[PDF]    http://dx.doi.org/10.3952/lithjphys.48308

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 265–273 (2008)


RESISTANCE OF AIRBORNE FUNGAL PROPAGULES TO ULTRAVIOLET IRRADIATION: LABORATORY STUDY
V. Ulevičiusa, D. Pečiulytėb, K. Plauškaitėa, and N. Špirkauskaitėa
aInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: ulevicv@ktl.mii.lt
bInstitute of Botany, Žaliųjų ežerų 49, LT-08406 Vilnius, Lithuania

Received 30 July 2008; accepted 19 September 2008

The influence of ultraviolet (UV) radiation on fungi Aspergillus niger Tiegh. isolate OG168, Paecilomyces puntonii (Vuill.) Nann. isolate OG68, and Penicillium expansum Link isolate PO88 was studied under laboratory conditions. A test system was developed for this study. An aerosol chamber provided a dust-free space of 1.5 m3. The source of ultraviolet rays was an UV lamp (DPT 220, 240–320 nm, 15 W). Fungal propagules were injected into the UV exposed chamber space from an external bioaerosol generator. Aerosols from the aerosol chamber after irradiation to UV were sampled into an impinger AGI-30 and measured with the optical aerosol spectrometer LAS-15M (Institute of Physics, Lithuania). The changes in fungi survival caused by exposure to UV radiation were evaluated by determining their relative recovery. The laboratory study indicated that the fungal propagules responded to UV radiation distinctively. P. puntonii propagules were injured without possibility to repair. On the contrary, P. expansum propagules repaired after a long enough exposure to UV radiation, but this ability was limited. The stressed A. niger propagules recovered after the 80 min exposure to UV radiation and the relative recovery reached a plateau. The mutagenic effects of UV light on tested fungi have shown that frequent occurrence of different morphological mutants was detected after the 30 min exposure of conidia. The mean geometrical diameter of fungal propagules exposed to UV irradiation in the aerosol chamber was in the range of 2.5 to 2.8 μm.
Keywords: aerosol chamber, fungal propagules, relative recovery, mutation, UV radiation
PACS: 92.60.Mt, 92.20.Bk, 87.19.xg


MIKROMICETŲ AEROZOLIO ATSPARUMAS ULTRAVIOLETINEI SPINDULIUOTEI: KAMERINIAI TYRIMAI
V. Ulevičiusa, D. Pečiulytėb, K. Plauškaitėa, N. Špirkauskaitėa
aFizikos institutas, Vilnius, Lietuva
bBotanikos institutas, Vilnius, Lietuva

Tirtas ultravioletinės (UV) spinduliuotės poveikis Aspergillus niger Tiegh (OG168), Paecilomyces puntonii (Vuill.) Nann. (OG68) ir Penicillium expansum Link (PO88) mikromicetų pradams, panaudojus aerozolio technologiją. Tyrimai atlikti sukonstruotoje eksperimentinėje 1,5 m3 aerozolio kameroje. Kamera buvo užpildoma mikromicetų pradais, generuojamais bioaerozolių generatoriumi. Jie buvo veikiami skirtingos trukmės (iki 160 min) ultravioletine spinduliuote. Bandiniai iš kameros rinkti į sterilų vandenį, kur 15 min intervalais optiniu aerozolio spektrometru LAS-15m (Fizikos institutas) matuota mikromicetų pradų koncentracija ir dydžių pasiskirstymas. Mikromicetams auginti buvo naudota agarizuota alaus misa. Mikromicetai auginti 7 dienas tamsoje, 25 C temperatūroje. Mikromicetų pradų gyvybingumas buvo vertinamas pagal koncentracijų, išmatuotų aerozolio spektrometru vandens terpėje, santykį. Nustatyta, kad P. puntonii pradų pažaidos negrįžtamos: dauguma jų žuvo paveikus UV spinduliuote 20 min. P. expansum pradų gyvybingumas pradžioje sumažėjo, bet po 60 min poveikio UV spinduliuote pradėjo didėti, o po 120 min – vėl mažėti. Šių mikromicetų pradų apsauginiai mechanizmai nuo UV spinduliuotės buvo riboti. Po 80 min UV spinduliuotės poveikio A. niger pradams jų gyvybingumas pradėjo didėti ir vėliau mažai kito. A. niger pradų apsauginiai mechanizmai nuo UV spinduliuotės buvo išvystyti geriausiai, lyginant juos su P. expansum ir P. puntonii. Daugiausia mikromicetų pradų mutacijų nustatyta paveikus UV spinduliuote 30 min P. puntonii. Eksperimentinėje aerozolio kameroje veikiamų UV spinduliuote mikromicetų pradų vidutinis geometrinis skersmuo buvo nuo 2,2 iki 2,8 μm.


