[PDF]    http://dx.doi.org/10.3952/lithjphys.48402

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 313–318 (2008)


DIFFERENCE FREQUENCY GENERATION BETWEEN THE OUTPUT WAVES OF THE PP-MgO:LN OPTICAL PARAMETRIC OSCILLATOR
V. Vaičikauskasa, M. Kaučikasa,b, and Z. Kuprionisb
aInstitute of Physics, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: m.kaucikas@ekspla.com
bEKSPLA, Savanorių 231, LT-02300 Vilnius, Lithuania

Received 10 July 2008; accepted 18 September 2008

The difference frequency generation in the AgGaSe2 crystal between output waves of a periodically poled MgO doped lithium niobate (PP-MgO:LN) optical parametric oscillator (OPO) is described in this paper. The wavelength of the generated radiation is tunable from 6 to 13 μ\mum with the average generated power in the range of several microwatts. The set-up allows a rapid tuning of the wavelength in the limited region of spectra without changing the temperature of the PP-MgO:LN crystal. A typical spectral linewidth of 5 cm–1 makes this source suitable for spectrometry of complex molecules under atmospheric conditions. The measured spectrum of the acetone vapour is presented to confirm this fact.
Keywords: nonlinear optics, optical frequency converters, infrared sources
PACS: 42.65.-k, 42.79.Nv, 42.72.Ai


SKIRTUMINIO DAŽNIO GENERAVIMAS SĄVEIKAUJANT PP-MgO:LN PARAMETRINIO ŠVIESOS GENERATORIAUS SIGNALINEI IR ŠALUTINEI BANGOMS
V. Vaičikauskasa, M. Kaučikasa,b, Z. Kuprionisb
aFizikos institutas, Vilnius, Lietuva
bUAB EKSPLA, Vilnius, Lietuva

Aprašomas skirtuminio dažnio generavimas AgGaSe2 kristale tarp PP-MgO:LN parametrinio šviesos generatoriaus signalinės ir šalutinės bangų. Generuojamos spinduliuotės bangos ilgis yra derinamas nuo 6 iki 13 μ\mum, o vidutinė jos galia siekia keletą milivatų. Aprašyta šaltinio konfigūracija leidžia greitai keisti spinduliuotės bangos ilgį, nekeičiant PP-MgO:LN kristalo temperatūros. Būdingasis generuojamos spinduliuotės spektro plotis yra 5 cm–1, o tai leidžia naudoti šį šaltinį sudėtingų molekulių spektroskopijai atmosferos sąlygomis. Tai iliustruojama acetono garų pavyzdžiu.


References / Nuorodos


[1] S. Haidar and H. Ito, Periodically poled lithium niobate optical parametric oscillator pumped at 0.532 μm and use of its output to produce tunable 4.6–8.3 μm in AgGaS2 crystal, Opt. Commun. 202, 227–231 (2002),
http://dx.doi.org/10.1016/S0030-4018(02)01096-9
[2] S. Haidar, Y. Sasaki, E. Niwa, K. Masumoto, and H. Ito, Temperature tuning of 5–12 μm by difference frequency mixing of OPO outputs in a AgGaS2 crystal, J. Phys. D 36, 1071–1074 (2003),
http://dx.doi.org/10.1088/0022-3727/36/9/304
[3] S.C. Pei, S.Y. Tu, and A.H. Kung, Mid-IR generation by difference frequency mixing of two pulsed PPLN OPOs in ZnGeP2, in: Quantum Electronics and Laser Science Conference, 2005, Vol. 2 (Optical Society of America, 2005) pp. 791–793,
http://dx.doi.org/10.1109/QELS.2005.1548939
[4] K. Suizu, S. Haidar, T. Usami, K. Nakamura, K. Kawase, and H. Ito, Nano-second continuous tunable 35–38 Thz wave generation by the intra-cavity difference-frequency generation (iDFG) method, in: Lasers and Electro-Optics, 2002 (Optical Society of America, 2002) pp. 147–148,
http://dx.doi.org/10.1109/CLEO.2002.1033543
[5] S. Haidar and H. Ito, Injection-seeded optical parametric oscillator for efficient difference frequency generation in mid-IR, Opt. Commun. 171, 171–176 (1999),
http://dx.doi.org/10.1016/S0030-4018(99)00508-8
[6] K.S. Abedin, S. Haidar, Y. Konno, C. Takyu, and H. Ito, Difference frequency generation of 5–18 μm in a AgGaSe2 crystal, Appl. Opt. 37, 1642–1646 (1998),
http://dx.doi.org/10.1364/AO.37.001642
[7] R. Utano and M. J. Ferry, 8–12 μm generation using difference frequency generation in AgGaSe2 of a Nd :YAG pumped KTP OPO, in: Advanced Solid State Lasers, eds. C. Pollock and W. Bosenberg, Vol. 10 of OSA Trends in Optics and Photonics Series (Optical Society of America, 1997), paper PC11, pp. 82–84,
https://www.amazon.co.uk/Advanced-Solid-State-Lasers-1997/dp/1557524688/
[8] A. Bianchi and M. Garbi, Down-conversion in the 4–18 μm range with GaSe and AgGaSe2 nonlinear crystals, Opt. Commun. 30, 122–124 (1979),
http://dx.doi.org/10.1016/0030-4018(79)90057-9
[9] S. Haidar, Y. Sasaki, E. Niwa, K. Masumoto, and H. Ito, Electro-optic tuning of a periodically poled LiNbO3 optical parametric oscillator and mixing its output waves to generate mid-IR tunable from 9.4 to 10.5 μm, Opt. Commun. 229, 325–330 (2004),
http://dx.doi.org/10.1016/j.optcom.2003.10.034
[10] C.S. Yu and A.H. Kung, Grazing-incidence periodically poled LiNbO3 optical parametric oscillator, J. Opt. Soc. Am. B 16, 2233–2238 (1999),
http://dx.doi.org/10.1364/JOSAB.16.002233
[11] D. Roberts, Dispersion equations for nonlinear optical crystals: KDP, AgGaSe2 and AgGaS2, Appl. Opt. 35, 4677–4688 (1996),
http://dx.doi.org/10.1364/AO.35.004677
[12] R.L. Sutherland, Handbook of Nonlinear Optics, 2nd ed. (Marcel Dekker, 2003),
http://dx.doi.org/10.1201/9780203912539
[13] NIST Chemistry Webbook,
http://webbook.nist.gov/chemistry/
[14] C. Fischer, R. Bartlome, and M. Sigrist, The potential of mid-infrared photoacoustic spectroscopy for the detection of various doping agents used by athletes, Appl. Phys. B 85, 289–294 (2006),
http://dx.doi.org/10.1007/s00340-006-2367-y
[15] A. Miklos, C. Kim, W. Hsiang, G. Liang, A. Kung, A. Schmohl, and P. Hess, Photoacoustic measurement of methane concentrations with a compact pulsed optical parametric oscillator, Appl. Opt. 41, 2985–2993 (2002),
http://dx.doi.org/10.1364/AO.41.002985