[PDF]    http://dx.doi.org/10.3952/lithjphys.49207

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 197–202 (2009)


XPS STUDY OF V1.67Ti0.33Oδ\cdotnH2O XEROGELS INTERCALATED WITH HYDROQUINONE
V. Bondarenkaa,b, H. Tvardauskasa, S. Grebinskija, M. Senulisa, A. Pašiškevičiusa, V. Volkovc, and G. Zakharovac
aSemiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: bond@pfi.lt
bVilnius Pedagogical University, Studentų 39, LT-08106, Vilnius, Lithuania
cInstitute of Solid State Chemistry, Pervomayskaya 91, 620219 Yekaterinburg, Russian Federation

Received 15 January 2009; revised 3 February 2009; accepted 18 June 2009

Layered nanocomposites of V1.67Ti0.33Oδ\cdotnH2O gels are synthesized by using sol-gel technology. Then an aqueous solution of hydroquinone (HQ) was mixed with the formed gel in molar ratio 0.33 : 1 and 0.17 : 1 respectively. In this way the V1.67Ti0.33Oδ\cdotnH2O/2HQ and V1.67Ti0.33Oδ\cdotnH2O/HQ gels were synthesized. The valences of vanadium and titanium ions in the investigated compounds are studied by means of X-ray photoelectron spectroscopy (XPS) before and after etching the samples with Ar+ ions for 15 min (3 keV, current density 10 μμAcm–2). XPS analysis results show that independent of the hydroquinone intercalation degree (one or two hydroquinone) and Ar+ ion etching the ions of titanium are in stable 4+ states. Vanadium ions in all cases (one or two hydroquinone, before and after etching) are in V3+, V4+, and V5+ states. The increase in quantity of hydroquinone in the samples leads to higher concentration of V3+ and V4+ ions. The concentrations of lower valence vanadium ions increase after Ar+ ion etching of the samples.
Keywords: vanadium hydrates, sol-gel technology, hydroquinone, XPS
PACS: 79.60.-i, 81.20.Fw, 82.70.Gg


V1,67Ti0,33Oδ\cdotnH2O KSEROGELIŲ, INTERKALIUOTŲ HIDROCHINONU, RENTGENO FOTOELEKTRONINIŲ SPEKTRŲ TYRIMAS
V. Bondarenkaa,b, H. Tvardauskasa, S. Grebinskija, M. Senulisa, A. Pašiškevičiusa, V. Volkovc, G. Zakharovac
aPuslaidininkių fizikos institutas, Vilnius, Lietuva
bVilniaus pedagoginis universitetas, Vilnius, Lietuva
cKietojo kūno chemijos institutas, Jekaterinburgas, Rusija

Pateikti V1,67Ti0,33Oδ\cdotnH2O/2HQ ir V1,67Ti0,33O4,85\cdotnH2O/HQ} (HQ – hidrochinonas) gelių, gautų naudojant zolio ir gelio technologiją, Rentgeno fotoelektronų spektrai. Tyrinėtuose junginiuose vanadžio ir titano jonų valentingumas analizuotas remiantis Rentgeno fotoelektronų spektroskopija (RFS) prieš ir po bandinių ėsdinimo Ar+ jonais, trukusį 15 min (3 keV, srovės tankis 10 μμAcm–2). RFS analizės rezultatai parodė, jog, nepriklausomai nuo hidrochinono interkaliavimo laipsnio (vienas ar du HQ) ir ėsdinimo Ar+ jonais, titano jonai yra stabiliose 4+ būsenose. Vanadžio jonai visais atvejais (vienas ar du HQ, prieš ir po ėsdinimo) yra V3+, V4+ ir V5+ būsenose. V3+ ir V4+ santykinė koncentracija didėja, didėjant HQ kiekiui geliuose bei po bandinių ėsdinimo Ar+ jonais.


