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The quantum mechanics is formulated in terms of state vectors in the Hilbert space and operators that act on these vectors.
However, using the Clifford algebra an alternative formulation is possible, wheremultivectors inn-dimensional linear Euclidean
space represent both the state of the system and quantum operators. In this report a short overview is presented on how the
Clifford algebra can be used to investigate electron and hole spin properties in semiconductors. In particular, calculation of free
electron and hole spin precession in cubic semiconductors with the help of the Clifford algebra is discussed.
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1. Introduction

The Clifford algebra Clp,q is a relatively new mathe-
matical tool in theoretical physics to solve the problems
in multidimensional spaces, especially when spinorial
properties of the physical objects are important [1–3].
In the algebra Clp,q, the sum of the indices p+ q gives
the total dimension of the space while the individual
indices, p and q, designate the number of coordinates
with positive and negative signature, respectively. Two
of the algebras, Cl3,0 andCl3,1, which are also called the
geometric algebras [2, 4, 5], are used to describe parti-
cles in 3D Euclidean and 4DMinkowski spaces. Up till
now the Clifford algebra was applied to classical me-
chanics [6, 7], Pauli and Dirac spinors in three and four
dimensions [1, 2], field theory [5], including classical
electrodynamics [8–10], gravitation and cosmology [5],
and recently in computer science [11]. The reader unfa-
miliar with the geometric algebra can refer to Hestenes
paper [3] where one can find an accessible introduction,
more references, as well as websites on the Clifford al-
gebra.

In this report we shall overview the first attempts to
adapt the Clifford algebra in the investigations of dy-
namical spin properties in semiconductors. In partic-
ular, we shall consider the precession of the conduc-
tion band electron and valence band hole spins in cu-
bic semiconductors induced by spin-orbit interaction.
As known, in the absence of such interaction the en-

ergy bands in semiconductors are doubly degenerate
(Kramers degeneracy [12]). The spin–orbit interaction
splits the bands and brings about spin precession, the
frequency of which depends on a considered energy
band and charge carrier wave vector. Although the
spin properties can be analysed in the standard manner
within Hilbert space formalism [13–16], nonetheless,
as we shall see the Clifford algebra may describe spin
properties in a totally different and more elegant way.
Since the considered subject is new to solid state physi-
cists, in the first section of this article the required ter-
minology for description of the Clifford algebras is in-
troduced. Then, the spin properties of electrons within
Cl3,0 algebra and hole properties within Cl5,0 and Cl4,1
algebras are considered. The starting point in all cases
will be the Hamiltonian obtained by k·p method. At
first, the spin dynamics of conduction band electron is
considered and then the more difficult case of valence
band holes is reviewed.

2. Short introduction to Clifford algebras

The Clifford algebra Clp,q is made up of 2p+q ele-
ments, which usually are indicated by bold e. Of these,
there are p + q basis vectors ei which play the role of
Cartesian coordinates. In Cl3,0 the Euclidean space R3

is spanned by basis vectors e1, e2, and e3. Similarly, the
five dimensional space R5 of Cl4,1 is spanned by basis
vectors e1, . . . , e5. The signature of the space is deter-
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mined by signs of e2i . In Cl3,0, all eis satisfy e2i = +1.
However for Cl4,1 the square of the last basis vector is
negative, e25 = −1. The rest of elements in the Clif-
ford algebra are made up of products of basis vectors.
For short, the product eiej will be written as e12, simi-
larly eiejek ≡ eijk, etc. Thus, we will need 23 = 8, or
25 = 32 elements to describe the conduction band by
Cl3,0 and the valence band by Cl4,1 algebra. One should
pay attention that despite of this similarity the basis vec-
tors are altogether different from the well-known unit
vectors in Rn space, although the usual vectors, for ex-
ample the wave vector k = (kx, ky, kz), is mapped as
k→ kxe1+kye2+kze3. Specifically, in contrast to the
usual unit vectors the basis vectors in Clp,q do not com-
mute. In fact, they anticommute, that is eiej = −ejei if
i ̸= j. Both mentioned rules can be combined into the
anticommutation relation

eiej + ejei = 2δij , (1)

where δij is the Kronecker delta. Due to the prop-
erty (1), the Clifford algebra elements make up a closed
system, since the elements with repeated indices can
be contracted, for example, e1232 ≡ e1e2e3e2 =
−e1e2e2e3 = −e1e3 = −e13. The largest product
which cannot be reduced is called the pseudoscalar and
written as I . Thus, in Cl3,0 algebra the pseudoscalar is
I = e123, while in Cl5,0 and Cl4,1 algebras the pseu-
doscalar is I = e12345. The square of the pseudoscalar
gives I2 = 1 in Cl5,0, but it is I2 = −1 in Cl4,1. This
is easy to prove by rearranging the basis vectors and us-
ing the property (1). Thus, in Cl4,1 the pseudoscalar I
performs the role of an imaginary unit.

