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A possibility to extend the universal Gáspár potential, used for obtaining the initial radial orbitals in iterative solving of
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1. Introduction

Although the self-consistent field method by Fock
[1] is known since 1930, still for a number of subse-
quent years the work has been continued in building
the potentials that in averaged form describe the field
of nuclear charge and its surrounding electrons. One
of the results of these efforts was the creation of the
universal potential by Gáspár [2]. It was obtained on
the basis of statistical methods and analysis of the po-
tential of a many-electron Hg atom. It was enhanced
and modified several times afterwards [3], including
the works by the Vilnius’ specialists in the atomic the-
ory [4]. The rapid development of computational elec-
tronics and creation of efficient mathematical methods
for solving the integral–differential Hartree–Fock (HF)
equations led to wide distribution and use of the pro-
grams for obtaining the radial orbitals (RO) of a self-
consistent field, and the interest in statistical potentials
greatly diminished. Nevertheless, the utility of poten-
tials of this kind is quite high. The point is that for a self-
consistent solving of HF equations the initial RO are
necessary. In many cases (e. g., the widely known pro-
gram [5]) the hydrogenic functions with gradual screen-
ing of the nuclear charge Z are used as initial RO. But
there is no universal and sufficiently accurate method to
introduce the screening of nuclear charge, and the RO
obtained for differing effective charges of nucleus are
not orthogonal and should be additionally orthogonal-
ized before use. As a result, such RO not always suf-

ficiently accurately describe the sought solutions and
that in turn may lead to slow self-consistency or even
the nonconvergence of the iterative process.

To overcome these problems, in [6] it was proposed
to take as initial the RO that are the solutions of equa-
tions with the universal Gáspár potential. Using this po-
tential for all the functions describing the given configu-
ration one obtains the RO that are automatically orthog-
onal. Long-term application of this approach in several
versions of programs for solving the HF equations [7]
has proven the adequacy of the universal Gáspár po-
tential in description of real potentials for atoms with
different nuclear charges at various ionization degrees.

The acquired experience in using the universal Gáspár
potential for solving the conventional HF equations was
also employed for development of a program for solv-
ing the quasirelativistic HF equations described in [8].
There the same form of the potential as for the conven-
tional equations [6] was used. Its application allowed
one to obtain the solutions of quasirelativistic equa-
tions, but the correspondence of initial RO to the self-
consistent solutions appeared to be much worse than in
the case of traditional HF equations. In addition, the
correspondence visibly worsened with higher ioniza-
tion degrees, which is in conflict with the tendencies
observed in the HF equations’ case. As the inadequate
initial RO hinder the solving of equations, especially
in the case of outer shells of calculated configuration,
there arises a need for improving the universal poten-
tial used.
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In the next section the method to obtain the new uni-
versal potential is described, and in the third one the
comparison of characteristics of RO, obtained using a
previous and new expressions, with parameters of solu-
tions of quasirelativistic HF equations is performed.

2. Method to obtain the new universal potential

The equation containing the universal potential is
obtained from the quasirelativistic HF equation
(Eq. (2.22) in [8]) by omitting the exchange part of the
potential and substituting the direct part with a local po-
tential. It has the following form:{

d2

dr2
− l(l + 1)

r2
− 2V (r)− εnl

}
P (nl|r)

+
α2

4
[εnl + 2V (r)]2P (nl|r)

+
α2

4

{
1− α2

4
[εnl + 2V (r)]

}−1

D(nl|r)P (nl|r)

= 0 . (1)

Here the first term determines the kinetic energy and the
nonrelativistic interaction with a nucleus, the next one
describes the mass dependence on velocity, and the last
term in the equation describes the contact interaction
with a nucleus in the form proposed in [9]:
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As seen from (3), definition of potential inside the
nucleus remains the same and, as proposed in [10], the
potential is expanded in even powers of radial variable.
In obtaining the initial RO, the universal Gáspár poten-
tial

U(r) = −I

r
− (Z − I)

r
· exp (−B0Z

1/3r)

1 +A0Z1/3r
(4)

outside the nucleus is used, where I is the atom ion-
ization degree in spectroscopic notation (1 for neutral
atom), and the parameters of potential have the follow-
ing values [6]:

A0 = 1.19 , B0 = 0.2075 . (5)

The potential calculated using parameters (5) will be
denoted by UG.

