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The two-level quantum system is applied in theoretical modelling of the angle-resolved differential absorption spectra in-
duced by the strong near-resonant laser field in quantum dots. The simulations of induced polarization waves at appropriate
directions have been performed by means of the density matrix formalism, without using perturbation theory. An interpretation
of the differential spectra is provided referring to representation of the dressed states, with their energies experiencing Stark
shifts due to the action of the laser field. The feasibility of the light and matter interaction strength characterization via observed
Mollow spectrum at the different (from the probe beam) direction is demonstrated.
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1. Introduction

Progress in constructing optical switches, logical el-
ements, as well as entries for quantum computing [1–3]
increases demand for characterization of strong-field
affected electronic states in quantum wells, quantum
wires, and quantum dots (QD). In particular, there has
been considerable interest in the investigation of the op-
tical Stark effect (OSE), i. e. light-induced shift of en-
ergy levels in the presence of non-resonant laser fields
in nanoscale materials [4]. Optical spectroscopy meth-
ods count among the most versatile and routine ones for
characterizing strong-field limit of light–matter interac-
tion in such kind of quantum systems. Among a num-
ber of experimental and theoretical studies of such kind,
analysis of the strong-coupling regime between con-
fined excitons and micro-cavity photons [5], dynamics
of basic laser-induced coherences (that can be observed,
e. g., in quantum beat spectroscopy), as well as Rabi os-
cillations in pump-probe spectroscopy [6, 7] should be
noted.

The last technique is known as standard one for
investigating both transient and stationary response
of medium to the pump-induced perturbation. This
method implicitly assumes weak probe beam, which
measures induced absorption (transmission) changes.
However, it should be stressed that, to reduce the com-

plexity of the problem, the description of the technique
discussed here is based on two different kinds of ap-
proximations, even for the relatively strong pump field.
In the time-resolved case, negligible excited state pop-
ulation is approached, allowing perturbative treatment
of system evolution [9, 8]. On the other hand, countin-
uous wave (cw) approximation and appropriate to this
case representation of the dressed states is used to con-
sider OSE in the strong-field (high Rabi frequency)
limit [10].

Because our interest in this work is the OSE mani-
festation in differential absorption spectra observable in
the limit of strong pulsed excitation, none of the men-
tioned above approximations is suitable for our pur-
poses. Therefore numerical integration of the Bloch
equations is performed when obtaining the main results
in this work, which is performed in the manner of angle-
and time-resolved pump-probe spectroscopy developed
for description of the coherent effects in femtosecond
pump-probe spectroscopy [11–16].

In this paper we stress the peculiarities of the dif-
ferential pump-probe spectra resulting from the strong-
field induced OSE in QD, owing to the fact that both
long phase relaxation time and huge strength of opti-
cal transitions are characteristic of confined excitons.
Because of the discrete atom-like lines of the excitonic

© Lithuanian Physical Society, 2008
© Lithuanian Academy of Sciences, 2008 ISSN 1648-8504



156 A. Savickas and E. Gaižauskas / Lithuanian J. Phys. 48, 155–162 (2008)

spectra, here we restrict our consideration to two-level
quantum system.

The paper is organized as follows. Section 2 pro-
vides our approach and main equation appropriate for
the analysis of the angle-resolved pump-probe measure-
ments. Section 3 presents the numerical modelling re-
sults and interpretations based on the dressed state pic-
ture. We conclude with discussion of expected bene-
fits of using angle-resolved pump-probe configuration
analysis of the OSE implemented peculiarities in dif-
ferential absorption spectra in Sec. 4.

