
Lithuanian Journal of Physics, Vol. 49, No. 2, pp. 131–135 (2009) doi:10.3952/lithjphys.49213

STRUCTURE OF THE GROUND STATE OF SIX NUCLEON NUCLEI
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The optimal superposition of the harmonic oscillator shell model configurations for the six nucleon nuclei ground state
description is obtained. It has been shown that only one such superposition is possible. This result is in the complete accordance
with the experimental observations stating that in the six nucleon system there is only one bound state.
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1. Introduction

The nuclear shell model, years ago introduced as sig-
nificant simplification of the atomic nuclei description,
operates with some leading configuration, i. e. with a
defined set of one-nucleon states and a simple wave
function dependent on one-nucleon degrees of freedom.
This picture of independent nucleons moving in some
central field provides an easy way of the wave func-
tion antisymmetrization but currently can be consid-
ered only as some phenomenological tool for the heavy
nuclei description, where microscopic approach based
on the Schrödinger equation with some potential of the
nucleon–nucleon (NN) interaction cannot be applied.

For few-nucleon systems or even for the lightest
atomic nuclei this model gives unacceptable results.
Moreover, it cannot describe even the simplest atomic
nucleus – deuteron – due to the problems with transla-
tional invariance of the wave function and the nonzero
quadrupole moment of this nucleus, asking for the
D-state, i. e. the excited configuration, presence in the
wave function expansion.

So, for the microscopic description of atomic nu-
clei it is necessary to apply the variational methods like
Green function Monte-Carlo [1] or to take into account
the huge amount of the excited shell-model configura-
tions. In the last case the best for the wave function ex-
pansion is the basis of three-dimensional harmonic os-
cillator (HO) functions. This basis allows construction
of the translationally invariant wave function taking into
account the finite number of the basic states, produced
by all allowed configurations at the given number of

the HO quanta [2, 3]. Sometimes this particular way of
the lightest nuclei description is called the shell-model
approach (to be more precise, ‘no-core shell model’).
However, even in this approach, operating with a huge
amount of basic states, one again has to apply some phe-
nomenological structures, defined as the effective po-
tentials, due to extremely slow convergence of the ex-
pansions. The bare NN potentials require even more
basic states for a more or less acceptable solution of the
Schrödinger equation even for few-nucleon systems.

The goal of our paper is to find out how important for
the ground and excited states’ description is the starting
wave function, by taking into account the complete set
of the basic states of the minimal HO configuration for
the reasons mentioned above. Our approach is based on
the reduced Hamiltonian expansion for the energy of an
atomic nucleus employing the translationally invariant
wave function. This simple expression for the eigen-
value of a realistic nuclear Hamiltonian gives informa-
tion about the role of different two nucleon channels in
ensuring the stability of atomic nuclei.

Let us start our investigation with the nuclei consist-
ing of six nucleons, because they are the lightest sys-
tems having a few more or less stable low-lying states
with the well-defined quantum numbers [4] (Fig. 1).
In five nucleon system there are no bound states at
all. The nuclei consisting of a few nucleons (deuteron,
tritium, and alpha particle) have no low-lying excited
states. Therefore, the six nucleon systems are the best
for verifying any new ideas of the atomic nuclei descrip-
tion [5].
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Fig. 1. Energy levels of the six nucleon nuclei [4].

As mentioned earlier, the successful methods of mi-
croscopic description of the atomic nuclei operate with
large arrays of basic states. This requires a lot of matrix
elements for the Hamiltonian calculation. For the sim-
plification of this process the basic states are presented
in the simplest possible way. The main idea of our re-
port is the recipe for construction of the best starting
basic function of the minimal HO approximation that
possesses the necessary set of quantum numbers. Ap-
plying such a function one can be sure that the centre
of the mass of the nucleus is in the state with a minimal
number of the oscillator quanta and will not combine
(due to the translational invariance of the NN potential)
with the spurious states (corresponding to the excited
centre of mass) present in the set of the basic functions.
As a result, the expansion of the final wave function will
be free of admixture of such basic functions. Such a
function dependent on single-nucleon variables is very
simple in applications in comparison with a function
dependent on translationally invariant (Jacobian) vari-
ables, but at the same time it will give the same result
for the expectation values of any operator as the transla-
tionaly invariant one would. Moreover, the final func-
tion will have the same set of the exact quantum num-
bers as the starting one due to known symmetries of the
NN potential, so one will not need to worry about these
quantum numbers’ projection.

