[PDF]    http://dx.doi.org/10.3952/lithjphys.48404

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 319–323 (2008)


MAGNETIC CIRCULAR DICHROISM OF OPAL CRYSTALS INFILTRATED WITH IRON PORPHYRIN*
Alfonsas Rėzaa,b, Irena Šimkienėa, Gintautas Jurgis Babonasa, Rimantas Vaišnorasb, Dmitry Kurdyukovc, and Valery Golubevc
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: jgb@pfi.lt
bVilnius Pedagogical University, Studentų 39, LT-08106 Vilnius, Lithuania
cIoffe Physico-Technical Institute RAS, 194021 St. Petersburg, Russia

Received 11 August 2008; accepted 4 December 2008

Synthetic opal crystals composed of silica spheres of diameter ~250 nm were infiltrated with highly concentrated (10 mM) buffered phosphate solution of iron porphyrin (FeTPPS). Magnetic circular dichroism (MCD) in the visible spectral range was investigated on hybrid samples immersed in polar (ethanol) or non-polar (hexane, toluene) solutions and situated in magnetic field. The MCD effect was observed in the spectral region of 550–650 nm in the vicinity of Q-absorption bands of FeTPPS. In 350 mT magnetic field the relative optical transmission change by 2.4\cdot104 was determined at the Q0-band of 0.3 mm thick infiltrated opal sample. The dispersion-like lineshape of MCD spectra corresponded to the A-type term. An average refraction index and refraction index contrast of composite system was controlled by immersion of infiltrated opal samples into various liquids. As a result, the spectral position of the stop band in opal photonic crystal was tuned with respect to FeTPPS absorption bands. When the Q band of FeTPPS was within the stop band of opal, the optical contrast of photonic crystal was changed by external magnetic field due to the MCD effect.
Keywords: photonic band gap materials, infiltrated opal, magnetooptical effects
PACS: 42.70.Qs, 78.20.Ls
*Results presented at the international conference Radiation Interaction with Material and Its Use in Technologies 2008, 2427 September 2008, Kaunas, Lithuania

GELEŽIES PORFIRINU INFILTRUOTŲ OPALO KRISTALŲ MAGNETINIS APSKRITIMINIS DICHROIZMAS
Alfonsas Rėzaa,b, Irena Šimkienėa, Gintautas Jurgis Babonasa, Rimantas Vaišnorasb, Dmitry Kurdyukovc, Valery Golubevc
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bVilniaus pedagoginis universitetas, Vilnius, Lietuva
cJofės fizikos ir technikos institutas, Rusijos mokslų akademija, Sankt Peterburgas, Rusija

Tirti sintetiniai opalo kristalai, sudaryti iš ~250 nm diametro silicio oksido sferų ir infiltruoti didelės koncentracijos (10 mM) geležies porfirino (FeTPPS) buferiniu fosfatiniu tirpalu. Magnetinis apskritiminis dichroizmas (magnetic circular dichroism, MCD) buvo matuojamas regimajame spektro ruože, įmerkus hibridinius bandinius magnetiniame lauke į polinį (etanolio) ar nepolinį (heksano, tolueno) tirpalus. MCD efektas stebėtas 550–650 nm spektro ruože FeTPPS Q sugerties juostų srityje. Infiltruotų 0,3 mm storio opalo bandinių Q0 juostoje santykinis optinio pralaidumo pokytis 350 mT magnetiniame lauke buvo 2,4\cdot104. Dispersijos tipo MCD spektro linijos forma atitiko magnetooptinį A tipo narį. Kompozicinės sistemos vidutinis lūžio rodiklis ir lūžio rodiklio kontrastas buvo valdomi, įmerkiant infiltruoto opalo bandinius į įvairius skysčius. Dėl šios priežasties fotoninio kristalo stop juostos spektrinė padėtis buvo keičiama FeTPPS sugerties juostų atžvilgiu. Kai FeTPPS Q juosta sutapdavo su opalo stop juosta, fotoninio kristalo optinis kontrastas dėl MCD efekto buvo keičiamas išoriniu magnetiniu lauku.