References / Nuorodos


[1] J.-J. Legendre and J. Livage, Vanadium pentoxide gels: I. Structural study by electron diffraction, J. Colloid. Interf. Sci. 94(1), 75–83 (1983),
http://dx.doi.org/10.1016/0021-9797(83)90236-9
[2] J.-J. Legendre, P. Aldebert, N. Bafer, and J. Livage, Vanadium pentoxide gels: II. Structural study by X-ray diffraction, J. Colloid Interf. Sci. 94(1), 84–89 (1983),
http://dx.doi.org/10.1016/0021-9797(83)90237-0
[3] V. Volkov, G. Zakharova, and V. Bondarenka, Xerogels of Simple and Complex Polyvanadates (Nauka, Yekaterinburg, 2001) [in Russian]
[4] V. Bondarenka, A. Pašiškevičius, V.L. Volkov, and G.S. Zakharova, Synthesis and X-ray study of ammonium polyvanadomolybdate xerogels, Lithuanian J. Phys. 47(1), 59–62 (2007),
http://dx.doi.org/10.3952/lithjphys.47102
[5] F. Huguenin, E.M. Girotto, R.M. Torresi, and D.A. Buttry, Transport properties of V2O5 / polypyrrole nanocomposite prepared by a sol-gel alkoxide route, J. Electroanal. Chem. 536(1–2), 37–45 (2002),
http://dx.doi.org/10.1016/S0022-0728(02)01188-9
[6] T. Nakato, T. Ise, Y. Sugahara, K. Kuroda, and Ch. Kato, Preparation of intercalation compounds between V2O5 gel and bipyridyl metal complexes, Mater. Res. Bull. 26(4), 309–315 (1991),
http://dx.doi.org/10.1016/0025-5408(91)90026-I
[7] P. Aldebert, N. Bafer, N. Gharbi, and J. Livage, Intercalation de solvants organiques polaires dans la structure lamellaire des gels de V2O5, Mater. Res. Bull. 16(8), 949–955 (1981),
http://dx.doi.org/10.1016/0025-5408(81)90136-7
[8] V.L. Volkov, G.S. Zakharova, M.V. Kuznetsov, A. Jin, Q. Zhu, and W. Chen, Nanocomposites of V1,67Me0,33Oδ\cdotnH2O (Me = Mo or Ti) xerogels intercalated with hydroquinone and poly(vinyl alcohol), Russian J. Inorg. Chem. 51(9), 1339–1344 (2006) [in Russian],
http://dx.doi.org/10.1134/S0036023606090014
[9] J. Bullot, P. Cordier, O. Gallais, M. Gauthier, and J. Livage, Thin layers deposited from V2O5 gels: I. A conductivity study, J. Non-Cryst. Solids 68(1), 123–134 (1984),
http://dx.doi.org/10.1016/0022-3093(84)90039-5
[10] Practical Surface Analysis: Auger and X-Ray Photoelectron Spectroscopy, eds. D. Briggs and M.P. Seah (John Wiley & Sons Ltd., 1996),
http://www.amazon.co.uk/Practical-Surface-Analysis-Photoelectron-Spectroscopy/dp/0471920819/
[11] V. Bondarenka and A. Pašiškevičius, Electrical properties of hydrated vanadium compounds (Review), Lithuanian J. Phys. 46(3), 283–293 (2006),
http://dx.doi.org/10.3952/lithjphys.46312
[12] V.I. Nefedov, D. Gati, B.F. Dzhurinskii, N.P. Segushin, and Ya.A. Salyn, Simple and coordination compounds. An X-ray photoelectron spectroscopic study of certain oxides, Russian J. Inorg. Chem. 20, 2307–2314 (1975)
[13] J.F. Moulder, W.F. Stickle, P.E. Sobol, and K.D. Bomben, Handbook of X-ray Photoelectron Spectroscopy (Physical Electronics, Eden Praire, Minnesota, USA, 1995),
http://www.amazon.co.uk/Handbook-X-Ray-Photoelectron-Spectroscopy/dp/999130097X/
[14] V. Bondarenka, H. Tvardauskas, S. Grebinskij, S. Mickevičius, Z. Martūnas, V. Volkov, and G. Zakharova, Ion beam induced preferential removal of oxygen from vanadium hydrates, Nucl. Instrum. Methods B, 178(3), 323–326 (2001),
http://dx.doi.org/10.1016/S0168-583X(00)00495-X
[15] V. Bondarenka, S. Grebinskij, S. Mickevičius, S. Kačiulis, L. Pandolfi, V. Volkov, and G. Zakharova, X-ray photoelectron spectra of vanadium-titanium hydrated compounds, Lithuanian J. Phys. 43(4), 309–313 (2003)
[16] G. Hopfengärtner, D. Borgmann, I. Rademacher, G. Wedler, E. Hums, and G.W. Spitznagel, XPS studies of oxidic model catalysts: Internal standards and oxidation numbers, J. Electron Spectrosc. Related Phenom. 63(2), 91–116 (1993),
http://dx.doi.org/10.1016/0368-2048(93)80042-K
[17] V. Bondarenka, S. Grebinskij, S. Mickevičius, H. Tvardauskas, and S. Kačiulis, Determination of vanadium valence in hydrated compounds, J. Alloys Compounds 382(1), 239–243 (2004),
http://dx.doi.org/10.1016/j.jallcom.2004.06.005
[18] V. Bondarenka, S. Grebinskij, S. Mickevičius, H. Tvardauskas, S. Kačiulis, V. Volkov, G. Zakharova, and A. Pašiškevičius, Valence of vanadium in hydrated compounds, Lithuanian J. Phys. 47(3), 333–342 (2007),
http://dx.doi.org/10.3952/lithjphys.47309