As mentioned before, the potential UG does not pro-
vide the opportunity to obtain sufficiently accurate ini-
tial quasirelativistic RO, which makes it difficult to
solve the equations. As the very form of the potential
is physically sound enough and gives good asymptotic
behaviour at zero and at infinity, it has been decided
not to change the formulas but to restrict ourselves to
adjusting the values of parameters A and B.

At first the optimal values of parameters for a defi-
nite value of nuclear charge and ionization degree of the
ground configuration were determined. To this end the
quasirelativistic equations for the investigated ion were
being solved and the numerical values of a great num-
ber of points of the direct potential UQR for the outer
shell were being calculated. The potential of the outer
shell has been chosen due to the fact that it has been
necessary to obtain as accurate as possible values for
the characteristics of outer electrons. Afterwards, em-
ploying the least squares method providing coincidence
of potential (4) with numerically determined UQR, the
optimal values of parameters AZ,I and BZ,I for this ion
have been determined. The least squares method has
also been used for adjusting the paramaters Aq

Z,I and
Bq

Z,I not of the potential itself but of the effective charge
defined as the ratio of value of potential to the corre-
sponding value of radial variable. This corresponds to
the fact that in the least squares method the radial vari-
able is used as weighting factor for points of potential.

Such calculations have been performed for a wide va-
riety of ground configurations with number of electrons
N from 5 to 86. Neutral atoms as well as ions with nu-
clear charge up to 100 have been considered. The full
list of investigated isoelectronic sequences is given in
Table 1. Most of the results presented in Table 1 were
not possible using the original Gáspár potential. In or-
der to achieve appropriate and self-consistent solutions,
the empirical fitting for Gáspár potential characteristics
has been crucial. There and further for marking the
isoelectronic sequences the total number of electrons
N = Z − I + 1 has been used without specifying the
distribution of electrons in shells, because the ground
states have been treated in all the cases. As seen from
the table, the data on potentials and their corresponding
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Table 1. Numbers of electrons N in the investigated sequences and the charges
of nucleus Z.

N Z

5 5–13, 15, 17, 20, 25, 30, 45, 50, 55, 60, 70, 80, 90
6 6–16, 18, 20, 22, 24, 26, 28, 30, 35, 37, 40, 45, 50, 55, 60, 70, 80, 90
8 8–20, 22, 24, 26, 28, 30, 32, 35, 37, 40, 45, 50, 55, 60, 70, 80, 90
10 10–18, 20, 22, 24, 26, 28, 30, 32, 35, 37, 40, 45, 50, 55, 60, 70, 80, 90
19 21–30, 32, 35, 37, 47, 50, 55, 60, 70, 80, 90
37 37–45, 47, 48, 49, 50, 52, 60, 62, 65, 67, 70, 80, 90
47 47–55, 60, 62, 65, 67, 70, 75, 80, 85, 90, 95
54 54–64, 66, 68, 70, 72, 74, 76, 78, 82, 84, 85, 90, 100
68 68–75, 77, 80, 83, 85, 87, 90, 95, 100
70 70–80, 82, 84, 86, 88, 90, 92, 95, 97
80 80–100
86 86–100

parameters for more than 360 configurations have been
obtained.

With that, it has become clear that the considered pa-
rameters quite strongly depend on the nuclear charge
and ionization degree. This is demonstrated in Table 2,
which contains the values of parameters of potential for
some configurations at different ionization degrees. As
can be seen from the table, even for neutral atoms the
obtained parameter values quite essentially differ from
the traditional nonrelativistic values (4) as well as be-
tween themselves. At higher ionization degrees the pa-
rameter values markedly increase and depart more from
(4). The indicated dependence is due to the increasing
difference of quasirelativistic RO from solutions of or-
dinary HF equations, on the basis of which the univer-
sal potential has been obtained, with nuclear charge in-
crease. All these differences equally pertain to the coef-
ficient in the denominator of the expression for the uni-
versal potential (3) as well as to the power index. The
obtained data indicates that it is complicated to get any
constant values of universal potential parameters that
would well describe the real potentials appearing at dif-
ferent nuclear charges and ionization degrees. In con-
nection with all mentioned above it has been decided
to use paramaters as functions of I and N instead of
constant ones.

