[PDF]    http://dx.doi.org/10.3952/lithjphys.48405

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 48, 341–348 (2008)

V. Bondarenkaa, S. Kačiulisb, Z. Martūnasa, A. Rėzaa, G.J. Babonasa, and A. Pašiškevičiusa
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: bond@pfi.lt
bInstitute for the Study of Nanostructured Materials (ISMN-CNR), P.O.Box 10, I-00016 Monterotondo Scalo, Italy

Received 9 May 2008; revised 4 December 2008; accepted 4 December 2008

Vanadium pentoxide xerogels were prepared by using sol–gel technology. As-prepared samples of xerogels were heated up to 580 K in order to remove the bonded water. The chemical composition of xerogel samples and thin films has been studied by X-ray photoelectron spectroscopy (XPS). XPS data have shown that pure V2O5 compound was formed. After thermal treatment, in the XPS spectra the main changes occurred in the vicinity of the O 1s peak due to the removal of water from xerogel. The optical properties of V2O5 films were studied by optical transmission and spectroscopic ellipsometry. Ellipsometric measurements have been carried out in the spectral range of 0.5–5.0 eV at 300 K. The changes in the optical spectra were observed after thermal annealing of as-prepared xerogel samples. The obtained data have shown that thermal treatment of V2O5 thin films has strongly influenced the optical transitions involving both localized and higher-lying conduction bands.
Keywords: vanadium pentoxide films, sol–gel technology, optical properties, XPS
PACS: 79.60.-i, 81.20.Fw, 81.40.Tv, 82.70.Gg

V. Bondarenkaa, S. Kačiulisb, Z. Martūnasa, A. Rėzaa, G.J. Babonasa, A. Pašiškevičiusa
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bNanosandaros medžiagų tyrimo institutas, Monterotondo Scalo, Italija

Vanadžio pentoksido kserogeliai paruošti naudojant zolio–gelio technologiją. Gauti kserogeliai buvo kaitinami iki 580 K, siekiant pašalinti iš jų surištą vandenį. Kserogelių ir plonųjų sluoksnių cheminė sudėtis tirta naudojant Rentgeno fotoelektronų spektroskopijos (RFS) metodą. RFS tyrimo rezultatai parodė, kad technologinio proceso metu tikrai susiformavo vanadžio pentoksido plonieji sluoksniai. Pagrindiniai RFS spektrų pokyčiai, po terminio apdorojimo pašalinant vandenį iš kserogelio, vyko O 1s smailėje. V2O5 plonųjų sluoksnių optinės savybės buvo tirtos optinės absorbcijos ir spektroskopinės elipsometrijos metodais. Elipsometriniai matavimai atlikti 0,5–5,0 eV fotonų energijos ruože esant 300 K temperatūrai. Pastebėti ir išanalizuoti optinių spektrų pokyčiai po kserogelio bandinių atkaitinimo. Gauti duomenys parodė, kad V2O5 sluoksnių terminis apdorojimas stipriai veikia optinius šuolius tarp lokalizuotų lygmenų ir aukščiau esančių laidumo juostų.