2. Theoretical model and calculation procedure

2.1. Pump-probe spectroscopy in two-level
approximation

Consider a two-level system with a transition fre-
quency ω21 subjected to the strong pump, which has
carrying frequency ωL and wave vector kL, and a
weaker probe, characterized by frequency ωP and wave
vector kP, accordingly. Total electric field can be
written as superposition of two quasi-monochromatic
plane-wave pulses:

E(t) =
1

2
[εL(t) ei[kLr−ωL(t−τL)]

+ εP(t) ei[kPr−ωP(t−τP)] + c. c.] , (1)

where εL(t) and εP(t) are slowly varying envelopes of
electric field, c. c.means complex conjugate. Both elec-
tric fields are assumed to be linearly polarized in the
same direction. Delay times τP and τL for probe and
pump pulses, respectively, are introduced to ensure the
time-invariance in final equations. Further on through
this paper the pump field arrival time will be taken as
reference one, therefore: τL = 0 in all calculations.
Field frequencies are assumed to be near to the op-
tical transition of the system, in the sense that abso-
lute values of frequency detunings for pump and probe
pulses from resonance are considerably less in compar-
ison to corresponding resonance frequency of the two-
level system.

Non-perturbed Hamiltonian of the two-level system
is defined as

Ĥ0 =
1

2

[
0 0
0h̄ ω21

]
, (2)

whereas perturbation due to electric field dipole inter-
action with the laser field is written as follows:

Ĥ1 = −E(t)

[
0 µ
µ∗ 0

]
, (3)

where matrix element µ stands for the dipole transition
in two-level system. Dynamics of the system under con-
sideration now is given by evolution of Liouville equa-
tion of the density matrix, as follows:

∂

∂t
ρ̂ =

[
ρ̂ , Ĥ0 + Ĥ1

]
. (4)

Here we may recall some points of the well-known
pump-probe spectroscopy. Specifically, in such mea-
surements pump beam induces population and polariza-
tion in the sample, whereas weak probe pulse is used to
test these changes. Usually, fields are directed to the
sample at different angles, and two polarization waves
interfere to produce a grating with period h = |kL−kP|
in k-space. Diffraction on this grating results in energy
transfer from the pump beam to the probe one. In our
simulations it is assumed that moduli of wave vectors
|kL|, |kP| are equal and modulation of the refraction in-
dex is quite small. Therefore, we restrict ourselves to
the first order of diffraction only, by defining polariza-
tion amplitudes QL, QP, and QL2P (propagating at di-
rections kL, kP, and 2kL − kP, respectively), and ex-
panding polarization ρ12 and population n = ρ22− ρ11
in the following manner [15]:

ρ12 =QL eikLr +QP eikPr +QL2P ei2kLr−kPr ,

n= n0 + n1 eiHr + n−1 e−iHr . (5)

(Note that n−1 = n∗1.) After substituting expressions
(5) into Liouville equations one gets the following equa-
tions describing evolution of this two-level system:

∂

∂t
n0 = iΛ∗

LQL − iΛLQ
∗
L + iΛ∗

PQP − iΛPQ
∗
P

− n0 − n0(0)

T1
, (6)

∂

∂t
n1 = iΛ∗

LQP − iΛPQ
∗
L + iΛLQL2P − n1

T1
, (7)

∂

∂t
QL = iω12QL +

i
2
ΛLn0 +

i
2
ΛPn−1 −

QL

T2
, (8)

∂

∂t
QP = iω12QP +

i
2
ΛLn1 +

i
2
ΛPn0 −

QP

T2
, (9)



A. Savickas and E. Gaižauskas / Lithuanian J. Phys. 48, 155–162 (2008) 157

∂

∂t
QL2P = iω12QL2P +

i
2
ΛLn1 −

QL2P

T2
, (10)

where terms with characteristic constants T1 and T2
are introduced to account for population and polar-
ization relaxation, respectively. n0(0) is initial pop-
ulation of the system (in our simulations n0(0) =
−1, as the system is assumed to be in ground state),
ΛL,P = µ εL,P(t)/h̄ corresponds to the Rabi frequencies
of pump and probe fields.

