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Accurate calculations in the Standard Model (SM) that match the experimental accuracy require the generation and evalua-
tion of Feynman diagrams up to one- or even two-loop order, where there can be hundreds of diagrams. Programs like FeynArts
or GRACE can do this in an automated way. In order to check the reliability, one can test if the result is independent of the
gauge-fixing parameters. Nonlinear gauge-fixing, as proposed by F. Boudjema and E. Chopin, introduces more parameters,
so the test is more stringent. In this paper we present the implementation of nonlinear gauge-fixing into the model files for
FeynArts and discuss the gauge invariance of diagrams that are generated by FeynArts with the use of our model files.
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1. Introduction

The accepted theoretical model of elementary parti-
cles and their interactions, the Standard Model (SM),
is very successful at explaining the experimental data
available. It describes all the observed particles, lep-
tons and hadrons, that interact by the electromagnetic,
weak, and strong forces. The predictions of the SM
have been tested in particle collider experiments up to
an energy scale of around 200 GeV in precision mea-
surements and up to an energy scale of around 900 GeV
in proton–antiproton collisions [1]. However, it is clear
that some new effects should occur at higher energies
or higher luminosities. One such effect is the highly
anticipated Higgs scalar particle that is predicted by the
SM and has yet to be found experimentally.

Due to the increased accuracy in the experimental
area, the theoretical calculations should become more
accurate as well, even in extensions of the SM [2].
The calculation in the perturbative approach requires
to sum over all amplitudes contributing to the mea-
sured process. There are already tools developed, that
are capable of automatically generating and calculating
Feynman diagrams at one-loop level in the SM and in
the Minimal Supersymmetric Standard Model (MSSM)
(like [3–5] and others). But together with the devel-
opment of such tools there is also a need for ways to
check the validity of the computed results, in order to

use them with any reliability. One powerful tool to per-
form such checks arises from the procedure of gauge-
fixing the theory, as the result has to be independent of
the introduced gauge-fixing parameters. Naturally, the
more gauge-fixing parameters we have available, the
more stringent the test becomes. The nonlinear gauge-
fixing of the Standard Model was presented in [6], and
later fully implemented in GRACE [5]. In this work we
want to implement the same class of nonlinear gauge-
fixing in the FeynArts / FormCalc package. The advan-
tage of this package is that it is open-source and freely
distributable.

In Section 2 we introduce a general Yang–Mills
(YM) Lagrangian with a spontaneously broken gauge
symmetry. We use the Faddeev–Popov procedure to
fix this gauge symmetry in Section 3 and discuss the
most general linear gauge-fixing in Section 4. In Sec-
tion 5 we implement the gauge-fixing in the SM and
work out how to obtain the full Lagrangian from the
choices of gauge-fixing. We describe the implemen-
tation in FeynArts in Section 6 and conclude with an
outlook and acknowledgements.

2. Yang–Mills Lagrangian and symmetry breaking

We consider a gauge theory for a multiplet of real
scalar fields φi, transforming as some representation R
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of the gauge group G. The infinitesimal gauge trans-
formation for the scalar fields φi and the gauge fields
Aa

µ is then given by (see [7])

δφi(x) =−αa(x)T a
ijφj(x) , (1)

δAa
µ(x) =

1

ga
∂µαa(x) + fabcAb

µ(x)αc(x) , (2)

where αa(x) are the infinitesimal parameters of the
gauge transformation, T a

ij are the generators of the real
representation R, fabc are the structure constants of the
gauge group G with [T a, T b] = fabcT c and ga is the
coupling constant, which can be chosen independently
for each simple or U(1) subgroup of G and hence has
a as an index for the subgroup.