2. Calculations and results

The relation between the nuclear shell model poten-
tial and the NN interaction is very complicated; there-
fore while applying the shell model picture it is hard
to understand the dependence of the calculated nuclear
characteristics on the NN potential.

However, there exists a well-known expression for
the binding energies of the ground and excited states
of the atomic nucleus in terms of the nucleon–nucleon
potential characteristics, given by the corresponding re-
duced Hamiltonian (RH) operator [6]. This expression
is

EJΠT =
∑
njπt

εnjπtωnjπt(J
ΠT ) , (1)

where the set of quantum numbers JΠT defines the nu-
clear state under investigation, εnjπt is the nth eigen-
value of the RH operator in the two nucleon channel
jπt, and ωnjπt(J

ΠT ) is the diagonal element of the in-
trinsic density matrix, defining the probability of the
given state (njπt) of the RH operator in the wave func-
tion expansion.

Let us study the diagonal elements of the intrin-
sic density matrix of six nucleon system [7], given in
Table 1. The configuration for this nucleus, recom-
mended by the shell model, is (001

2)
4(113

2)
2. This con-

figuration creates four states of the six nucleon sys-
tem: JΠT = 1+0, 3+0, 0+1, 2+1. All these states
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Table 1. Diagonal elements of density matrix of the six nucleon nuclei [7].

JΠT 1+0 3+0 0+1 2+0 2+1 1+1

Configuration (3
2
)2 (3

2
)(1

2
) (1

2
)2 (3

2
)2 (3

2
)2 (1

2
)2 (3

2
)(1

2
) (3

2
)(1

2
) (3

2
)2 (3

2
)(1

2
)

RH state
3S1 17/54 44/135 44/135 1/3 3/10 3/10 1/3 3/10 3/10 3/10
3S′

1 1/81 8/405 1/810 0 0 0 0 0 0 0
1S0 3/10 3/10 3/10 3/10 29/90 14/45 3/10 29/90 14/45 3/10
1S′

0 0 0 0 0 1/45 1/90 0 0 0 0
1P1 19/270 13/270 13/270 1/30 1/30 1/30 1/30 1/30 1/30 1/30
3P0 0 1/20 1/10 0 0 1/10 1/20 1/20 0 13/180
3P1 1/20 1/8 1/5 1/20 13/180 11/45 1/8 47/360 11/180 17/120
3P2 1/4 1/8 0 1/4 1/4 0 1/8 17/120 17/60 11/72
1D2 0 0 0 0 0 0 0 1/45 1/90 0
3D1 1/405 1/162 2/81 0 0 0 0 0 0 0
3D2 0 0 0 0 0 0 1/30 0 0 0
3D3 0 0 0 1/30 0 0 0 0 0 0

3S′
1 and 1S′

0 are excited RH states.

are observed experimentally (Fig. 1): the ground state
JΠT = 1+0, the first excited state JΠT = 3+0,
the second excited state JΠT = 0+1 serving also as
the ground state of 6He and of 6Be nuclei, and the
fourth excited state of 6Li nucleus JΠT = 2+1. The
explanation of the two missing-on-the-list low-lying
states JΠT = 1+0, 2+0 requires more complex con-
figurations. The first among them is the configuration
(001

2)
4(113

2)(11
1
2), giving the mentioned states as well

as the states JΠT = 1+1, 2+1 not yet identified exper-
imentally. The complete set of configurations present
in the minimal HO shell model consists of those men-
tioned and one additional configuration, (001

2)
4(111

2)
2,

that yield two states: JΠT = 1+0, 0+1. Thus the mini-
mal HO shell model approximation contains three con-
figurations and gives ten states, exceeding the number
of experimentally observed levels by four.

