[PDF]    http://dx.doi.org/10.3952/lithjphys.49115

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 69–74 (2009)


EFFECT OF LONG-TERM AGING ON SERIES RESISTANCE AND JUNCTION CONDUCTIVITY OF HIGH-POWER InGaN LIGHT-EMITTING DIODES
Z. Vaitonis, A. Miasojedovas, A. Novičkovas, S. Sakalauskas, and A. Žukauskas
Institute of Materials Science and Applied Research, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: zenonas.vaitonis@ff.vu.lt

Received 12 December 2008; revised 13 March 2009; accepted 19 March 2009

The forward voltage, series resistance, and junction conductivity of commercial high-power InGaN light-emitting diodes (LEDs) were investigated as a function of aging time. A gradual decrease of series resistance with a rate of about –1%/1000 h was revealed in InGaN LEDs within first \sim9,600 hours of aging under ordinary conditions (nominal forward current 350 mA, junction temperature 350 K), whereas the characteristic energy of tunnel injection exhibited a decrease with a rate of about –0.1%/1000 h. The observed aging effects were attributed to continuous post-fabrication self-annealing of the p-type cladding layer and to the variation of the localized-state density in the active layer of the LED chips.
Keywords: aging, high-power LED, series resistance, junction conductivity
PACS: 81.40.Cd, 85.60.Bt, 85.60.Jb, 84.37.+q, 73.40.Kp


SENĖJIMO ĮTAKA DIDELĖS GALIOS \hbox{InGaN} ŠVIESOS DIODŲ NUOSEKLIAJAI VARŽAI IR SANDŪROS LAIDUMUI
Z. Vaitonis, A. Miasojedovas, A. Novičkovas, S. Sakalauskas, A. Žukauskas
Vilniaus universiteto Medžiagotyros ir taikomųjų mokslų institutas

Tirti didelės galios šviesos diodų tiesioginės įtampos, nuosekliosios varžos bei sandūros laidumo pokyčiai vykstant senėjimo procesui. Po $\sim$9600 valandų sendinimo normaliomis darbo sąlygomis (tiesioginė srovė 350 mA, sandūros temperatūra apie 350 K), nustatytas dėsningas, –1 % / 1000 val., nuosekliosios varžos mažėjimas ir –0.1 % / 1000 val. tunelinės injekcijos į aktyviąją sritį charakteringos energijos mažėjimas. Pastebėti kitimai gali būti susiję su savaiminiu diodo p sluoksnio atkaitinimu ir lokalizuotųjų būsenų tankio kitimu aktyviojoje srityje.