The covariant derivative (Dµφ)i = ∂µφi +gaA
a
µ×

T a
ijφj and the field strength tensor F a

µν = ∂µAa
ν −

∂νA
a
µ + gaf

abcAb
µAc

ν give the invariant Lagrangian for
this gauge theory

L = −1

4
(F a

µν)
2 +

1

2
(Dµφi)

2 − V (φ) , (3)

where V (φ) is the symmetry-breaking scalar potential.
So far the gauge fields are massless. The quan-

tum fluctuations can only happen around the minimum
value of the field φ, which acquires a vacuum expec-
tation value (VEV), vi ≡ 〈φi〉, if we take the poten-
tial V (φ) to have its minimum defined by Vi(φ) :=
∂V (φ)/∂φi = 0, away from φ = 0.

In order to use perturbation theory, we have to anal-
yse fields that have a zero vacuum expectation value,
so we redefine φi(x) = vi + χi(x) and treat χi(x) as
our field of interest.

Plugging the definitions into Eq. (3) yields the La-
grangian in terms of χi. Expanding it up to the
quadratic terms in the fields we get:

L2(A, χ) = −1

2
Aa

µ(−gµν∂2 + ∂µ∂ν)Aa
ν +

1

2
(∂µχi)

2

+ F a
iA

a
µ∂µχi +

1

2
F a

iF
b
iA

a
µAµb − 1

2
Mijχiχj , (4)

with constant matrices F a ≡ gaT
a
ijvj , and Mij ≡

∂2V (φ)/(∂φi∂φj)|Vi=0, the coefficient of the quadratic
term in the Taylor series expansion of the potential
V (φ). Now the gauge bosons have acquired a mass
matrix F a

iF
b
i, and the scalar fields have the mass ma-

trix Mij . This is the famous Higgs mechanism.

3. Gauge-fixing with the Faddeev–Popov procedure

Path-integral quantization proceeds by analysing the
quantity

Z =

∫

DADχ exp

[

i

∫

L(A, χ)

]

, (5)

from which the propagators and interaction vertices
can be read off 1. However, a gauge symmetry has
to be fixed, because otherwise the integral in Eq. (5)
runs over many field configurations that are gauge-
equivalent, instead of counting each physical config-
uration just once.

Gauge-fixing is usually done by the Faddeev–Popov
procedure, as a result of which Z is expressed as (see
[7, 8]):

Z = C

∫

DADχ exp

[

i

∫

d4x (L[A, χ] + Lgf(G
a))

]

× det

[

δGa[Aα, χα; x]

δαb(y)

∣

∣

∣

∣

α=0

]

. (6)

Ga[A, χ; x] are arbitrary functions, constraining in the
sense that the condition Ga = 0 serves as a constraint
on the fields in Eq. (6). The new gauge-fixing La-
grangian term Lgf can be any function of Ga, while C
is an irrelevant normalization constant. The subscript
α of a field means that the field is gauge-transformed
with the gauge transformation parameters α.

The determinant det
[

δGa(x)/δαb(y)
]

= Dab(x, y)

can be evaluated by the path integral

det[Dab(x, y)] = (7)

∫

Dc̄Dc exp

[

i

∫

d4x d4y c̄a(x)Dab(x, y)cb(y)

]

,

where c̄a(x) and cb(y) are anticommuting scalar fields,
called ghosts. Since the functional derivative δG(x)/
δα(y) is local, i. e., it contains δ(x − y) as a factor, we
can express Eq. (6) as

Z = C

∫

DADχDc̄Dc exp

[

i

∫

d4x (L[A, χ]

+ Lgf(G
a) + Lgh[c̄, c, A, χ])

]

, (8)

where

Lgh ≡ c̄a(x)

(

δGa[Aα, χα]

δαb

∣

∣

∣

∣

α=0

)

cb(x) . (9)

1 DA stands for the path integral over the field A.
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4. General linear gauge-fixing

The most general linear constraint constructed from
gauge fields’ four-divergences and scalar fields is
∂µAaµ − Ka

iχi, which can be easily extended by in-
cluding a nonlinear part

Ga = ∂µAaµ − Ka
i χi + Ga

nl , (10)

with any real matrix Ka
i, since Aa

µ and χi are both real;
Ga

nl should be real, too, and have the same mass dimen-
sion as the linear part. Any function of Ga will now
constrain the gauge field, but for simplicity Lgf should
be a polynomial in the fields, which in turn tells us that
it is quadratic in G 2: Lgf = −1/2 GaLabGb, where
Lab is any real square symmetric matrix and −1/2 is
for later convenience. Note that Ga

nl will only give cu-
bic and quartic terms and hence not influence the prop-
agators.