Due to peculiarities of the realistic nucleon–nucleon
potential the minimal value of the RH operator is in
the channel jπt = 1+0 (3S1–3D1), playing the ma-
jor role in accumulating the binding energy of nucleus
[6]. This minimal RH eigenvalue requires the signifi-
cant 3D1 state admixture (not less than 30%, different
for various realistic potentials) to the 3S1 state. The di-
agonal entries of the intrinsic density matrix presented
in Table 1 show that some admixture of this state can
be found only in three 1+0 6Li states, therefore at first
glance it looks like the theory suggests that the ground
and the first two excited states in the 6Li nucleus should
be the 1+0 states. However, the experiment proves a
different picture: one 1+0 state appears as the ground

state, the second is the sixth in the row, and the third
one is not found at all. It is thus obvious that the theo-
retical spectrum in minimal shell model approximation
of the 6Li nucleus is noticeably different from the one
observed experimentally.

Is it possible to find out what linear combination of
the mentioned three configurations would serve as the
best starting function for describing the ground state
JΠT = 1+0 of this nucleus? The answer is given by
the intrinsic density matrix diagonalization.

The intrinsic density matrix in the reduced Hamilto-
nian state 3D1 is



1

405
− 1

81
√
10

−
√
2

81
√
5

− 1

81
√
10

1

162

1

81

−
√
2

81
√
5

1

81

2

81


. (2)

It is the diagonal elements of this matrix that are given
in Table 1. After the diagonalization of this density ma-
trix the weight of the two nucleon state 3D1 for one of
the functions equals 1/30, which is the maximum pos-
sible value, and the weights of this state in the diago-
nal density matrix of the remaining two states equals to
zero (Table 2). The eigenvector corresponding to this



134 G. Kamuntavičius and A. Mašalaitė / Lithuanian J. Phys. 49, 131–135 (2009)

Table 2. Density matrix of the 1+0 states of 6Li after
diagonalization.

JΠT 1+0

Configuration ground excited excited
superposition state state 1 state 2
RH states

3S1 1/3 23/70 32/105
3S′

1 0 1/35 1/210
1S0 3/10 3/10 3/10
1S′

0 0 0 0
1P1 1/3 3/70 19/210
3P0 1/12 1/70 11/210
3P1 7/40 1/14 9/70
3P2 1/24 3/14 5/42
1D2 0 0 0
3D1 1/30 0 0
3D2 0 0 0
3D3 0 0 0

maximal weight of the 3D1 state is

√
2

3
√
3

−
√
5

3
√
3

−2
√
5

3
√
3


. (3)

Obviously, this vector is equal to a superposition of the
three mentioned configurations, giving the best starting
approximation for description of the ground state of the
6Li nucleus. Using the same orthogonal matrix we di-
agonalize the density matrices in all the other channels
and obtain new ones for 6Li, presented in Table 2.

The diagonal entries of the new matrices are the ele-
ments of the density matrix of translationally invariant
shell model. After the diagonalization the second and
the third 1+0 states in the 6Li nucleus become equiv-
alent to all the other states of minimal approximation,
i. e. they contain no 3D1 admixture. Thus, after the
diagonalization, only one of the independent configu-
ration superpositions having the maximal 3D1 state ad-
mixture corresponds to the best approximation for the
6Li ground energy level description.

3. Discussion and conclusions

The obtained zero approximation for the 6Li ground
state wave function expansion in the translationally in-
variant shell model basis provides very interesting con-

clusions. Firstly, this result states that only one combi-
nation of the configurations in the minimal HO shell-
model approximation has nonzero D-state admixture in
the two-nucleon reduced Hamiltonian channel. The ex-
perimental situation corresponds to this result in the
best possible way, because actually in the six-nucleon
system there exists only one bound state – the ground
state of the 6Li nucleus. Some excited states are long-
lived ones, but not completely bound. The second in-
teresting result is that the obtained optimal superpo-
sition of configurations has the maximal weight equal
to 20/27 of the configuration (001

2)
4(111

2)
2, while the

configuration recommended by the HO shell-model
(001

2)
4(113

2)
2 has ten times lower weight, equal to

2/27. The missing 5/27 is the weight of the last con-
figuration (001

2)
4(113

2)(11
1
2).