References / Nuorodos


[1] M.S. Shur and A. Žukauskas, Solid-state lighting: Toward superior illumination, Proc. IEEE 93(10), 1691–1703 (2005),
http://dx.doi.org/10.1109/JPROC.2005.853537
[2] T. Egawa, H. Ishikawa, T. Jimbo, and M. Umeno, Optical degradation of InGaN / AlGaN light-emitting diode on sapphire substrate grown by metalorganic chemical vapor deposition, Appl. Phys. Lett. 69(6), 830833 (1996),
http://dx.doi.org/10.1063/1.117906
[3] T. Yanagisawa, Estimation of the degradation of InGaN / AlGaN blue light-emitting diodes, Microelectron. Reliab. 37(8), 12391241 (1997),
http://dx.doi.org/10.1016/S0026-2714(96)00288-0
[4] N. Narendran, Y. Gu, J.P. Freyssinier, H. Yu, and L. Deng, Solid-state lighting: Failure analysis of white LEDs, J. Cryst. Growth 268(34), 449456 (2004),
http://dx.doi.org/10.1016/j.jcrysgro.2004.04.071
[5] Z. Gong, M. Gaevski, V. Adivarahan, W. Sun, M. Shatalov, and M. Asif Khan, Optical power degradation mechanisms in AlGaN-based 280 nm deep ultraviolet light-emitting diodes on sapphire, Appl. Phys. Lett. 88(12), 121106-13 (2006),
http://dx.doi.org/10.1063/1.2187429
[6] T. Egawa, T. Jimbo, and M. Umeno, Characteristics of InGaN / AlGaN light-emitting diodes on sapphire substrates, J. Appl. Phys. 82(11), 58165821 (1997),
http://dx.doi.org/10.1063/1.366450
[7] M. Osiński, D.L. Barton, P. Perlin, and J. Lee, Effects of high electrical stress on GaN / InGaN / AlGaN single-quantum-well light-emitting diodes, J. Cryst. Growth 189190, 808811 (1998),
http://dx.doi.org/10.1016/S0022-0248(98)00299-1
[8] O. Pursiainen, N. Linder, A. Jaeger, R. Oberschmid, and K. Streubel, Identification of aging mechanisms in the optical and electrical characteristics of light-emitting diodes, Appl. Phys. Lett. 79(18), 28952897 (2001),
http://dx.doi.org/10.1063/1.1413721
[9] T. Yanagisawa and T. Kojima, Degradation of InGaN blue light-emitting diodes under continuous and low-speed operations, Microelectron. Reliab. 43(6), 977980 (2003),
http://dx.doi.org/10.1016/S0026-2714(03)00093-3
[10] M. Meneghini, S. Podda, A. Morelli, R. Pintus, L. Trevisanello, G. Meneghesso, M. Vanzi, and E. Zanoni, High brightness GaN LEDs degradation during dc and pulsed stress, Microelectron. Reliab. 46(911), 17201724 (2006),
http://dx.doi.org/10.1016/j.microrel.2006.07.050
[11] M. Osiński, J. Zeller, P.-C. Chiu, B.S. Phillips, and D.L. Barton, AlGaN / InGaN / GaN blue light emitting diode degradation under pulsed current stress, Appl. Phys. Lett. 69(7), 898900 (1996),
http://dx.doi.org/10.1063/1.116936
[12] J.J. Wierer, D.A. Steigerwald, M.R. Krames, J.J. O'Shea, M.J. Ludowise, G. Christenson, Y.-C. Shen, C. Lowery, P.S. Martin, S. Subramanya, W. Götz, N.F. Gardner, R.S. Kern, and S.A. Stockman, High power AlGaInN flip-chip light-emitting diodes, Appl. Phys. Lett. 78(22), 33793381 (2001),
http://dx.doi.org/10.1063/1.1374499
[13] Technical Datasheet DS23,
http://www.lumileds.com/pdfs/ds23.pdf
[14] Z. Vaitonis, P. Vitta, and A. Žukauskas, Measurement of the junction temperature in high-power light-emitting diodes from high-energy wing of the electroluminescence band, J. Appl. Phys. 103(9), 093110-17 (2008),
http://dx.doi.org/10.1063/1.2908176
[15] LED Lifetime for General Lighting, ASSIST Recommends 1(1) (Lighting Research Center, 2005),
http://www.lrc.rpi.edu/
[16] Y. Xi, J.-Q. Xi, T. Gessmann, J.M. Shah, J.K. Kim, E.F. Schubert, A.J. Fischer, M.H. Crawford, K.H.A. Bogart, and A.A. Allerman, Junction and carrier temperature measurements in deep-ultraviolet light-emitting diodes using three different methods, Appl. Phys. Lett. 86(3), 031907-13 (2005),
http://dx.doi.org/10.1063/1.1849838
[17] H.C. Casey, Jr., J. Muth, S. Krishnankutty, and J.M. Zavada, Dominance of tunneling current and band filling in InGaN / AlGaN double heterostructure blue light-emitting diodes, Appl. Phys. Lett. 68(20), 28672869 (1996),
http://dx.doi.org/10.1063/1.116351
[18] P. Perlin, M. Osiński, P.G. Eliseev, V.A. Smagley, J. Mu, M. Banas, and P. Sartori, Low-temperature study of current and electroluminescence in InGaN / AlGaN / GaN double-heterostructure blue light-emitting diodes, Appl. Phys. Lett. 69(12), 16801682 (1996),
http://dx.doi.org/10.1063/1.117026
[19] A. Žukauskas, M.S. Shur, and R. Gaska, Introduction to Solid-State Lighting (Wiley, New York, 2002),
http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0471215740.html
[20] E.F. Schubert, Light-Emitting Diodes (Cambridge University Press, Cambridge, 2006),
http://dx.doi.org/10.1017/CBO9780511790546
[21] A.Y. Polyakov, N.B. Smirnov, A.V. Govorkov, J. Kim, B. Luo, R. Mehandru, F. Ren, K.P. Lee, S.J. Pearton, A.V. Osinsky, and P.E. Norris, Enhanced tunneling in GaN / InGaN multi-quantum-well heterojunction diodes after short-term injection annealing, J. Appl. Phys. 91(8), 52035207 (2002),
http://dx.doi.org/10.1063/1.1465119
[22] F. Manyakhin, A. Kovalev, and A.E. Yunovich, Aging mechanisms of InGaN / AlGaN / GaN light-emitting diodes operating at high currents, MRS Internet J. Nitride Semicond. Res. 3, e53 (1998),
http://dx.doi.org/10.1557/S1092578300001253
[23] M. Pavesi, M. Manfredi, G. Salviati, N. Armani, F. Rossi, G. Meneghesso, S. Levada, E. Zanoni, S.Du, and I. Eliashevich, Optical evidence of an electrothermal degradation of InGaN-based light-emitting diodes during electrical stress, Appl. Phys. Lett. 84(17), 34033405 (2004),
http://dx.doi.org/10.1063/1.1734682
[24] S. Nakamura, N. Iwasa, M. Senoh, and T. Mukai, Hole compensation mechanism of p-type GaN, Jpn. J. Appl. Phys. 31(5A), 12581266 (1992),
http://dx.doi.org/10.1143/JJAP.31.1258
[25] S.J. Pearton, J.W. Lee, and C. Yuan, Minority-carrier-enhanced reactivation of hydrogen-passivated Mg in GaN, Appl. Phys. Lett. 68(19), 26902692 (1996),
http://dx.doi.org/10.1063/1.116310
[26] M. Miyachi, T. Tanaka, Y. Kimura, and H. Ota, The activation of Mg in GaN by annealing with minority-carrier injection, Appl. Phys. Lett. 72(9), 11011103 (1998),
http://dx.doi.org/10.1063/1.120936