So Lgf together with Eq.(4) yields for the bilinear
part:

L2 + Lgf2 =

− 1

2
Aa

µ(−gµν(∂2 + FF T ) + (1 − L)∂µ∂ν)abAb
ν

+
1

2
χi(−∂2 − KT LK − M)ijχj

− ∂µAaµ(F − LK)a
iχi , (11)

where we switched to matrix notation: F a
i = (F )a

i,
Ka

i = (K)a
i, Lab = (L)ab, Mij = (M)ij .

Requiring the resulting propagators to be diagonal
in particle species, we get rid of the mixing term by
requiring

LK = F or K = L−1F , (12)

leaving only L as the independent matrix. Here, taking
an inverse, we assume that L is non-singular, so we will
have to take a limit if we want to consider some of the
eigenvalues of L to be zero.

We can easily read off the propagators for the gauge,
scalar, and ghosts fields from the quadratic parts of the
Lagrangian, but in order to diagonalize them, we will
have to put in the specifics of the Standard Model.
2 First order of G should not appear in Lgf , because the total

derivative term ∂µAaµ is irrelevant in the Lagrangian, and the
first-order field terms χi would shift the minimum of the poten-
tial, so we have to redefine the fields again. Higher powers of G

will have mass dimensions higher than 4, so that the gauge fixing
would render the Lagrangian nonrenormalizable.

5. The bosons of the Standard Model

Ignoring the unbroken strong interaction, the Stan-
dard Model gauge group G = SU(2)×U(1) has struc-
ture constants (assuming t4 is the generator of U(1))
fabc = εabc for a, b, c ∈ {1, 2, 3} and fabc = 0 oth-
erwise. The real scalar fields φi are taken to transform
as the real components of the usual two-dimensional
complex representation of SU(2) with generators ta =
1/2 σa for a ∈ {1, 2, 3} and t4 = 1/2, where σa

are the Pauli matrices and t4 is the generator of U(1).
We define the real components of the complex two-
dimensional vector φ as

φ =
1√
2

(−iφ1 − φ2

φ4 +iφ3

)

, (13)

then the real representation matrices T a = −ita in φi

space become 4 × 4 matrices.
Following the previous section, we consider the

symmetry breaking of this group, which happens be-
cause the scalar fields are subjected to some potential
V (φ). A renormalizable potential that obeys the gauge
symmetry and does not have a local minimum at φ = 0,
as required for symmetry breaking, is

V (φ) = −µ2

2
(φiφi) +

λ

4
(φiφi)2 , (14)

with some unknown parameters µ and λ. As a result,
φ acquires a vacuum expectation value (VEV) at the
minimum of V : |φi0| = |vi| ≡

√

µ2/λ. Note that all
directions of φ are equivalent under the gauge trans-
formation, so any choice of direction for φi0 gives the
same results, therefore, we can arbitrarily choose it as
vi = δi4v.

5.1. Vector bosons

The combination of generators Q = T 3 + T 4 leaves
φi0 invariant. Therefore, it is still a symmetry of the
theory, which is identified with the electromagnetic
charge. Using g and g′ as coupling constants for the
groups SU(2) and U(1), we get F a

i = ga(T
a)ijvj =

v/2 (gδa
i − g′δa

4)(1− δi4). The gauge boson mass term
FF T in Eq. (11) can be diagonalized by

FF T = U †MAU = diag(m2
A) , (15)

with a block diagonal unitary matrix U = diag(U12,
U34), where

U12 =
1√
2

(

1−i

1 i

)

, U34 =
1

√

g′2 + g2

(

g −g′

g′ g

)

