characteristics of electron transitions in
Fe XXIII.
gf A10°s7Y)  Method Ref.
2s2p 1Py - 252 1S
0.1530 19.3 PT Present work
0.1541 19.0 CI Present work
0.1539 MCDF [8]
19.0jh RMBPT [9]
0.15640.015 exp. [3]
2p% 'S0 - 252p 1Py
0.1029 30.9 PT Present work
0.1028 30.2 CI Present work
30.8 RMBPT [9]
0.096+0.014 exp [3]
2p% 'Dy - 252p 1Py
0.1638 44.6 PT Present work
0.1627 43.6 CI Present work

45.0 RMBPT [9]

the nucleus charges. In addition, the applied configu-
ration interaction method enables one to obtain a little
more precise results for the neutral beryllium and first
ions. At the same time the reliability of results obtained
using the perturbation theory is higher when the charge
of the nucleus approaches 30. It is caused by a more pre-
cise account of the relativistic effects within this theory.

The performed comparison showed that the results
are in a quite good coincidence with the experimental
and theoretical data of other authors. All these facts and
the mutual agreement of the output of two methods en-
able us to assert that the applied methods are reliable
enough and the obtained results can be used for inter-
pretation of the experimental data as well as for mod-
elling of the different types of plasma.
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DVIEJU TEORINIU METODU LYGINIMAS NAGRINEJANT 2-2 SUOLIUS BERILIO
IZOELEKTRONINEJE SEKOJE
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Santrauka

Atliktas teorinis leistiny elektriniy dipoliniy Suoliy 2-2 tyrimas
berilio izoelektroninei sekai. Branduoliy kriiviams nuo 4 iki 29 ty-
rimas atliktas dviem artiniais — konfigtracijy superpozicija ir trik-
dziy teorija. Gautas geras Suoliy tikimybiy ir osciliatoriy stipriy,
gauty skirtingais teoriniais metodais, tarpusavio sutapimas esant

ivairiems jonizacijos laipsniams. Literattros duomeny N III ir
Fe XXIII jonams palyginimas su §io darbo rezultatais patvirtina pa-
kankamai auksta pastaryjy patikimuma.

Taip pat nurodytas esminis gauty osciliatoriy stipriy nesutapi-
mas su NIST duomeny bazés duomenimis kai kurioms B II, F VI ir
Ne VII jony linijoms.