In the second stage of calculations the dependences
of parameters on ionization degrees for every inves-
tigated isoelectronic sequence have been obtained in
the form of expansions in powers of I . While getting
the expansions different polynomials have been investi-
gated. It has come out that it is quite sufficient to restrict
oneself to powers from zero to two:

AN (I) = aN,0 + aN,1 I + aN,2 I
2 ,

BN (I) = bN,0 + bN,1 I + bN,2 I
2 . (6)

Table 2. Values of the universal potential coefficients for
various configurations.

N Z AZ,I BZ,I Aq
Z,I Bq

Z,I

5 5 1.62032 0.20831 1.26956 0.33166
20 3.44975 1.54327 3.04767 1.69331
90 13.72749 4.43528 10.89147 5.69662

10 10 1.21844 0.35235 0.71740 0.62183
30 1.98049 1.98947 0.69184 2.91732
90 5.82775 4.59036 2.08609 7.18321

47 47 1.26364 0.21482 1.01503 0.32111
60 1.54802 0.42217 0.95682 0.73315
95 2.32521 0.84315 1.11545 1.55156

68 68 1.17250 0.24217 1.06008 0.29117
100 1.78699 0.55665 1.00978 0.98909

86 86 1.21932 0.21328 1.24412 0.20502
100 1.47495 0.31793 1.22395 0.43567

The values of coefficients an,k and bn,k were deter-
mined by the least squares method for all possessed val-
ues of parameters. For example, in the case of neon
isoelectronic sequence (N = 10) the following expres-
sions have been obtained:

A10(I) = 1.31218 + 0.0205382 I + 0.000411654 I2 ,

B10(I) = 0.320836 + 0.0874033 I − 0.000434845 I2 ,

Aq
10(I) = 0.76862− 0.0125168 I + 0.000343317 I2 ,

Bq
10(I) = 0.605271 + 0.1183522 I − 0.000470773 I2 .

In the case of xenon isoelectronic sequence (N = 54)
the sought-after expansions have this form:

A54(I) = 1.27101 + 0.0166506 I + 0.000062368 I2 ,

B54(I) = 0.162205 + 0.0140429 I − 0.000074148 I2 ,
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Aq
54(I) = 1.17482 + 0.0031170 I + 0.000123055 I2 ,

Bq
54(I) = 0.197017 + 0.0210473 I − 0.000097442 I2 ,

and for the radon isoelectronic sequence (N = 86)

A86(I) = 1.19485 + 0.0236577 I − 0.000336049 I2 ,

B86(I) = 0.207530 + 0.0069973 I + 0.000022466 I2 ,

Aq
86(I) = 1.24591− 0.0083329 I + 0.000471499 I2 ,

Bq
86(I) = 0.187453 + 0.0202794 I − 0.000255235 I2 .

Just as expected, the coefficients in presented expan-
sions depend on the number of electrons in configura-
tion. To take into account this dependence in general
form, the expansion in powers of number of electrons
has been used. Similarly to the previous expansion, it
turns out that it is possible to restrict oneself to quadratic
dependence

aN,k = α0 + α1N + α2N
2 ,

bN,k = β0 + β1N + β2N
2 . (7)

Coefficients αi and βi have been determined by the least squares method taking into account all the considered
isoelectronic sequences. Substitution of their values into (6) leads to the following general expressions for the
parameters of the universal potential (3):

A(N, I) = 1.68292295− 1.54855956·10−2N + 1.18613040·10−4N2

+ I (6.80267876·10−2 − 1.95268774·10−3N + 1.79791804·10−5N2)

+ I2 (5.62961892·10−4 − 1.42822397·10−5N + 4.29849376·10−8N2) , (8)

B(N, I) = 2.53862830·10−1 − 1.93417591·10−3N + 1.81755849·10−5N2

+ I (9.43884981·10−2 − 2.50023623·10−3N + 1.77429131·10−5N2)

+ I2 (−4.73906019·10−4 + 1.22191182·10−5N − 7.41630927·10−8N2) . (9)

The potential (3) calculated using parameters (8) and (9) is further denoted as UN . When the effective charge is
approximated instead of the potential itself, the following expressions for the parameters are obtained:

Aq(N, I) = 1.09270806− 5.08422790·10−3N + 7.29722952·10−5N2

+ I (5.26634851·10−2 − 2.02788199·10−3N + 1.61348845·10−5N2)

+ I2 (3.16546385·10−4 − 1.17222742·10−5N + 1.50926909·10−7N2) , (10)

Bq(N, I) = 5.30964547·10−1 − 7.21449090·10−3N + 4.39624106·10−5N2

+ I (1.08641267·10−1 − 2.52982224·10−3N + 1.82931326·10−5N2)

+ I2 (−3.83202815·10−4 + 1.05096094·10−5N − 1.05488797·10−8N2) . (11)

The potential (3) calculated using parameters (10) and (11) is further denoted as U q
N .

As both adjustments and simplifications have been indispensable in obtaining parameters of the new universal
potential, it is necessary to check its validity, which is done in the next section. This is accomplished using as a
criterion the results obtained by self-consistently solving the quasirelativistic equations that take into account both
direct and exchange interaction of electrons. The potential obtained in this way is denoted as UQR.
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Fig. 1. Potentials UQR, UG, and UN for the case of Ti XV ion (Z =
22) of the oxygen isoelectronic sequence.

Fig. 2. Potentials UQR, UG, and UN for the case of Sn XXII (Z =
50) of the copper isoelectronic sequence.

3. Results of using the new universal potential

The investigated potentials UQR, UG, and UN for the
cases of Ti XV ion (Z = 22) of the oxygen (N = 8) iso-
electronic sequence, Sn XXII (Z = 50) of the copper
(N = 22) isoelectronic sequence, and U XCII (Z =
92) of the mercury (N = 80) isoelectronic sequence
are graphically depicted in Figs. 1, 2, and 3. In the
graphs as well as in all further tables the atomic system
of units is used. The potential UQR has been calculated
for the outer shells of the considered configurations.
As the potentials, according to (3), are asymptotically

Fig. 3. Potentials UQR, UG, and UN for the case of U XCII (Z =
92) of the mercury isoelectronic sequence.

the same at zero and at infinity, the figures depict only
the intermediate regions where the greatest differences
are observed. Physically important are the differences
in potential values corresponding to the same distance
from the origin of coordinate. It is seen from the fig-
ures that the new universal potential in all the presented
cases essentially better coincides with the potential ob-
tained solving the quasirelativistic equations. The dif-
ferences of values |UQR(r) − UN (r)| as compared to
|UQR(r)−UG(r)| become many times smaller. This is
observed not just in these three presented examples but
for all the treated potentials as well. The behaviour of
potential U q

N in the cases of Ti XV and Sn XXII when
pictured graphically is practically the same as that of
UN . In the U XCII case the potential practically coin-
cides with UQR, as is the case with the potential UN in
Figs. 1, 2.

However, the good behaviour of potentials UN and
U q
N does not yet guarantee their applicability in cal-

culations. It is more important what RO are obtained
after solving (1) employing the new universal poten-
tial. The characteristics of RO obtained solving the
equations with potentials UG, UN , and U q

N are com-
pared to the characteristics of RO obtained solving the
quasirelativistic HF equations. Hereafter we will call
the results of self-consistent solving the exact ones. As
an indicator of methods used for obtaining the charac-
teristics, the index of a potential employed in determin-
ing the RO is used both in the text and in tables.

The most important characteristic of RO that essen-
tially influences the convergence of iterative process is
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the single-electron energy εnl. Here εnl traditionally
imply the positive quantities entering Eq. (1). For ob-
taining the measured single-electron energies the pre-
sented values must be multiplied by −0.5. The other
characteristics used are the mean distance to the origin

rnl =

∞∫
0

rP 2(nl|r) dr (12)

and the mean inverse distance to the origin

r−1
nl =

∞∫
0

r−1P 2(nl|r) dr , (13)

which determines the potential energy of interaction be-
tween electron and nucleus.

Control calculations of RO have been performed for
the isoelectronic sequences used in obtaining the pa-
rameters of potential (Table 1) as well as for a series
of new sequences. No principal differences in these re-
sults have been detected. To restrict the volume of this
paper, only the results for two new sequences, with low
number of electrons (N = 12) and with high one (N =
74), are presented further.