,

(16)
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giving the physical field combinations and their masses
as

W±
µ ≡A′1,2

µ =
1√
2
(A1

µ ∓ iA2
µ) , mW = g

v

2
,

Z0
µ ≡A′3

µ =
1

√

g2 + g′2
(gA3

µ − g′A4
µ) ,

mZ =
√

g2 + g′2
v

2
,

Aµ ≡A′4
µ =

1
√

g2 + g′2
(g′A3

µ + gA4
µ) ,

mA = 0 . (17)

Replacing the two unknown coupling constants g and
g′ with the electric charge e and the Weinberg angle θw

defined as

e =
gg′

√

g2 + g′2
,

cW ≡ cos θw =
g

√

g2 + g′2
,

sW ≡ sin θw =
g′

√

g2 + g′2
, (18)

we can express the covariant derivative in terms of the
physical gauge fields 3

Dµ = ∂µ − i
g√
2
(W+

µ t̂+ + W−
µ t̂−)

− i
g

cos θw
Zµ(t̂3 − s2

W q̂) − ieAµq̂ , (19)

with the new generators

t̂± ≡ (t̂1 ± it̂2) , q̂ ≡ (t̂3 + t̂4) . (20)

This allows us to show that W± transform irreducibly
under the charge operator q̂. With the gauge fields
transformed to the physical basis, the quadratic La-
grangian for them becomes

LA = −1

2
(A′∗)a

µ

[

− gµν(∂2 + m2
A)

+ (1 − ULU †)∂µ∂ν]ab
A′b

ν , (21)

which should be diagonal in the fields. Therefore L′ ≡
ULU † has to be diagonal in this basis as well. Choos-
ing the usual notation, L′ = diag(1/ξ+, 1/ξ−, 1/ξZ ,

3 Note that t̂i here are generators and depend on the representation.

1/ξA). This gives us the original matrix L = U †L′U .
Since this matrix has to be symmetric, we conclude that
ξ+ = ξ− ≡ ξW , which shows that we can have three
independent linear gauge-fixing parameters.

Finally, the Lagrangian for gauge bosons in the
physical basis becomes explicitly diagonal

LA =
∑

X∈{W±,Z0,A}

−1

2
X∗

µ

[

− gµν(∂2 + m2
X)

+ (1 − ξX)∂µ∂ν]Xν , (22)

and masses as in Eq. (17).

5.2. Goldstone bosons and Higgs

With φi0 = vδi4 we get

Mij =
[

− µ2δij + λ(φkφk)δij + 2λφiφj
]

|φ=φi0

= (−µ2 + λv2)δij + 2λv2δi4δj4 = 2µ2δi4δj4 , (23)

which clearly satisfies

(T aφ0)iMij = F a
iMij = 0 (24)

for all a, which is nothing but the Goldstone theorem.
This tells us that the two terms in the quadratic scalar
Lagrangian can be split into

LG =
1

2
χm(−∂2 − F T L−1F )mnχn and

LH =
1

2
h(−∂2 − m2

H)h , (25)

with mH =
√

2µ and χ4 ≡ h, being the Higgs bo-
son. The three remaining Goldstone bosons get the
mass, defined by the gauge-fixing parameters. Using
the same redefinition for Goldstone boson fields as for
gauge bosons, χ± = 1/

√
2 (χ1 ∓ iχ2), we see that

these are indeed the charge eigenstates. So the La-
grangian in the diagonal form looks as follows:

LG =
∑

X∈{W±,Z0}

1

2
χ

X
(−∂2 − ξXm2

X)χ
X

. (26)

5.3. Ghosts

Using the same unitary transformation U , Eq. (16),
for the ghost fields

c′a = Uabcb and c̄′a = c̄b(U †)ba , (27)

we get the quadratic Lagrangian for the ghosts

Lg =
∑

X∈{W±,Z0,A}

c̄X

(

− ∂2 − ξXm2
X

)

cX , (28)



J. Pašukonis and T. Gajdosik / Lithuanian J. Phys. 47, 379–385 (2007) 383

and the masses similar as for the Goldstone bosons,√
ξXmX , where mX is the mass of the corresponding

gauge boson. However, there is also a massless ghost
corresponding to the massless vector field Aµ.

