[PDF]    http://dx.doi.org/10.3952/lithjphys.49113

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 111–115 (2009)


ETCHED TRACK MORPHOLOGY IN SiO2 IRRADIATED WITH SWIFT HEAVY IONS
F.F. Komarova, L.A. Vlasukovaa, P.V. Kuchinskyia, A.Yu. Didykb, V.A. Skuratovb, and N.A. Voronovac
aBelarusian State University, Nezavisimosti Ave. 4, 220030 Minsk, Belarus
E-mail: vlasukova@bsu.by
bLaboratory of Nuclear Reactions, Joint Institute for Nuclear Research, 141980 Dubna, Russia
cAl-Farabi Kazakh National University, Almaty, Kazakhstan

Received 10 October 2008; accepted 19 March 2009

We examined pore formation in thermally oxidized silicon wafers (SiO2 / Si) by means of swift heavy ion irradiation followed by chemical etching of latent track zones in SiO2 matrix. The samples were irradiated with 710 MeV Bi up to the fluences of (1–5)\cdot108 and 5\cdot1010 cm–2. Afterwards the targets were etched in the dilute solutions of hydrofluoric acid for various durations. Scanning electron microscopy was used to probe the processed samples. From the geometric parameters of the pores the etch rate Vt of the tracks and the etch rate Vb of bulk a-SiO2 were estimated. The etching behaviour and morphology of the etched tracks has been found to change markedly with fluence. Mutual influence of tracks at their higher densities was analysed in terms of radiation-induced modications of material around the ion path. It was shown that the morphology of etched tracks did not change after the annealing at 900 \circC for 30 min.
Keywords: swift ion irradiation, silicon dioxide, latent track etching, SEM
PACS: 61.46.-w, 61.82.Ms, 68.37.-d


ĖSDINTŲ GRIOVELIŲ MORFOLOGIJA GREITAIS SUNKIAISIAIS JONAIS ŠVITINTAME SiO2
F.F. Komarova, L.A. Vlasukovaa, P.V. Kuchinskyia, A.Yu. Didykb, V.A. Skuratovb, N.A. Voronovac
aBaltarusijos valstybinis universitetas, Minskas, Baltarusija
bJungtinio branduoliniu tyrimu instituto Branduoliniu reakciju laboratorija, Dubna, Rusija
cAl-Farabi Kazachijos nacionalinis universitetas, Almaty, Kazachija

Tirtas pórų radimasis termiškai oksiduotuose silicio bandiniuose, juos apšvitinus greitais sunkiaisiais jonais ir po to chemiškai ėsdinant liekamųjų trekų sritis SiO2 matricoje. Pavyzdėliai švitinti 710 MeV Bi (1–5)\cdot108 ir 5\cdot1010 cm–2 srautais. Vėliau jie ėsdinti skiestu vandenilio fluorido tirpalu įvairų laiką. Apdoroti bandiniai tirti skenuojančiu elektroniniu mikroskopu. Pagal geometrinius pórų parametrus įvertinta trekų ėsdinimo sparta Vt bei ištisinio a-SiO2 ėsdinimo sparta Vb. Nustatyta, kad ėsdinimas ir griovelių morfologija labai priklauso nuo švitinimo srauto. Analizuota trekų, kai jie tankūs, savitarpio įtakos priklausomybė nuo apšvitos indukuotų medžiagos pokyčių aplink jonų takus. Parodyta, kad ėsdintų trekų morfologija nepasikeičia po 30 min trunkančio atkaitinimo 900 \circC temperatūroje. 


References / Nuorodos


[1] S.A. Durrani and R.K. Bull, Solid State Nuclear Track Detection: Principles, Methods and Applications (Pergamon Press, New York, 1987),
http://www.amazon.co.uk/Solid-State-Nuclear-Track-Detection/dp/0080206050/
[2] R. Spohr, Ion Tracks and Microtechnology: Principles and Applications (Vieweg Verlag, Wiesbaden, Germany, 1990),
http://dx.doi.org/10.1007/978-3-322-83103-3
[3] M. Toulemonde, C. Dufour, A. Meftah, and E. Paumier, Nucl. Instrum. Methods B 166–167, 903 (2000),
http://dx.doi.org/10.1016/S0168-583X(99)00799-5
[4] G. Szenes, Phys. Rev. B 51, 8026 (1995),
http://dx.doi.org/10.1103/PhysRevB.51.8026
[5] M. Toulemonde, C. Trautmann, E. Balanzat, K. Hjort, and A. Weidinger, Nucl. Instrum. Methods B 216, 1 (2004),
http://dx.doi.org/10.1016/j.nimb.2003.11.013
[6] J.-H. Zollondz and A.Weidinger, Nucl. Instrum. Methods B 225, 178 (2004),
http://dx.doi.org/10.1016/j.nimb.2004.03.011
[7] J. Chen and R. Könenkamp, Appl. Phys. Lett. 83, 4782 (2003),
http://dx.doi.org/10.1063/1.1587258
[8] M. Sima, I. Enculesku, C. Trautmann, and R. Neumann, J. Optoelectron. Adv. Mater. 6(1), 121 (2004),
http://joam.inoe.ro/arhiva/pdf6_1/Sima.pdf
[9] A. Sigrist and R. Balzer, Helv. Phys. Acta 50, 49 (1977),
http://retro.seals.ch/digbib/view2?pid=hpa-001:1977:50::55
[10] J.F. Ziegler, J.P. Biersack, and U. Littmark, The Stopping and Range of Ions in Solids (Pergamon Press, New York, 1985),
http://www.amazon.co.uk/Stopping-Range-Ions-Solids-Matter/dp/008021603X/
[11] C. Milanez Silva, P. Varisco, A. Moehlecke, P.P. Fichtner, R.M. Papaleo, and J. Eriksson, Nucl. Instrum. Methods B 206, 486 (2003),
http://dx.doi.org/10.1016/S0168-583X(03)00803-6
[12] B. Canut, M.G. Blanchin, S. Ramos-Canut, V. Teodoresku, and M. Toulemonde, Nucl. Instrum. Methods B 245, 327 (2006),
http://dx.doi.org/10.1016/j.nimb.2005.11.123
[13] P.Yu. Apel, A.P. Akimenko, I.V. Blonskaya, O.L. Orelovitch, R. Spohr, and C. Trautmann, in: Abstracts of the Sixth International Symposium on Swift Heavy Ions in Matter (SHIM'2005), Aschaffenburg, Germany, 28–31 May 2005, p. B-130,
https://www-alt.gsi.de/conferences/SHIM2005S/proceedings.pdf
[14] P.Yu. Apel, A.P. Akimenko, I.V. Blonskaya, T. Cornelius, R. Neumann, K. Schwartz, R. Spohr, and C. Trautmann, Nucl. Instrum. Methods B 245, 284 (2006),
http://dx.doi.org/10.1016/j.nimb.2005.11.164
[15] C. Trautmann, K. Schwartz, and T. Steckenreiter, Nucl. Instrum. Methods B 156, 162 (1999),
http://dx.doi.org/10.1016/S0168-583X(99)00247-5
[16] A. Hida, A. Iwase, Y. Mera, T. Kambara, and K. Maeda, Nucl. Instrum. Methods B 209, 140 (2003),
http://dx.doi.org/10.1016/S0168-583X(02)01999-7