To exclude the dominant “fast” oscillations at fre-
quencies ωL and ωP from polarization QL, QL2P, and
QP, those are replaced with QL = Qs

L ei[−ωL(t−τL)],
QL2P = Qs

L2P ei[−2ωL(t−τL)+ωP(t−τP)], and QP =
Qs

P ei[−ωP(t−τP)]. Then, using rotating wave approxima-
tion, equations for material variables (polarization and
population) can be written as

∂

∂t
n0 = iΛLQ

s
L − iΛ∗

LQ
s∗
L + iΛPQ

s
P − iΛ∗

PQ
s∗
P

− n0 − n0(0)

T1
, (11)

∂

∂t
n1 = i(−∆P12 +∆L12)n1 + iΛLQ

s
P − iΛPQ

s∗
L

− iΛLQ
s
L2P − n1

T1
, (12)

∂

∂t
Qs

L = −i∆L12Q
s
L+

i
2
ΛLn0+

i
2
ΛPn−1−

Qs
L

T2
, (13)

∂

∂t
Qs

P = −i∆P12Q
s
P+

i
2
ΛLn1+

i
2
ΛPn0−

Qs
P

T2
, (14)

∂

∂t
Qs

L2P = −i(2∆L12 −∆P12)Q
s
L2P +

i
2
ΛLn1

− Qs
L2P
T2

, (15)

where ∆L12 = ωL − ω12 and ∆P12 = ωP − ω12 are de-
tunings of the pump and probe pulses from resonance.
In our simulations they are assumed to be equal in dis-
persed pump-probe measurement (see below), when
spectrum of the probe pulse is considered as supercon-
tinuum. In this case the detuning of the probe pulse
is not crucial, provided probe spectrum is taken suffi-
ciently broad.

Two kinds of pump-probe experiments are known –
these are dispersed and two-colour pump-probe exper-
iments. In the latter case both pulses are of the same

duration. Transmission differences can be calculated at
various delay times between probe and pump beams,
also when pump and probe are off resonance. Differ-
ence spectrum in this case reads:

∆A(τ) ∼
∫

|ΛP(τ)|2 dt−
∫ ∣∣Λ0

P(τ)
∣∣2 dt . (16)

Here τ denotes the delay time between pump and probe
fields. ΛP and Λ0

P stand for the cases when pump pulse
is turned on and off, respectively. (In fact, due to cal-
culation problems, Λ0

P is evaluated for the long delay of
the pump pulse.)

The evolution of probe field is expressed using
Maxwell equation:

∂

∂z
ΛP ∼ −iQs

P(ΛL ̸= 0,ΛP, τ) , (17)

∂

∂z
Λ0

P ∼ −iQs
P(ΛL = 0,ΛP, τ) . (18)

When dispersed pump-probe experiment is investi-
gated, one calculates differential transmission spectrum
of the probe field. It can be written as follows:

∆A(ω, τ) ∼
∣∣∣∣∫ ΛP(τ)e−iωtdt

∣∣∣∣2−∣∣∣∣∫ Λ0
P(τ)e−iωtdt

∣∣∣∣2 .
(19)

Runge–Kutta method of fourth order is used to sim-
ulate the Eqs. (11)–(15).

2.2. Two-level system in the representation of
“dressed” states

Before presenting results of the Stark effect manifes-
tation in differential absorption spectra, it is instructive
to have a look at physics of the two-level system in a
strong near-resonant cw laser field. It is well known
that Rabi oscillations, i. e. sinusoidal time evolution of
the material variables (population and polarization) re-
sults in the splitting of the quantum states of composite
light–matter system in the dressed-state representation
(see e. g. [10, 17, 18] and references therein).