The general vector a inRn can be expressed as a sum
a =

∑
i aiei of the elements of the same grade, where

ai are real-valued components, ai ∈ R. Similarly, a
general bivector can be written as a sum of elementary
bivectors, B =

∑
i ̸=j bijeiej , where bij ∈ R. In the

Clifford algebra there exist the mixed grade elements
as well. For example, one can add the vector to bivec-
tor to get the multivectorM = a+B, or one can add the
scalar to vector to get another multivector. The product
of two multivectors of the same grade gives scalar, for
example, the product of two vectors a and b =

∑
i biei

gives the scalar ab =
∑

i aibi. However there also ex-
ists a mixed product, for example, of the vector a with
the bivectorB. Such products may give higher or lower
grade elements as compared to those of the factors.

A general multivectorM consists of a sum of multi-
vectors of various grades:

M =
∑
i=0

⟨M⟩i , (2)

where ⟨M⟩0 is the scalar part of the multivector, ⟨M⟩1
is the vector part, ⟨M⟩2 is the bivector part, ⟨M⟩3 is
the trivector part, etc. The index i is called the grade.
As mentioned, the element of the highest grade is called
the pseudoscalar. Sometimes it is convenient to express
a high order grade element as a product of the pseu-
doscalar I and lower grade element. For example, in-
stead of e23 we may also write Ie1, since in Cl3,0 we
have e23 = e2e3 = e2e3e1e1 = e1e2e3e1 = Ie1. Simi-
larly we can write e1e2 = Ie3, e3e1 = Ie2. All this can
be expressed by the following table:

⟨M⟩0 ⟨M⟩1 ⟨M⟩2 ⟨M⟩3
1 ei Iei I
1 3 3 1

where the first line shows the grade of a multivector,
the second line shows a typical element, and the last
line shows the number of elements of a given grade.
Usually the index in the scalar part is omitted, and one
writes ⟨M⟩ ≡ ⟨M⟩0. Similarly, the elements of Cl5,0
and Cl4,1 algebras can be grouped to the table

⟨M⟩0 ⟨M⟩1 ⟨M⟩2 ⟨M⟩3 ⟨M⟩4 ⟨M⟩5
1 ei eij Ieij Iei I
1 5 10 10 5 1

One can multiply the multivectors. The product of
multivectors A, B and C is associative, A(BC) =
(AB)C = ABC, however, it is noncommutative,
AB ̸= BA. Due to property (1), a given Clifford al-
gebra Clq,p always remains closed under the multipli-
cation.

There is a number of operations over the multivec-
tors in the Clifford algebra which we shall make use
of. For example, the multiplication by I gives the dual
multivector. From the above tables it is seen that all el-
ements have their duals. Another important operation
is the reversion that brings the basis vectors to reverse
order. The reversion is denoted by tilde. For example,
ẽ12 = e21 = −e12. The reversion in the Clifford al-
gebra plays similar role as the complex adjoint in the
standard quantum mechanics. The typical operation is
the product of multivector by its reverse. For example,
in Cl5,0 this gives B̃B = BB̃ =

∑
i ̸=j b

2
ij , which rep-

resents the square of magnitude of a bivector.
One more important operation is the exponential of

a multivector A which is defined as a series eA =
1 + A

1! +
A2

2! + A3

3! + · · · . Typical situation where ex-
ponentials appear is the rotation of multivector in the
multidimensional space. For a general multivector the
exponential series cannot be summed up in a closed
form. However, in specific situations the sum may be
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expressed through either trigonometric or hyperbolic
functions. For example, if the multivector consists of a
scalar s and vector v = v1e1+v2e2+v3e3+v4e4+v5e5,
the exponential gives

es+v = es
(

sinh
√
vṽ +

v√
vṽ

cosh
√
vṽ

)
, (3)

where vṽ = v21 + v22 + v23 + v24 + v25 .
A useful property that will be frequently employed

below is matrix representation of an element of the Clif-
ford algebra. Concrete examples will be presented be-
low in transforming the quantum mechanical operators
to Clifford algebra representation.