References / Nuorodos


[1] T. Yanagita, Natural Microbial Communities, Ecological and Physiological Features (Japan Scientific Societies Press, Tokyo and Springer Verlag, Berlin, 1990),
https://www.amazon.co.uk/Natural-Microbial-Communities-Ecological-Physiological/dp/0387520880/
[2] J. Rotem, B. Wooding, and D.E. Aulor, The role of solar radiation, especially ultraviolet, in the mortality of fungal spores, Phytopathol. 75, 510–514 (1985),
http://dx.doi.org/10.1094/Phyto-75-510
[3] Y. Tong and B. Lighthart, Solar radiation has a lethal effect on natural populations of culturable outdoor atmospheric bacteria, Atmos. Environ. 31, 897–900 (1996),
http://dx.doi.org/10.1016/S1352-2310(96)00235-X
[4] G.J. Herd, N.G. Muller, and J. Frick, Major role of Ultraviolet-B in controlling bacterioplankton growth in the surface layer of the ocean, Nature 361, 717–719 (1993),
http://dx.doi.org/10.1038/361717a0
[5] G. Ko, M.W. First, and H.A. Burge, Influence of relative humidity on particle size and UV sensitivity of Serratia marcescens and Mycobacterium bovis BCG aerosols, Tuber. Lung Dis. 80, 217–228 (2000),
http://dx.doi.org/10.1054/tuld.2000.0249
[6] P.E. Hockberger, A history of ultraviolet photobiology for humans, animals and microorganisms, Photochem. Photobiol. 76, 561–579 (2002),
http://dx.doi.org/10.1562/0031-8655(2002)076<0561:AHOUPF>2.0.CO;2
[7] E.C. Polard, S. Person, M. Rader, and D.J. Fluke, Relation of ultraviolet light mutagenesis to a radiation-damage inducible system in Escherichia coli, Radiat. Res. 72, 519–532 (1989),
http://dx.doi.org/10.2307/3574615
[8] T. Schwarz, UV light affects cells membrane and cytoplasmic targets, J. Photochem. Photobiol. B 44, 91–96 (1998),
http://dx.doi.org/10.1016/S1011-1344(98)00126-2
[9] R.P. Sinha, M. Klisch, A. Gröniger, and D.P. Häder, Mycosporine-like amino acids in the marine red alga Gracilaria cornea – effects of UV and heat, Environ. Exp. Bot. 43, 33–43 (2000),
http://dx.doi.org/10.1016/S0098-8472(99)00043-X
[10] P.G. Ayres, T.S. Gunasekera, S. Rasanayagam, and N.D. Paul, Effects of UV-B radiation on foliar saprophytes and pathogens, in: Fungi and Environmental Change, eds. J.C. Frankland, N. Magan, G.M. Gadd (Cambridge University Press, Cambridge, 1996), pp. 32–50,
http://dx.doi.org/10.1017/CBO9780511753190.004
[11] D. Peciulyte and V. Ulevicius, Effect of ultraviolet irradiation on the germination, growth and variability of Paecilomyces puntonii (Vuill.) Nonnizzi, Biol. 3–4, 68–74 (2000)
[12] D. Peciulyte and V. Ulevicius, Fungal response to ultraviolet irradiation, Ecol. 3, 7–9 (1999)
[13] W. Bilger, T. Johnson, and U. Schreiber, UV-excited chlorophyll fluorescence as a tool for the assessment of UV-protection by the epidermis of plants, J. Exp. Bot. 52, 2007–2014 (2001),
http://dx.doi.org/10.1093/jexbot/52.363.2007
[14] T.M. Robson, V.A. Pancotto, S.D. Flint, C.L. Ballaré, O.E. Sala, A.L. Scopel, and M.M. Caldwell, Six years of solar UV-B manipulations affected growth of Sphagnum and vascular plants in a Tierra del Fuego peatland, New Phytologist 160, 379–389 (2003),