Due to strong interaction between field and two-level
quantum system, the superposition of field and quantum
system is approached. In this case Schrödinger equation

ih̄
∂

∂t
ψ(r, t) = Hψ(r, t) (20)

for stationary system Hamiltonian H can be solved ex-
pressing the wave function ψ(r, t) as superposition:

ψ(r, t) = C1(t)|g⟩ e−iω1t + C2(t)|e⟩ e−iω2t , (21)
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where Cj(t) represents probability amplitude to find
system in state |j⟩, j = (g, e). Assuming that mod-
ulus of coefficient Cj(t) is constant, |Cj(t)| = const,
and using appropriate boundary conditions (details of
the full solution of this problem see in [18]) the wave
vectors |g⟩± and |e⟩± describing superposition of the
compound field and matter system are found. Probabil-
ities to find the system in “dressed” states reads:

|⟨ψ|g⟩±|2=
|Λ|2

2Λ′(Λ′∓∆)
, |⟨ψ|e⟩±|2=

Λ′∓∆

2Λ′ . (22)

Here Λ′ =
√
Λ2 +∆2 is a generalized Rabi frequency.

Fig. 1. Dressed atomic states in the cases of weak and strong in-
teraction, corresponding to the case ∆ > 0. Grey circles mark the

population of quantum state.

Schematic representation of the “dressed” by the
electromagnetic field two-level system is drawn in
Fig. 1 for weak- and strong-field cases. Possible dipole
transitions at three frequencies ω, ω + Λ′, and ω − Λ′

are marked here by arrows.
Differential absorption spectra corresponding to the

transition to “dressed” states can be easily calculated
from Eqs. (11)–(15). In stationary case a linear set of
equations for separate Fourier components reads as fol-
lows:(
ωP − ω12 −

i
T2

)
QP = ΛPn(0) + ΛLn(ωP − ωL) ,

(23)

(ωP−ω12)n(ωP−ωL) = 2(Λ∗
LQP−ΛPQ

∗
L−ΛLQ

∗
L2P) ,

(24)(
2ωL − ωP − ω12 +

i
T2

)
Q∗

L2P = −2Λ∗
Ln(ωP − ωL) .

(25)

The solutions for polarization at directions kP and
2kL − kP are:

QP =

=
ΛPn0
D

[(
2ωL − ωP − ω12 +

i
T2

)(
ωP − ωL − i

T1

)

+ 2Λ2
L

(
1− 2ωL − ωP − ω12 + i/T2

ωL − ω12 + i/T2

)]
, (26)

Q∗
L2P =

2Λ2
LΛPn0
D

(
1− ωP − ω12 − i/T2

ωL − ω12 + i/T2

)
, (27)

where D is denominator expressed as

D = (ωP − ωL)

×
[
−(ωP−ωL)

2+(ω12−ωL)
2+ 4Λ2

L+
1

T 2
2

+
2

T2T1

]

+
i
T2

[
2(ωP − ωL)

2 + 4Λ2
L

]
+

i
T1

[
(ωP − ω12)(ωP − 2ωL + ω12) +

1

T 2
2

]
. (28)

Differential absorption spectrum probed at kP, calcu-
lated using these expressions, is drawn in the Fig. 2(a).
This spectrum has well-known Mollow resonances [19]
at frequencies which exactly match the transitions be-
tween “dressed” states:

ωP = ωL , ωP = ωL ±∆ , (29)

where ∆=
√
(ωL−ω12)2+4Λ2

L+1/T 2
2 +2/(T2T1).

Fig. 2. Spectra in the limit of steady states: (a) differential absorp-
tion directed at kP, (b) modulus of the polarization wave directed at

2kL − kP.

Additionally, negative dip at the resonance frequency
ω12 is observed in Fig. 2(a) and it corresponds to re-
duced absorption from the ground to excited state due
to the perturbation.
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On the other hand, it should be stressed that Stark
shifts can be examined at the direction 2kL − kP, to
which some part of the induced polarization is scattered
due to the induced polarization grating. In Fig. 2(b) we
plot the modulus of polarization scattered in this direc-
tion. In comparison to Fig. 2(a), absence of the negative
dip at unperturbed resonance frequency ω12 should be
stressed here.