3. Conduction band

In cubic semiconductors the conduction band is char-
acterized by a 2 × 2 Hamiltonian that consists of
an isotropic in the wave vector k part Ĥ0 and two
spin–orbit (SO) related contributions, the Dresselhaus
ĤD [17] and Rashba ĤR [18] ones: Ĥ = Ĥ0 + ĤD +
ĤR. In the case of free-space electrons, the formula-
tion of quantum mechanics in terms of the Clifford al-
gebra was described in Refs. [2, 4]. In particular, the
two-component spinor |ψ⟩ here is placed in one-to-one
correspondence with a 4-component multivector ψ via
the mapping

|ψ⟩ =
[
a0 + ia3
−a2 + ia1

]
←→ ψ = a0 +

3∑
k=1

akIek , (4)

where all aks are the real numbers. Thus, in Cl3,0 the
spinor is represented by a sum of scalar and three bivec-
tor components. The ket-vector |ψ⟩ and its Clifford al-
gebra counterpart ψ satisfy

⟨ψ|ψ⟩ ←→ ⟨ψ̃ψ⟩ = ⟨ψψ̃⟩ = a20 + a21 + a22 + a23 . (5)

From (4) it follows that the spin-up and spin-down states
are related by rules | ↑ ⟩ ←→ 1 and | ↓ ⟩ ←→ −Iσ2.
Also, additional replacement rules exist [2, 5, 19, 20]

i∂|ψ⟩/∂t←→ Iψ̇e3 ,

σ̂k|ψ⟩ ←→ ekψe3 ,

k21̂|ψ⟩ ←→ k2ψ (6)

that will be used to transform the Pauli–Schrödinger
equation to the Clifford algebra equivalent expression.
Here k = (kx, ky, kz) is the electron wave vector refer-
enced to crystallographic axes and σ̂k is one of the Pauli
matrices. To prove the rules (6) it is enough to resort

to the mapping (4) and to remember that the multivec-
tors do not commute. Then, in the case of the conduc-
tion band electron the required time-dependent Pauli–
Schrödinger equation in the multivector notation can be
reduced to the following compact form:

ψ̇ = −Iε0ψe3 − I(ε1e1 + ε2e2 + ε3e3)ψ
)
, (7)

where ε0 = k2/(2m∗), ε1 = γχ1 + α(k2n3 − k3n2),
and χ1 = kx(k

2
y − k2z), and nis are the components of

the unit vector, which is perpendicular to heteroplane,
in the Rashba Hamiltonian. The other components, ε2
and ε3, can be obtained from cyclic permutation of the
indices. It should be noted that e3ψ ̸= ψe3. The solu-
tion of the differential equation (7) is the multivector

ψ(t) = ψie−I(ε1e1+ε2e2+ε3e3)te−Ie3ε0t , (8)

where ψi = ψ(0) is the initial multivector. ψ(t) satis-
fies the normalization condition ψ̃(t)ψ(t) = 1. Thus,
the resulting multivector (8) can be factored as ψ(t) =
ψiψSOψ0, where ψ0 and ψSO are related, respectively,
to degenerate part Ĥ0 and SO parts, ĤD and ĤR, of the
Hamiltonian:

ψ0 = cos ε0t− I sin ε0t , (9)

ψSO = cos |ε|t− 1

|ε|
(ε1Ie1 + ε2Ie2 + ε3Ie3) sin |ε|t .

(10)
The equations (8)–(10) show that there are two kinds of
oscillations, those related with band degeneracy, ε0 =
k2/(2m∗) and those related with spin–orbit splitting
of the degenerate bands, ∆E ≡ 2|ε| = 2

√
εε̃ =

2
√
ε21 + ε22 + ε23. The atomic unit system e = h̄ =

m0 = 1 is used. Thus, the Clifford algebra shows in
a very elegant way that the electron spin precession in
cubic semiconductors can be described by three effec-
tive parameters only: ε1, ε2, and ε3. In contrast, the
solution of the same problem within the Hilbert space
formalism appears to be rather messy [14]. In the lat-
ter case one is forced to shuttle between energy and σ̂z
representations of the Hamiltonian to describe the spin
evolution in a mixed state.