References / Nuorodos


[1] S.G. Johnson and J.D. Joannopoulos, Photonic Crystals: The Road from Theory to Practice (Springer, 2003),
http://www.springer.com/gp/book/9780792376095
[2] M.I. Samoilovich, S.M. Samoilovich, A.V. Guryanov, and M.Yu. Tsvetkov, Artificial opal structures for 3D-optoelectronics, Microelectron. Eng. 69, 237–247 (2003),
http://dx.doi.org/10.1016/S0167-9317(03)00303-4
[3] J. Sabataityte, I. Simkiene, G.-J. Babonas, A. Reza, M. Baran, R. Szymczak, R. Vaisnoras, L. Rasteniene, V. Golubev, and D. Kurdyukov, Physical studies of porphyrin-infiltrated opal crystals, Mater. Sci. Eng. C 27, 985–989 (2007),
http://dx.doi.org/10.1016/j.msec.2006.09.048
[4] Z.-Z. Gu, S. Hayami, Q.-B. Meng, T. Iyoda, A. Fujishima, and O. Sato, Control of photonic band structure by molecular aggregates, J. Am. Chem. Soc. 122, 10730–10731 (2000),
http://dx.doi.org/10.1021/ja001868s
[5] J. Li,W. Huang, and Y. Han, Tunable photonic crystals by mixed liquids, Coll. Surf. A 279, 213–217 (2006),
http://dx.doi.org/10.1016/j.colsurfa.2006.01.006
[6] J. Sabataityte, I. Simkiene, A. Reza, G.-J. Babonas, R. Vaisnoras, L. Rasteniene, D. Kurdyukov, and V. Golubev, Studies of opal crystals infiltrated with iron porphyrin, Superlattices Microst. 44, 664–669 (2008),
http://dx.doi.org/10.1016/j.spmi.2008.01.017
[7] M. Inoue, R. Fujikawa, A. Baryshev, A. Khanikaev, P.B. Lim, H. Uchida, O. Aktsipetrov, A. Fedyanin, T. Murzina, and A. Granovsky, Magnetophotonic crystals, J. Phys. D 39, R151–R161 (2006),
http://dx.doi.org/10.1088/0022-3727/39/8/R01
[8] M. Inoue, K. Arai, T. Fuji, and M. Abe, One-dimensional magnetophotonic crystals, J. Appl. Phys. 85, 5768–5770 (1999),
http://dx.doi.org/10.1063/1.370120
[9] I.L. Lyubchanski, N.N. Dadoenkova, M.I. Lyubchanski, E.A. Shapovalov, and Th. Rasing, Magnetic photonic crystals, J. Phys. D 36, R277–R287 (2003),
http://dx.doi.org/10.1088/0022-3727/36/18/R01
[10] A. Gupta, A.Yu. Ganin, P. Sharma, V. Agnihotri, L.M. Belova, K.V. Rao, M.E. Kozlov, A.A. Zakhidov, and R.H. Baughman, Synthetic magnetic opals, Pramana 58, 1051–1059 (2002),
http://dx.doi.org/10.1007/s12043-002-0216-z
[11] P.N. Bartlett, M.A. Ghanem, I.S. El Hallag, P. de Groot, and A. Zhukov, Electrochemical deposition of macroporous magnetic networks using colloidal templates, J. Mater. Chem. 13, 2596–2602 (2003),
http://dx.doi.org/10.1039/b304496c
[12] A.V. Baryshev, T. Kodama, K. Nishimura, H. Uchida, and M. Inoue, Three-dimensional magnetophotonic crystals based on artificial opals, J. Appl. Phys. 95, 7336–7338 (2004),
http://dx.doi.org/10.1063/1.1676036
[13] H. Uchida, R. Fujikawa, T. Kodama, A.V. Baryshev, K. Nishimura, and M. Inoue, Fabrication of 3D-magnetophotonic crystal with artificial opal template prepared by gravitational sedimentation, IEEE Trans. Magn. 41, 3526–3528 (2005),
http://dx.doi.org/10.1109/TMAG.2005.854962
[14] J. Sabataityte, I. Simkiene, G.-J. Babonas, A. Reza, A. Suchodolskis, M. Baran, R. Szymczak, R. Vaisnoras, L. Rasteniene, V. Golubev, and D. Kurdyukov, Modification of photonic properties in porphyrinin filtrated opal crystals, Photonics Nanost. Fund. Appl. 5, 125–128 (2007),
http://dx.doi.org/10.1016/j.photonics.2007.07.006
[15] R. Tamaševičius, I. Šimkienė, A. Rėza, I. Blažys, and G.J. Babonas, Magnetic circular dichroism of iron porphyrin, Proc. SPIE 6596, 65961E (2007),
http://dx.doi.org/10.1117/12.726514
[16] P.J. Stephens, W. Suetaak, and P.N. Schatz, Magnetooptical rotatory dispersion of porphyrins and phtalocyanines, J. Chem. Phys. 44, 4592–4602 (1966),
http://dx.doi.org/10.1063/1.1726677