3. Results of numerical modelling and discussions

Before we begin discussing results of numerical
modelling, we will make some remarks on the param-
eters which will be used further throughout this paper.
Firstly, as a population relaxation at the femtosecond
to picosecond scale is negligible in the system we are
interested in (QD), it has been excluded from simula-
tions (i. e. T1 is set to infinity). Phase relaxation time
T2 was varied in the region of 0.1–1 ps. In the case
of dispersed pump-probe experiment probe pulse has to
be wide enough to cover the whole line width, which
is conditioned both by phase relaxation time and Rabi
frequency. The latter parameter ΛL was raised up to
60 ps−1 (corresponding to the maximal used “area”
ΘL =

∫∞
−∞ ΛL(t) dt of the pump pulse). Therefore

probe pulse duration was set to 0.001 ps. As men-
tioned above, weak probe beam is used to probe induced
absorption (transmission) changes, therefore its energy
has to be weak and probe pulse area ΘP =

∫
ΛP(t) dt

has been set to 0.0001. All spectra were calculated at
zero delay – when pump and probe pulse coincided in
time τP = 0.

3.1. Dispersed pump-probe experiment

Usually the broad-band probe for the dispersed pump-
probe experiment is created by using supercontinuum
generation in wide-band dielectrics: water, optical
glass, and fibres. The part of the pump pulse is used for
these purposes. Therefore, analysing this case it is rea-
sonable to use the same carrier frequency both for the
pump and probe pulses (ωL = ωP). We start our anal-
ysis with the spectra, which are depicted for the fixed
pump pulse area ΘL =70, while changing detunings
of the pump and probe pulses ∆L12 = ∆P12 gradually
from 20 to 60 ps−1. Spectra calculated at three differ-
ent phase relaxation times (T2 = 0.1, 0.2, and 0.5 ps)
are shown in Fig. 3(a–c). Due to the relatively short
(as compared to the pump pulse) phase relaxation time,
only negligible signatures of the OSE manifest here in
the subfigures (a) and (b). Instead, these spectra are

Fig. 3. Differential absorption spectra versus pump and probe pulse
detuning from resonance depicted for different phase relaxation
time: (a) T2 = 0.1 ps, (b) 0.2 ps, (c) 0.5 ps. Subfigure (d) shows
magnified spectra for frequencies above the system resonance. The
arrows mark frequencies ωL and ωL + ΛL, τL = 0.5 ps, ΘL = 70.

dominated by the broad-band dip due to the reduced
absorption at the two-level resonance. Nevertheless,
increasing relaxation time T2 leads to clear manifesta-
tion of the OSE in the spectra, which recall some fea-
tures of the spectra in cw case shown in Fig. 2. In
Fig. 3(b, c) these signatures become noticeable when
Stark shift exceeds the width of the system spectra (i. e.
when generalized Rabi frequency of the pump pulse be-
comes larger than the reciprocal phase relaxation time
ΛL > T−1

2 ) and manifest in an absorption increase in
the low-energy side of the spectra. Note that the en-
ergy side on which more pronounced OSE is observ-
able depends on the pump pulse frequency detuning
from resonance. In our case pump pulse energy ex-
ceeds the difference between the energy levels in the
two-level system. As a result OSE is clearly observed
on the longer wavelength side with respect to system
resonance, quite according to predictions made by us-
ing representation of the “dressed” states. The same
features, though inversely signed and of considerably
smaller amplitude, also occur on the shorter wavelength
side. Figure 3(d) shows enlarged spectra corresponding
to this wavelength region and displays both oscillations
and an absorption decrease.

In addition to these observations, which are qualita-
tively similar to the ones shown in Fig. 2(a) and dis-
cussed in the subsection above, one aspect of the Stark
shift spectroscopy should be mentioned here. Usu-
ally, line shifts of perturbed systems are determined
by measuring positive peak of the “butterfly” feature
in the differential absorption spectrum. It is notewor-
thy that in the case under consideration strong-field af-
fected probe absorption undergoes changes both in po-
sition and shape (amplitude), as it is seen from Fig. 4.
Specifically, a closer look at the (a) absorption and (b)
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Fig. 4. Comparison of (a) absorption and (b) differential absorbtion
spectra for weak (ΘL = 10, dashed line) and strong (ΘL = 50, solid

line) excitation cases. T2 = 0.5 ps, ∆ωL = 40 ps−1.