As a first example, the characteristics that have been
obtained in treating the magnesium isoelectronic se-
quence are presented in Table 3. For illustrative pur-
poses the exact results in this and the following tables
are distinguished in bold. As seen in the table, practi-
cally everywhere the single-electron energies obtained
with the new potentials agree with the exact values bet-
ter. The single exception is ε1s for sulphur ion (Z =
16). In all the cases usage of UG leads to significantly
elevated values of single-electron energies. The usage
of new potentials, on the contrary, makes the above-
mentioned quantities too low. This probably is due to
the fact that only the direct potentials have been used
in approximation, while the electron exchange interac-
tion has the sign opposite to their direct interaction and
makes the absolute values of single-electron energies
higher. The mean distances to the origin of coordi-
nate behave analogously. The relative discrepancies in
this case are noticeably lower than the corresponding
discrepancies in single-electron energies, though. The
same tendencies are seen in comparing the inverse dis-
tances r−1

nl . Naturally, the deviations from the exact val-
ues in this case have the opposite sign compared to rnl.
It should be noted that there are no principal differences
between results obtained using UN and U q

N . The fact
that the accuracy of these results becomes higher for
outer shells is caused by the usage of outer orbitals for

Table 3. Parameters of RO of magnesium isoelectronic
sequence (a. u.).

nl Z εnl

UQR UG UN Uq
N

1s 16 94.60 97.99 82.81 85.34
26 280.31 303.06 260.51 263.73
50 1165.90 1244.25 1117.46 1123.49

2s 16 11.24 13.87 9.24 9.09
26 48.16 59.92 44.48 44.22
50 247.64 288.38 237.83 237.26

2p 16 8.87 12.26 7.09 6.94
26 43.30 57.53 39.79 39.52
50 231.43 279.23 221.78 221.04

3s 16 2.61 3.68 2.55 2.49
26 16.65 21.51 16.42 16.31
50 98.54 116.76 97.42 97.22

nl Z rnl

UQR UG UN Uq
N

1s 16 0.0967 0.0964 0.0999 0.0986
26 0.0584 0.0577 0.0596 0.0592
50 0.0290 0.0287 0.0294 0.0293

2s 16 0.4715 0.4408 0.5105 0.5055
26 0.2617 0.2426 0.2723 0.2714
50 0.1227 0.1162 0.1256 0.1255

2p 16 0.4385 0.3885 0.4904 0.4835
26 0.2317 0.2065 0.2430 0.2419
50 0.1074 0.0992 0.1101 0.1100

3s 16 1.4831 1.2161 1.5175 1.5410
26 0.6856 0.5918 0.6939 0.6965
50 0.2983 0.2716 0.3011 0.3015

nl Z r−1
nl

UQR UG UN Uq
N

1s 16 15.67 15.71 15.25 15.43
26 25.99 26.24 25.56 25.70
50 53.10 53.58 52.49 52.67

2s 16 3.11 3.36 2.86 2.89
26 5.70 6.21 5.46 5.47
50 12.66 13.49 12.34 12.35

2p 16 2.97 3.30 2.67 2.72
26 5.51 6.12 5.26 5.30
50 11.80 12.72 11.54 11.57

3s 16 0.92 1.17 0.93 0.91
26 2.09 2.50 2.10 2.09
50 5.07 5.69 5.07 5.06

potential approximation and corresponds to the posed
task to enhance the accuracy of initial radial orbitals for
outer shells.

As a second example, the characteristics of RO for
isoelectronic sequence of tungsten in the cases of mer-
cury (Z = 80) and thorium (Z = 90) ions are pre-
sented in Table 4. As seen from the table, in the case
of ions with high nuclear charge both new potentials
provide much higher accuracy of εnl for all shells with-
out an exception. Meanwhile, the usage of UG leads
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Table 4. Parameters of RO of tungsten isoelectronic
sequence (a. u.) for the outer shells 5s, 5p, 5d, 6s.
Mean square deviations (%) calculated including the

inner shells 1s . . . 4f as well.