5.4. Interactions

When writing now the interactions in the SM, we
will only write the parts coming from the nonlinear
gauge-fixing terms as all other parts can be found in
the standard literature, like in [9].

After the diagonalization of the propagators it is con-
venient to transform the constraint functions to physi-
cal fields, too, which instead of Eq. (10) now give

G+ = ∂µW+µ − ξW mW χ+ + G+
nl , (29)

GZ = ∂µZµ − ξZmZχ0 + GZ
nl , (30)

GA = ∂µAµ + GA
nl , (31)

with the nonlinear gauge-fixing given by [5, 6]

G+
nl =−iα̃e(AµWµ+) − iβ̃

ecW

sW
(ZµWµ+)

− δ̃
eξW

2sW
(hχ+) + iκ̃

eξW

2sW
(χ3χ

+) , (32)

GZ
nl =−ε̃

eξZ

2sW cW
(hχ3) , (33)

GA
nl = 0 . (34)

The direct multiplications in

Lgf = − 1

ξW
G−G+ − 1

2ξZ
(GZ)2 − 1

2ξA
(Ga)2 (35)

are straightforward and can be found in [10], only the
interactions with the ghosts are more tricky. We begin
with Eq. (27) and express the ghost Lagrangian directly
in terms of the physical fields as

Lgh ≡ c̄a
(

δGa
α

δαb

)

(−g)cb (36)

= −c̄′aUac
(

δGc
α

δαd

)

(gU †)dbc′b = −c̄′a
(

δG′a
α

δα′b

)

c′b

with transformed Ga and αa:

G′a = UabGb and α′a = (Ug−1)abαb , (37)

which are just the physical constraints (Eq. (29)).

The variation in the physical gauge fields is

δA
′a
µ = UabδAb

µ = Uad
(

g−1∂µαd + fdbcAb
µαc

)

= ∂µα′a +
(

Uadfdef (U †)eb(gU †)fc
)

A′b
µα′c . (38)

After transforming the structure constants we get

δW±
µ = ∂µα± ± ie

(

W±
µ αA +

cW

sW
W±

µ αZ

− Aµα± − cW

sW
Zµα±

)

, (39)

δZµ = ∂µαZ − ie
cW

sW

(

W+
µ α− − W−

µ α+

)

, (40)

δAµ = ∂µαA − ie

(

W+
µ α− − W−

µ α+

)

. (41)

The variations of the scalar fields in the physical basis
is

δχ′
i = Uχ

ikδχk = Uχ
ik

[

− αaF a
k + αaT a

kjχj
]

= −
[

Uχ
ikF

b
k(gU †)ba]α′a

−
[

Uχ
ikT

b
k`(U

χ†)`j(gU †)ba]α′aχ′
j , (42)

which results in

δχ± =−mW α± ± ie

2sW

(

c2
W − s2

W

cW
χ±αZ

+ 2sW χ±αA − χ3α
± ± ihα±

)

, (43)

δχ3 =−mZαZ − ie

2sW

(

χ+α− −χ−α+ − i

cW
hαZ

)

,

(44)

δh =
e

2sW

(

χ+α− + χ−α+ +
1

cW
χ3α

Z
)

. (45)

With these results the calculation of Eq. (9) is again
straightforward, especially when noting that the opera-
tor c′aδ/δα′a just replaces the α′a in the variations with
c′a. It can be found in [10].

6. Nonlinear gauge-fixing in FeynArts

FeynArts / FormCalc [3] is a freely available open
source package for Mathematica that performs auto-



384 J. Pašukonis and T. Gajdosik / Lithuanian J. Phys. 47, 379–385 (2007)

matic calculations of Feynman diagrams up to 2-loop
level. The physical model for calculations in FeynArts
is not built-in but provided by external input files,
called model files, which contain the information about
the theory. The existing definition of the Standard
Model in FeynArts matches the one we have discussed
in this work in the case of linear gauge-fixing, when
we redefine the phases (Zµ, cZ , c̄Z) → −(Zµ, cZ , c̄Z),
χ± → ∓iχ±, and rescale the antighosts c̄X →
ξ
−1/2
X c̄X .