differential absorption spectra shown in Fig. 4 reveals
that “butterfly” in differential transmission spectrum is
observed when Rabi frequency remains small. On the
other hand, the “butterfly” splits into two peaks of op-
posite signs when the pump pulse amplitude increases.
The first maximum matches the system resonance at fre-
quency ω12 and the second one means the shifted line
due to Stark effect. Therefore, when Stark shift exceeds
the line width of the system, it can be measured more
exactly from the positive peak position in the differen-
tial absorption spectrum unless direct measurement of
the absorption spectrum is possible.

Fig. 5. Differential absorption spectra versus pump pulse “area”
ΘL, depicted for phase relaxation time (a) T2 = 0.1 ps, (b) 0.2 ps,
(c) 0.5 ps, (d) 1.0 ps. Pump field duration τL = 0.5 ps, its detuning
from resonance ∆ωL = 40 ps−1. The arrows here mark frequencies

ωL and ωL + ΛL.

Concluding this subsection we consider changes
in the diferential absorption spectra when increasing
pump pulse area, while keeping constant frequency de-
tuning ∆L12 = ∆P12 = 40 ps−1. The results at differ-
ent phase relaxation time are shown in Fig. 5. Like in
previous case, phase relaxation time T2 has been cho-
sen longer, equal, and shorter than pump pulse dura-

tion. Pump pulse area has been varied in the regionΘ =
1 . . . 71. Other parameters have been left as in the case
shown in Fig. 3. It is seen that differential absorption
spectra for both cases depicted in Figs. 3–5 exhibit very
similar changes both with respect to frequency detunig
and phase relaxation time: here again small oscillations
emerge on the shorter wavelength side for τL ≤ T2,
and disappear when pump pulse duration is prolonged.
The Stark shift in the differential absorption spectrum
is seen only when generalized Rabi frequency exceeds
the line width of homogenously broadened system, that
is, Λ′

L > T−1
2 .

3.2. Two-colour pump-probe spectroscopy

Two-colour pump-probe experiment is easier to com-
mit in practice than the dispersed one. Differential

Fig. 6. Differential absorption spectra versus pump pulse “area”
ΘL, depicted at different values of phase relaxation time (a) T2 =
0.1 ps, (b) 0.2 ps, (c) 0.5 ps, (d) 1 ps. Other parameters as in Fig. 5.

absorption spectra calculated for this case when both
pump and probe pulses were taken as long as 0.5 ps are
shown in Fig. 6. In general terms, properties of the dif-
ferential absorption spectra here remain the same as the
ones discussed in the subsection above. Note the opti-
mal value of the pump pulse area at which the most pro-
nounced amplitude of the difference spectra appeared:
ΘL ≃ 30. Finally, it is noteworthy to stress that the best
choice for measuring Stark shifts is to set pump pulse
duration close to phase relaxation time.

3.3. Stark shifts in the spectra of diffracted radiation

Described above peaks, slopes, and dips of the dif-
ferential absorption spectra respond to the processes of
different orders: linear (absorption and emission) and
third-order (saturation and four-wave mixing). There-
fore, they shade each other and make interpretation of
the observed effects rather complicate.
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Fig. 7. Modulus spectra of polarization wave as obtained for dis-
persed pump-probe measurements at direction 2kL − kP versus
pump pulse “area” ΘL, depicted for phase relaxation time (a) T2 =
0.1 ps, (b) 0.2 ps, (c) 0.5 ps, (d) 1.0 ps. τL = 0.5 ps, ∆ωL = 40 ps−1.

Fig. 8. Modulus spectra of polarization wave as obtained for two-
colour pump-probe measurements at direction 2kL − kP versus
pump pulse “area” ΘL, depicted for phase relaxation time (a) T2 =
0.1 ps, (b) 0.2 ps, (c) 0.5 ps, (d) 1.0 ps. τL = 0.5 ps, ∆ωL = 40 ps−1.