It is obvious that this component is a very important
part of the complete wave function, but not the only
one. The next terms in the expansion, corresponding
to the superposition of the Emin + 2 and the higher os-
cillator quanta configurations, are able to minimize the
energy of the state to such an extent (as mentioned, in
the RH channel 3S1–3D1 the ground state requires ap-
proximately 30% of the 3D1 channel admixture, while
the data in Table 2 show that the 3D1 probability makes
up only 10% in comparison with the weight of the 3S1
state).

The problem with the negative quadrupole moment
of the atomic nucleus 6Li cannot be solved in this ap-
proximation, giving positive value, but it is this optimal
zero approximation that makes it possible to obtain the
negative value of the quadrupole moment taking into
account the proper admixture of functions correspond-
ing to the excited HO shell-model configurations.

Finally, this procedure does not ensure the minimiza-
tion of the total energy and for a proper description of
the six nucleon nuclei the admixtures of the excited
shell model states in the wave functions expansion is
necessary. These admixtures are unavoidable for the
binding energy as well as for the negative value of the
quadrupole moment in the description of the ground
state of 6Li nucleus.
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ŠEŠIŲ NUKLEONŲ BRANDUOLIŲ PAGRINDINĖS BŪSENOS SANDARA

G. Kamuntavičius, A. Mašalaitė

Vytauto Didžiojo universitetas, Kaunas, Lietuva

Santrauka
Teoriškai nagrinėjamos šešių nukleonų branduolių aprašymo

minimaliame harmoninio osciliatoriaus sluoksnių modelio artuti-
nume galimybės. Pagrindinis šios šeimos branduolys yra 6Li –
lengviausias branduolys, turintis palyginus turtingą spektrą: vieną
surištą ir dar penkias gana ilgai gyvuojančias energetines būsenas
su gerai apibrėžtais kvantiniais skaičiais.

Tradicinis sluoksnių modelis, kai apsiribojama tik rekomenduo-
jama pagrindine konfigūracija (00 1

2
)4(11 3

2
)2, nusako tik keturias

tų stebimų būsenų. Jeigu imamos visos trys įmanomos šio modelio
konfigūracijos, tokių būsenų atsiranda dešimt. Taigi, modelis susi-
duria su principiniais sunkumais aprašant jau patį pirmąjį branduolį,
turintį šiek tiek turtingesnį spektrą.

Ši seniai žinoma problema darbe sprendžiama pasinaudojant
sluoksnių modelio modifikacija, paremta redukuotinio hamilto-
niano operatoriumi ir užtikrinančia banginių funkcijų transliacinį
invariantiškumą. Ši modifikacija leidžia bet kokios branduolio bū-
senos energiją išreikšti redukuotinio hamiltoniano tikrinėmis ver-
tėmis, padaugintomis iš atitinkamų tikimybių. Seniai žinoma, kad

pagrindinis vaidmuo užtikrinant atomų branduolių stabilumą tenka
redukuotinio hamiltoniano kanalui 3S1–3D1, – tam pačiam, kuris
aprašo deuterono pagrindinę būseną. Optimali bet kurios bran-
duolio būsenos energija užtikrinama minimizuojant šio kanalo re-
dukuotinio hamiltoniano pagrindinės būsenos energiją. Šis proce-
sas reikalauja tam tikros, lengvai gaunamos iš skaičiavimų ir kiek
skirtingos skirtingiems realistiniams potencialams, 3D1 būsenos
priemaišos. Atomų branduolių būsenos, kuriose šios redukuotinio
hamiltoniano priemaišos tikimybė lygi nuliui, turi nedaug galimy-
bių būti surištosios.

Sukonstravę šešių nukleonų branduolių tankio matricą ir ją dia-
gonalizavę gavome, kad tik viena būsena iš dešimties turi nelygią
nuliui šią tikimybę. Taigi, ji ir yra pagrindinė pretendentė apra-
šyti 6Li branduolio pagrindinę būseną JΠT = 1+0. Tai gerai ati-
tinka eksperimente stebimus rezultatus. Nelaukta išvada, kuri seka
iš mūsų tyrimų, yra ta, kad pagrindinį svorį gautoje optimalioje nu-
linio artinio banginėje funkcijoje turi ne sluoksnių modelio reko-
menduojama, o kita konfigūracija, būtent, (00 1

2
)4(11 1

2
)2.


