[PDF]    http://dx.doi.org/10.3952/lithjphys.49206

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 215–220 (2009)


CHEMICAL ETCHING OF ISOLATION GROOVES IN HIGH-POWER SILICON DEVICES
D. Šaluchaa,b and I. Šimkienėad
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: irena@pfi.lt
bJoint Stock Company “Vilniaus Ventos Puslaidininkiai”, Ateities 10, LT-08303 Vilnius, Lithuania

Received 2 February 2009; revised 29 April 2009; accepted 18 June 2009

The procedure of wet chemical etching, which plays an important role in the fabrication of high-power Si devices in standard commercial equipment, is discussed. The characteristics of isolation grooves in Si high-voltage thyristors and diodes have been investigated, with respect to etchants and wet etching conditions. It has been found that the standard deviation in the depth values of isolation grooves produced in the Si wafer of 125 mm in diameter is reduced to 0.85 μμm using a proposed modied technological procedure.
Keywords: wet chemical etching, silicon high-power devices
PACS: 61.82.Fk, 81.65.-b, 85.30.Rs


DIDELĖS GALIOS SILICIO PRIETAISŲ IZOLIAVIMO GRIOVELIŲ CHEMINIS ĖSDINIMAS
D. Šaluchaa,b, I. Šimkienėad
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bAkcinė bendrovė „Vilniaus Ventos puslaidininkiai “, Vilnius, Lietuva

Nagrinėjamas izoliacinio griovelio gylių verčių kitimo intervalo ir jų standartinio nuokrypio mažinimo metodas didelės galios silicio prietaisuose. Nustatyta, kad gilėjant izoliaciniams grioveliams kartu auga standartinis nuokrypis. Izoliacinio griovelio gylių verčių standartinis nuokrypis sumažintas nuo 1,74 iki 0,85 μμm, didinant ėsdinimo kasetės sukimosi greitį ėsdiklyje nuo 30 iki 52 aps/min. Nustatyta, kad kartu pakito ir ėsdinimo greitis nuo 13,6 iki 18,6 μμm/min. Ištirta ėsdinimo kasetės sukimosi greičio įtaka izoliacinio griovelio dugno formai ir morfologijai.


References / Nuorodos


[1] M. Steinert, J. Acker, M. Krause, S. Oswald, and K. Wetzig, Reactive species generated during wet chemical etching of silicon in HF/HNO3 mixtures, J. Phys. Chem. B 110, 11377–11382 (2006),
http://dx.doi.org/10.1021/jp0608168
[2] A. Henßge, J. Acker, and C. Müller, Titrimetric determination of silicon dissolved in concentrated HF–HNO3-etching solutions, Talanta 68, 581–585 (2006),
http://dx.doi.org/10.1016/j.talanta.2005.04.049
[3] J. Acker and A. Henßge, Chemical analysis of acidic silicon etch solutions: II. Determination of HNO3, HF, and H2SiF6 by ion chromatography, Talanta 72, 1540–1545 (2007),
http://dx.doi.org/10.1016/j.talanta.2007.02.005
[4] A. Oltersdorf, M. Zimmer, M. Seitz, and J. Rentsch, Analytical research of the acid etching bath by ion chromatography, in: Proceedings of the 23rd European Photovoltaic Solar Energy Conference and Exhibition, 1–5 September, Valencia, Spain (2008),
http://www.ise.fraunhofer.de/
[5] M. Steinert, J. Acker, A. Henßge, and K. Wetzig, Experimental studies on the mechanism of wet chemical etching of silicon in HF /HNO3 mixtures, J. Electrochem. Soc. 152, C843–C850 (2005),
http://dx.doi.org/10.1149/1.2116727
[6] J. Weber, S. Knack, O.V. Feklisova, N.A. Yarkin, and E.B. Yakimov, Hydrogen penetration into silicon during wet-chemical etching, Microelectron. Eng. 66, 320–326 (2003),
http://dx.doi.org/10.1016/S0167-9317(02)00926-7
[7] K. Yamamura and T. Mitani, Etching characteristics of local wet etching of silicon in HF/HNO3 mixtures, Surf. Interf. Anal. 40, 1011–1013 (2008),
http://dx.doi.org/10.1002/sia.2838
[8] M. Steinert, J. Acker, S. Oswald, and K. Wetzig, Study on mechanism of silicon etching in HNO3-rich HF /HNO3 mixtures, J. Phys. Chem. C 111, 2133–2140 (2007),
http://dx.doi.org/10.1021/jp066348j
[9] D. Šalucha, I. Šimkiene, and J. Sabaityte, Formation of nanostructured layers for passivation of high power silicon devices, Acta Phys. Pol. A 113, 1079–1083 (2008),
http://przyrbwn.icm.edu.pl/APP/ABSTR/113/a113-3-67.html
[10] M. Ramonda, Ph. Dumas, and F. Salvan, On the rougness of perfectly flat H–Si(111) surfaces an atomic force microscopy approach, Surf. Sci. 411, L839–L843 (1998),
http://dx.doi.org/10.1016/S0039-6028(98)00406-3
[11] V. Lehmann, The chemical dissolution of silicon, in: The Electrochemistry of Silicon: Instrumentation, Science, Materials and Applications (Wiley-VCH, Weinheim, Germany, 2002) p. 23,
http://dx.doi.org/10.1002/3527600272.ch2
[12] M.J. Madou, Fundamentals of Microfabrication, 2nd ed. (CRC Press, Boca Raton, FL, 2002) p. 209,
https://www.crcpress.com/From-MEMS-to-Bio-MEMS-and-Bio-NEMS-Manufacturing-Techniques-and-Applications/Madou/9781420055160
[13] E.S. Kooij, K. Butter, and J.J. Kelly, Silicon etching in HF/HNO3 solution: Charge balance for the oxidation reaction, Electrochem. Solid-State Lett. 2, 178–180 (1999),
http://dx.doi.org/10.1149/1.1390775