http://dx.doi.org/10.1046/j.1469-8137.2003.00898.x
[15] A. Muela, J.M. Garcia-Bringas, I.I. Arana, and I.I. Barcina, The effect of simulated solar radiation on escherichia coli: The relative roles of UV-B, UV-A, and photosynthetically active radiation, Microb. Ecol. 39, 65–71 (2000),
http://dx.doi.org/10.1007/s002489900181
[16] J. Peccia, H.M. Werth, S. Miller, and M. Hernandez, Effects of relative humidity on the ultraviolet induced inactivation of airborne bacteria, Aerosol Sci. Technol. 35, 728–740 (2001),
http://dx.doi.org/10.1080/02786820152546770
[17] M.L. Smith and A.J. Fornacwe, p-53-mediater protective responses to UV irradiation, Proc. Natl. Acad. Sci. USA 94, 12255–12257 (1997),
http://dx.doi.org/10.1073/pnas.94.23.12255
[18] D.E. Aylor and S. Sanogo, Germinability of Venturia inaequalis conidia exposed to sunlight, Phytopathol. 87, 628–633 (1997),
http://dx.doi.org/10.1094/PHYTO.1997.87.6.628
[19] E. Levetin, R. Shaughnessy, C.A. Rogers, and R. Scheir. Effectiveness of germicidal UV radiation for reducing fungal contamination within air-handling units, Appl. Environ. Microbiol. 67, 3712–3715 (2001),
http://dx.doi.org/10.1128/AEM.67.8.3712-3715.2001
[20] J. Rotem and H.J. Aust, The effect of UV and solar radiation and temperature on survival of fungal propagules, J. Phytopathol. 133, 76–84 (1991),
http://dx.doi.org/10.1111/j.1439-0434.1991.tb00139.x
[21] K.H. Domsch, W. Gams, and T.H. Anderson, Compendium of Soil Fungi (Academic Press, London, 1980),
http://www.apsnet.org/apsstore/shopapspress/pages/67692.aspx
[22] T. Reponen, K. Willeke, V. Ulevicius, S. Grinshpun, and J. Donnelly, Techniques for dispersion of microorganisms into air, Aerosol Sci. Technol. 27, 405–421 (1996),
http://dx.doi.org/10.1080/02786829708965481
[23] V. Ulevicius, K. Willeke, S. Grinshpun, J. Donnelly, X. Lin, and G. Mainelis, Aerosol generation by bubbling liquid: Characteristics and generator development, Aerosol Sci. Technol. 26, 175–190 (1996),
http://dx.doi.org/10.1080/02786829708965423
[24] C.L. Campbell and L.V. Madden, Introduction to Plant disease Epidemiology (John Wiley & Sons, New York, 1990),
https://www.amazon.co.uk/Introduction-Plant-Disease-Epidemiology-Campbell/dp/0471832367/
[25] C.M. Ignoffo and C. Garcia, Influence of conidial colour on inactivation of several entomogenous fungi by simulated sunlight, Environ. Entomol. 21, 913–917 (1992),
http://dx.doi.org/10.1093/ee/21.4.913
[26] N.N. Zhdanova and A.I. Vasilevskaja, Melanin Containing Fungi in the Extremal Conditions (Naukova Dumka, Kiev, 1988) [in Russian]
[27] H.S. Mason, H.E. Ingram, and B. Allen, The free radical property of melanins, Arch. Biochem. Biophys. 86, 230–255 (1960),
http://dx.doi.org/10.1016/0003-9861(60)90409-4
[28] A. Asthana and R.W. Tuveson, Effects of UV and phototoxins on selected fungal pathogens of citrus, Int. J. Plant Sci. 153, 442–452 (1992),
http://dx.doi.org/10.1086/297050