For the nonlinear terms we also had to modify
the generic model file, Lorentz.gen, that describes
the kinematic structure of the model. We had to
include the divergence in the vector-vector-vector-
(V V V -) and scalar-scalar-vector- (SSV -) vertices and
to include ghost-ghost-vector-vector- and scalar-scalar-
ghost-ghost- vertices, as these would not appear in the
linear gauge-fixing.

Since we extended the structure of existing ver-
tices, we had to change all occuring V V V - and SSV -
vertices in the classes model file SM.mod and add our
additional terms, proportional to the parameters α̃, β̃,
δ̃, κ̃, and ε̃.

After the implementation we calculated a number of
amplitudes to check if the result is gauge-independent.
All tree-level amplitudes in γγ → W +W−, ZZ →
W−W+, e−e+ → W−W+, and e−e+ → µ−µ+ were
gauge independent. At one-loop level we checked that
the renormalization procedure used in FeynArts is not
spoiled by the inclusion of our new gauge-dependent
couplings: all two-point functions in the processes
γγ → W+W−, e−e+ → W−W+, and e−e+ →
µ−µ+ were finite.

Our program can be downloaded from http://
terra.ar.fi.lt/~garfield/SM/ .

7. Outlook

The implementation of the nonlinear gauge-fixing
in FeynArts / FormCalc will help to check automati-
cally the gauge invariance of extended renormalization
schemes, like an extension of the complex mass scheme
[11] or other schemes where it is not clear if the gauge
invariance is preserved.

Since the Minimal Supersymmetric Standard Model
has a very similar structure in the gauge-fixing sec-
tor, we will extend the nonlinear gauge-fixing to the
MSSM, as well. There the issue of having unstable par-
ticles as incoming or outgoing particles is at the same
time more accepted and more problematic due to the

large possible widths and the mixing of the supersym-
metric particles.
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Santrauka
Pastaruoju metu tiksliems elementariųjų dalelių fizikos teori-

niams skaičiavimams yra plačiai naudojami automatinio Feinmano
diagramų generavimo ir skaičiavimo paketai, tokie kaip FeynArts
arba GRACE. Su jais galima atlikti Standartinio modelio (SM) arba
Minimalaus supersimetrinio standartinio modelio (MSSM) procesų
amplitudžių skaičiavimus iki dviejų kilpų tikslumu, kas rankiniu
būdu nėra įmanoma dėl labai didelio diagramų skaičiaus. Šio darbo
tikslas buvo įgyvendinti tokių skaičiavimų FeynArts pakete rezul-
tatų patikrinimą remiantis kalibruotės invariantiškumo principu,
naudojant netiesines kalibruotes Standartiniame modelyje.

Apžvelgtas Standartinio modelio su netiesinėmis kalibruotėmis,
pasiūlytomis Boudjema ir Chopin, teorinis išvedimas, skiriant
ypatingą dėmesį kalibruotės fiksavimo procedūrai. Šios teorinės
analizės pagrindinis rezultatas yra tas, kad be trijų tradicinių kalib-
ruotės parametrų, aprašančių tiesinę kalibruotę, gaunami penki
papildomi netiesinės kalibruotės parametrai, kurie įeina į naujus
dėmenis, modifikuojančius Feinmano taisykles. Pateikiamas šio
modelio įgyvendinimas FeynArts pakete ir juo atlikti skaičiavi-
mai, kuriais parodoma, kad įvairių procesų amplitudės be kilpų ko-
rekcijų gaunamos nepriklausomos nuo kalibruotės. Parodyta, kad
netiesinė kalibruotė nekeičia renormalizacijos procedūros.


