[PDF]    http://dx.doi.org/10.3952/lithjphys.49310

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 317–322 (2009)


PECULIARITIES OF IONIC TRANSPORT OF OXYGEN VACANCY CONDUCTING SUPERIONIC CERAMICS
A. Kežionisa, T. Šalkusa, A. Petraitisa, J. Dudonisb, G. Laukaitisb, D. Milčiusc, V. Kazlauskienėd, J. Miškinisd, and A.F. Orliukasa
aFaculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: tomas.salkus@ff.vu.lt
bKaunas University of Technology, Studentų 50, LT-51368 Kaunas, Lithuania
cLithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas, Lithuania
dInstitute of Materials Science and Applied Research, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania

Received 10 June 2009; revised 8 September 2009; accepted 15 September 2009

The powder of Zr0.92Y0.08O2 (YSZ), Ce0.9Gd0.1O2–δδ (GDC) and Sm0.15Ce0.85O2–δδ (SDC) compounds from the company Fuel Cell Materials were used for sintering of ceramic samples in air at temperature T = 1673 K. The surface of the prepared ceramics was studied by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Results of the performed XPS investigations revealed that cerium exists as Ce3+ and Ce4+ in both the Ce0.9Gd0.1O2–δδ and Sm0.15Ce0.85O2–δδ ceramics. XPS spectra of O 1s of all the investigated materials demonstrated two peaks corresponding to oxygen O(1) in crystal lattice and to adsorbed oxygen O(2). Measurements of complex impedance, electric conductivity, dielectric permittivity, and tan ± of dielectric losses were carried out in frequency range 106––1.2\cdot109 Hz at temperatures ranging from 300 K to 700 K. Relaxation dispersion of the electric parameters has been found for all the compounds. The dispersion is caused by the oxygen vacancy (VO) transport in grains of the ceramic samples.
Keywords: YSZ, GDC, SDC ceramics, solid oxide fuel cells, ionic conductivity
PACS: 81.15.Jj, 66.30.Dn, 82.47.Ed, 73.61.-r


DEGUONIES VAKANSIJŲ PERNAŠOS YPATUMAI SUPERJONINĖSE KERAMIKOSE
A. Kežionisa, T. Šalkusa, A. Petraitisa, J. Dudonisb, G. Laukaitisb, D. Milčiusc, V. Kazlauskienėd, J. Miškinisd, A.F. Orliukasa
aVilniaus universitetas, Vilnius, Lietuva
bVienos technologijos universiteto Fotonikos institutas, Viena, Austrija
cUAB „Šviesos konversija“, Vilnius, Lietuva
d Fastlite, Palaiseau, Prancūzija

Pagamintos Zr0,92Y0,08O2 (YSZ), Ce0,9Gd0,1O2–δ (GDC) ir Sm0,15Ce0,85O2–δδ (SDC) junginių keramikos. Keramikų gamybai naudoti firmos „Fuel Cell Materials“ milteliai. Visų junginių keramikos buvo kepinamos 1 h T = 1773 K temperatūroje. Keramikų paviršiai tirti skenuojančiu elektroniniu mikroskopu (SEM) bei Rentgeno spindulių fotoelektroninės spektroskopijos (XPS) metodu. XPS tyrimų rezultatai įgalino patikslinti matuotų junginių elementinę sudėtį. Parodyta, kad SDC bei GDC junginiuose be trivalenčių Ce3+ jonų aptinkami ir keturvalenčiai Ce4+ katijonai. Kompleksinis keramikų laidis, kompleksinė varža, dielektrinė skvarba ir tanδ\tan\delta ištirti 106––1,2\cdot109 Hz dažnių ruože ir 300–700 K temperatūrų intervale. Visuose junginiuose aptikta relaksacinė elektrinių parametrų dispersija. Ši dispersija atsiranda dėl deguonies vakansijų (VO) pernašos kietųjų elektrolitų keramikos kristalituose.


References / Nuorodos


[1] I. Riess, J. Power Sources 175, 325–337 (2008),
http://dx.doi.org/10.1016/j.jpowsour.2007.09.041
[2] J.L.M. Rupp, A. Infortuna, and L.J. Gauckler, Acta Materialia 54, 1721–1730 (2006),
http://dx.doi.org/10.1016/j.actamat.2005.11.032
[3] Yi Liu and L.E. Lao, Solid State Ionics 177, 159–163 (2006),
http://dx.doi.org/10.1016/j.ssi.2005.10.002
[4] G. Laukaitis, J. Dudonis, A.F. Orliukas, and D. Milcius, Solid State Ionics 179, 182–187 (2008),
http://dx.doi.org/10.1016/j.ssi.2007.12.030
[5] Rui-Quan Liu, Ya-Hong Xie, Ji-De Wang, Zhi-Jie Li, and Ben-Hui Wang, Solid State Ionics 177, 73–76 (2006),
http://dx.doi.org/10.1016/j.ssi.2005.07.018
[6] G. Chiodelli, L. Malavasi, V. Massarotti, P. Mustarelli, and E. Quartarone, Solid State Ionics 176, 1505–1512 (2005),
http://dx.doi.org/10.1016/j.ssi.2005.03.017
[7] W. Zając and J. Molenda, Solid State Ionics 179, 154–158 (2008),
http://dx.doi.org/10.1016/j.ssi.2007.12.047
[8] D.P. Fagg, J.C.C. Abrantes, D. Pérez-Coll, P. Núnez, V.V. Kharton, and J.R. Frade, Electrochim. Acta 48, 1023–1029 (2003),
http://dx.doi.org/10.1016/S0013-4686(02)00816-2
[9] Jiang Kai, Meng Jian, He Zhigi, Ren Yufang, and Su Qiang, Sci. China B 42(2), 159–163 (1999),
http://dx.doi.org/10.1007/BF02875512
[10] J.L.M. Rupp, T. Drobek, A. Rossi, and L.J. Gauckler, Chem. Mater. 19, 1134–1142 (2007),
http://dx.doi.org/10.1021/cm061449f
[11] J.P. Zhao, Y. Li, W.H. Xin, and X. Li, J. Solid Sate Chem. 181, 239–244 (2008),
http://dx.doi.org/10.1016/j.jssc.2007.11.007
[12] A.F. Orliukas, A. Kezionis, and E. Kazakevicius, Solid State Ionics 176, 2037–2043 (2005),
http://dx.doi.org/10.1016/j.ssi.2004.08.042
[13] D. Briggs and M.P. Seah, Practical Surface Analysis by Auger and X-Ray Photoelectron Spectroscopy (John Wiley & Sons, Chichester–New-York–Brisbane–Toronto–Singapore, 1983),
http://www.amazon.co.uk/Practical-Surface-Analysis-Photoelectron-Spectroscopy/dp/047126279X/
[14] F. Zhang, P. Wang, J. Koberstein, S. Khalid, and Siu-Wai Chan, Surf. Sci. 563, 74–82 (2004),
http://dx.doi.org/10.1016/j.susc.2004.05.138
[15] W. Bogusz, J.R. Dygas, F. Krok, A. Kezionis, R. Sobiestianskas, E. Kazakevicius, and A. Orliukas, Phys. Status Solidi A 183, 323–330 (2001),
http://dx.doi.org/10.1002/1521-396X(200102)183:2<323::AID-PSSA323>3.0.CO;2-6
[16] A. Orliukas, P. Bohac, K. Sasaki, and L.J. Gauckler, Solid State Ionics 72, 35–38 (1994),
http://dx.doi.org/10.1016/0167-2738(94)90121-X