nl Z εnl

UQR UG UN Uq
N

5s 80 8.59 12.01 8.96 7.89
90 22.00 33.14 23.64 21.75

5p 80 6.42 9.69 6.98 6.04
90 18.24 28.95 20.13 18.43

5d 80 3.86 6.47 4.33 3.61
90 13.87 23.30 15.41 13.95

6s 80 2.86 4.17 3.25 2.90
90 10.41 15.42 11.51 10.72

σ 80 46.9 6.2 10.0
90 55.2 6.5 2.2

nl Z rnl

UQR UG UN Uq
N

5s 80 0.8909 0.7749 0.8671 0.8866
90 0.6811 0.5678 0.6576 0.6682

5p 80 0.9981 0.8352 0.9580 0.9903
90 0.7468 0.5983 0.7098 0.7250

5d 80 1.2280 0.9529 1.1663 1.2540
90 0.8432 0.6396 0.7987 0.8286

6s 80 1.9293 1.5312 1.7820 1.9051
90 1.2635 0.9915 1.1826 1.2326

σ 80 10.8 3.9 3.4
90 14.3 2.6 2.2

nl Z r−1
nl

UQR UG UN Uq
N

5s 80 1.54 1.84 1.61 1.56
90 2.10 2.66 2.23 2.17

5p 80 1.33 1.64 1.41 1.35
90 1.82 2.37 1.96 1.90

5d 80 1.05 1.40 1.13 1.04
90 1.57 2.12 1.69 1.61

6s 80 0.68 0.88 0.75 0.69
90 1.09 1.46 1.19 1.13

σ 80 13.9 4.6 3.0
90 18.6 3.7 2.8

to essentially elevated values of εnl, and the discrepan-
cies with the exact values may markedly exceed 50%.
The comparison of results obtained by using two new
potentials reveals that in the case of heavy atoms the
single-electron energies calculated with potential UN

are of somewhat lower accuracy than those calculated
with potential U q

N . This is particularly noticeable for
the outer shells of considered configurations. This fea-
ture of U q

N is undoubtedly related to the way of obtain-
ing this potential. All the above comments about the
single-electron energies are also true of rnl and r−1

nl .
For the averaged evaluation of suitability of the in-

vestigated potentials, in the last two rows of Table 4 the
relative mean square deviations σ from the exact values,
in percent, are given, which are defined as

σ(xU ) =

√√√√N−1
∑
nl

Nnl(xQR − xU )
2

x2QR
· 100% . (14)

Here xU denotes each of the characteristics considered,
and the sum is taken over all the shells of each ion. The
presented values of σ clearly demonstrate the advan-
tages of the new potentials. Also, some advantage of
potential U q

N over UN emerges.

4. Conclusion

The transition from fixed values A0 and B0 of the
universal Gáspár potential parameters to parameters
A(N, I) and B(N, I) or Aq(N, I) and Bq(N, I) that
depend on the number of electrons in a configuration
and the ionization degree has enabled us to obtain ra-
dial orbitals which correspond significantly better to the
self-consistent solutions of quasirelativistic HF equa-
tions at ionization degrees in the range from several
units to those maximally possible. The usage of the new
universal potentials in obtaining the initial functions al-
lows one to obtain the solutions in the cases when the
usage of conventional universal Gáspár potential does
not lead to convergence of the iterative process. The po-
tentials, both UN and U q

N , give sufficiently adequate ra-
dial orbitals in a very wide range of variable ionization
degrees and the usage of all three potentials for solving
the quasirelativistic HF equations in the program essen-
tially extends its capabilities.
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Santrauka
Pakeitus fiksuotas parametrų A0 ir B0 vertes Gáspár potenciale

parametrais, priklausančiais nuo elektronų skaičiaus konfigūraci-
joje bei jonizacijos laipsnio, A(N, I) ir B(N, I) arba Aq(N, I) ir
Bq(N, I), žymiai padidėja potencialo tikslumas, o gaunamos or-

bitalės gerokai efektyviau tinka spręsti kvazireliatyvistines Hatree
ir Foko lygtis esant ir mažai, ir maksimaliai jonizacijai. Šis po-
tencialas veiksmingas ir tada, kai nepavyksta iteraciškai išspręsti
kvazireliatyvistinių lygčių naudojant paprastąjį Gáspár potencialą
atitinkančias pradines funkcijas.