Thus it is useful to look the spectra at different (from
pump and probe) direction, e. g. at 2kL −kP. Square of
the modulus of the polarization wave given by Eq. (15)
for dispersed and two-colour pump-probe measurement
configurations are shown in Figs. 7 and 8. In both cases
Mollow triplet lines [19] are clearly seen here. Four-
wave mixing process is responsible for polarization in
this direction. It appears as the pump and probe pulses
interfere and is proportional to ΛPΛ

2
L, as seen from

steady state solution Eq. (27). Note that Rabi sidebands
at frequencies ω12 and ωL +∆ increase when increas-
ing phase relaxation time (i. e. for stronger light–matter
interaction case). Consequently, longer pulses, as com-
pared to phase relaxation time, cause falling amplitudes
of the Rabi sideband spectra, whereas distinct peak at
the exciton resonance emerges in this case.

4. Conclusions

In this paper, we demonstrate the interference ef-
fects of the strong pump and weak probe in angle-
resolved differential pump-probe spectroscopy. The
dressed atom approach in the frequency domain was
used to interpret our findings. Numerics for both dis-
persed and two-colour configurations of pump-probe
measurements, in general terms, reveal the characteris-
tics of the well-known Mollow triplet spectrum, though
it is kept hidden to great extent by different mixing
contributions (four-wave mixing, bleaching due to the
population changes, induced polarization waves), when
measured in the direction of the probe beam. Never-
theless, decreasing line width of the two-level system
beyond the generalized Rabi frequency of the pump
pulse results in a more clear manifestation of OSE in the
differential absorption spectrum and can be estimated
from its positive peak position. On the other hand, clear
Mollow triplet, with characteristic of this spectra de-
pendences on excitation strength and relaxation time of
coherent polarization, can be observed in “pure” four-
wave mixing direction 2kL − kP for measurements in
both (dispersed and two-colour) configurations.

We should recall that Stark effect is of instantaneous
response, and dressed states and quantum level split-
ting emerge only when system remains under excita-
tion. This fact offers a possibility of all-optical fem-
tosecond switch using two-photon absorption in three-
level system: e. g., recently a technique has been sug-
gested where strong femtosecond laser beam switches
off another laser beam of different wavelength due to the
OSE in gases [21]. Our preliminary calculations show
that extension of the model described above to three-
level system (specifically, by adding transition from ex-
citon to bi-exciton state) offers the same possibility in
semiconductor quantum dots, i. e. materials meeting
the requirements of nanotechnology.
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ŠTARKO EFEKTO APRAIŠKOS SKIRTUMINĖS SUGERTIES SPEKTRUOSE
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Santrauka
Teoriškai tiriami skirtuminiai kvantinių taškų, pasižyminčių

stipria sąveika su rezonansiniu elektromagnetiniu (EM) lauku, skir-
tuminės sugerties spektrai. Modeliuojama dviejų lygmenų kvan-
tinė sistema, esanti nedideliu kampu susikertančių dviejų (kaupi-
nančio ir zonduojančio) lazerinių pluoštų lauke. Kvantinėje sis-
temoje skirtingomis kryptimis indukuota poliarizacija įvertinta iš
Liuvilio (Liouville) lygties tankio matricai ir skaičiuojama netai-

kant įprastų žadinimo ir zondavimo spektroskopijai trikdžių teorijos
artinių. Apskaičiuoti skirtuminiai spektrai interpretuojami remian-
tis žinomu apvilktųjų būsenų (angl. dressed states) modeliu, apra-
šančiu energijos lygmenų poslinkius stipriame EM lauke. Parodyta,
kad EM lauko ir kvantinės sistemos sąveikos stiprį charakterizuo-
jantį spektrą (Mollow tripletą) patogiausia stebėti ne zonduojančio
pluošto kryptimi.