References / Nuorodos

[1] S. Velusamy and T. Punniyamurthy, Novel vanadium-catalyzed oxidation of alcohols to aldehydes and ketones under atmospheric oxygen, Org. Lett. 6, 217–219 (2004),
[2] W. Zhang and H. Yamamoto, Vanadium-catalyzed asymmetric epocidation of homoallylic alcohols, J. Am. Chem. Soc. 129, 286–287 (2007),
[3] Z. Liu, G. Fang, Y.Wang, Y. Bai, and K.-L. Yao, Laser-induced colouration of V2O5, J. Phys. D 33, 2327–2332 (2000),
[4] A.L. Pergament, E.L. Kazakova, and G.B. Stefanovich, Optical and electrical properties of vanadium pentoxide xerogel films: Modification in electric field and the role of ion transport, J. Phys. D 35, 2187–2197 (2002),
[5] M. Benmoussa, E. Ibnouelghazi, A. Bennouna, and E.L. Ameziane, Structural, electrical and optical properties of sputtered vanadium pentoxide thin films, Thin Solid Films 265, 22–28 (1995),
[6] M.G. Krishna and A.K. Bhattacharya, Optical and structural properties of bias sputtered vanadium pentoxide thin films, Vacuum 48, 879–882 (1997),
[7] M.G. Krishna, Y. Debauge, and A.K. Bhattacharya, X-ray photoelectron spectroscopy and spectral transmittance study of stoichiometry in sputtered vanadium oxide films, Thin Solid Films 312, 116–122 (1998),
[8] L.A. Ryabova, I.A. Serbinov, and A.S. Darevsky, Preparation and properties of pyrolysis of vanadium oxide films, J. Electrochem. Soc. 119, 427–429 (1972),
[9] J. Livage, Synthesis of polyoxovanadates via "chimie douce", Coord. Chem. Rev. 178–180, 999–1018 (1998),
[10] Y. Dachuan, X. Niakan, Z. Jingyu, and Z. Xiulin, High quality vanadium dioxide films prepared by an inorganic sol–gel method, Mater. Res. Bull. 31, 335–340 (1996),
[11] Z.S. El Mandouh and M.S. Selim, Physical properties of vanadium pentoxide sol gel films, Thin Solid Films 371, 259–263 (2000),
[12] J.-J. Legendre and J. Livage, Vanadium pentoxide gels: I. Structural study by electron diffraction, J. Colloid Interf. Sci. 94, 75–83 (1983),
[13] J.-J. Legendre, P. Aldebert, N. Baf er, and J. Livage, Vanadium pentoxide gels: II. Structural study by X-ray diffraction, J. Colloid Interf. Sci. 94, 84–89 (1983),
[14] J. Livage, O. Pelletier, and P. Davidson, Vanadium pentoxide sol and gel mesophases, J. Sol-Gel Sci. Technol. 19, 275–278 (2000),
[15] M. Lasurdo, G. Bruno, D. Barreca, and E. Tondello, Dielectric function of V2O5 nanocrystalline films by spectroscopic ellipsometry: Characterization of microstructure, Appl. Phys. Lett. 77, 1129–1131 (2000),
[16] J. Bullot, P. Cordier, O. Gallais, M. Gauthier, and F. Babonneau, Thin layers deposited from V2O55 gels II. An optical absorption study, J. Non-Cryst. Solids 68, 135–146 (1984),
[17] N.T.B. Bay, P.M. Tien, S. Badilescu, Y. Djaoued, G. Bader, F.E. Girouard, and V.-V. Truong, ATR/FT-IR study of vanadium pentoxide gel films on semiconductor substrates, Appl. Spectrosc. 49, 1279–1281 (1995),
[18] E. Müller, Herstellung kolloider Vanadinsäure nach einer neuen Dispersionsmethode, Z. Chem. Ind. Kolloide 8, 302–303 (1911) [Colloid Polymer Sci., in German],
[19] V.L. Volkov, G.S. Zakharova, and V.M. Bondarenka, Simple and Complicated Xerogels of Polyvanadates (Ural Branch of Russian Academy of Sciences, Ekaterinburg, 2001) [in Russian]
[20] M. Benmoussa, A. Outzourhit, A. Bennouna, and E.L. Ameziane, Optical constants and electrochromic properties of sol–gel V2O5 thin films, J. Phys. IV 123, 41–45 (2005),
[21] J. Livage, G. Guzman, F. Beteille, and P. Davidson, Optical properties of sol-gel derived vanadium oxide films, J. Sol-Gel Sci. Technol. 8, 857–865 (1997),
[22] V. Vaičikauskas, G.-J. Babonas, Z. Kuprionis, G. Niaura, and V. Šablinskas, Paviršiaus optinė spektroskopija (TEV, Vilnius, 2008) [Optical Spectroscopy of Surface, in Lithuanian]
[23] G.J. Babonas, A. Niilisk, A. Reza, A. Matulis, and A. Rosental, Spectroscopic ellipsometry of TiO2/Si, Proc. SPIE 5122, 50–55 (2003),
[24] D.E. Aspnes, Approximate solution of ellipsometric equations for optically biaxial crystals, J. Opt. Soc. Am. 70, 1275–1277 (1980),
[25] R.M.A. Azzam and N.M. Bashara, Ellipsometry and Polarized Light (North-Holland, Amsterdam, 1977),
[26] G.J. Babonas, A. Reza, I. Simkiene, J. Sabataityte, M. Baran, R. Szymczak, U.O. Karlsson, and A. Suchodolskis, Optical properties of Fe-doped silica films on Si, Appl. Surf. Sci. 22, 5391–5394 (2006),
[27] J.F. Moulder, W.F. Stiskle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Eden Prairie, USA, 1995),
[28] G. Hopfengartner, D. Borgman, I. Rademacher, G. Wedler, E. Hums, and G.W. Spitznagell, XPS studies of oxidic model catalysts: Internal standards and oxidation numbers, J. Electron Spectrosc. Related Phenom. 63, 91–116 (1993),
[29] M. Demeter, M. Neumann, and W. Reichelt, Mixed-valence vanadium oxidies studied by XPS, Surf. Sci. 454-456, 41–44 (2000),
[30] V.I. Nefedov, D. Gati, B.E. Dzhurinskii, N.P. Sergushin, and Ya.V. Salyn, Simple and coordination compounds. An X-ray photoelectron spectroscopic study of certain oxides, Russian J. Inorg. Chem. 20, 2307–2314 (1975),
[31] A.M. Beccaria, G. Poggi, and G. Castello, Influence of passive film composition and sea water pressure on resistance to localised corrosion of some stainless steels in sea water, British Corrosion J. 30, 283–287 (1995),
[32] V.G. Mokerov, V.L. Makarov, V.B. Tulvinskii, and A.R. Begishev, Opticheskie svoistva pyatiokisi vanadiya v intervale energii fotonov ot 2 do 14 eV, Opt. Spektrosk. [Opt. Spectrosc. (USSR)] 40, 104–110 (1976) [Optical properties of vanadium pentoxide in the 2–14 eV photon energy interval, in Russian]
[33] J.C. Parker, D.J. Lam, Y.-N. Xu, andW.Y. Ching, Optical properties of vanadium pentoxide determined from ellipsometry and band-structure calculations, Phys. Rev. B 42, 5289–5293 (1990),
[34] E.E. Chain, Optical properties of vanadium dioxide and vanadium pentoxide thin films, Appl. Opt. 30, 2782–2787 (1991),
[35] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995),
[36] H.G. Bachmann, F.R. Achmed, and W.H. Barnes, The crystal structure of vanadium pentoxide, Z. Kristallogr. 115, 110–131 (1961),