The multivector ψ allows one to calculate the spin
precession dynamics in a straitghforward way. In Cl3,0
the electron spin polarization components are deter-
mined by mapping [2, 4, 5]

⟨ψ|σ̂k|ψ⟩ ←→ Sk = σk · S, where

S = ⟨ψσ3ψ̃⟩1 . (11)

The average spin polarization components Sk (k =
1, 2, 3 or x, y, z) depend on the initial multivector ψi
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Fig. 1. Electron spin trajectories on the Bloch sphere. The energy
ε3 is varied and ε1 = ε2 = 0. All precession trajectories run over

the North pole.

and effective energies ε1, ε2, ε3 only. Figure 1 illus-
trates spin polarization precession trajectories on the
Bloch sphere calculated with equations (9)–(11). The
initial condition ψi = 1, which corresponds to North
pole on the sphere at t = 0, was used.

It is well known that spin precession occurs only in
mixed spin-up and -down states. Figure 1 shows that the
solution (8) already incorporates such states. To have
more precession trajectories it is enough to assume dif-
ferent multivector ψi at t = 0. The spinor constructed
in this way should bemapped by the rule (4). A possible
choice may be

ψi = cosϑ cosϕ+ Ie1 sinϑ sinϕ

− Ie2 sinϑ cosϕ− Ie3 cos θ sinϕ . (12)

Up and down spin states are recovered at ϑ = 0, ϕ = 0
and ϑ = π, ϕ = 0, respectively. A more detailed ex-
position of application of the Clifford algebra Cl3,0, in-
cluding quantum wells, and explicit analytical formulas
for spin precession are presented in the article [21].

4. Valence band

4.1. Choice of the Clifford algebra and matrix
representation

For conduction band, the unperturbed Hamiltonian
H0 coincides with the Pauli–Schrödinger one for elec-
tron with 1

2 spin. As shown in Doran’s PhD thesis [4]
and book [2], the evolution of the respective spinor and
multivector in this case can be described by the map-
ping (4). In the previous section this mapping was ap-
plied to conduction band electrons with SO interaction

included. The valence band Hamiltonian has a differ-
ent structure. It comes from J = 3

2 manifold and can
be constructed by k·p perturbationmethod [22]. The re-
sulting effective Hamiltonian is characterized by a num-
ber of empirical parameters depending of the number
of bands included. In the following we shall consider
the simplest valence band Hamiltonian that consists of
the doubly degenerate light- and heavy-mass bands. In
the spherical approximation this Hamiltonian reduces
to [23]

H0 =
1

2m0

[(
γ1 +

5

2
γ2

)
k2 − 2γ2(k · J)2

]
, (13)

where J = (Jx, Jy, Jz) is the vectorial 4×4 total angu-
lar momentummatrix, its components are given in [24].
γ1 and γ2 are the empirical band parameters. The ma-
trix Hamiltonian (13) will be our starting point.

To map the valence band Hamiltonian onto one of
the Clifford algebras we shall make use of the property
that the basis vectors in the Clifford algebra can be rep-
resented by a set of complex valued matrices. For ex-
ample, in the case of Cl3,0 there exists one-to-one cor-
respondence between the basis vectors e1, e2, and e3
and the well-known three Pauli matrices. In particular,
the Pauli matrices satisfy the same anticommutation re-
lations as basis vectors (see Eq. (1)). The existence of
isomorphism between basis vectors of the Clifford alge-
bra and a set of special matrices allows one to express
all elements of the algebra, including bivectors, pseu-
doscalars, etc, as respective products of the basis matri-
ces. Matrix representation of the Clifford algebra may
be also helpful in manipulating the multivectors, or in
calculating the exponentials of the multivectors. The
existence of an isomorphism between the matrix rep-
resentation and a particular Clifford algebra allows an
easy transition from matrix formulation of the quantum
mechanics to its Clifford analogues. This property will
be used below.

Now, we shall transform the valence band Hamilto-
nian in matrix representation (13) to Clifford algebra
representation. To select a suitable one it is convenient
to address to a table of all possible matrix representa-
tions that are usually given along with the 8-fold peri-
odicity theorem of real Clifford algebras [1]. From this
table it follows that the Clifford vectors in R5 are iso-
morphic to 2H(2), i. e. to double quaternionic 2×2ma-
tricesH(2). However, this representation is not suitable
for our purpose since our starting matrices are complex
rather than quaternionic valued. There are three com-
plex candidate algebras, namely, Cl0,5, Cl2,3, and Cl4,1,
which are isomorphic to complex matrices C(4). Their
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basis vectors abide in 5D Euclidean space R5 and have
the following signatures: (−−−−−), (++−−−),
and (+ + + + −). Nevertheless, if a suitable isomor-
phism is absent, then, with a due care, one can also
resort to homomorphism between Clifford algebra and
its matrix counterpart having an appropriate symme-
try. For example, the matrix representation that cor-
responds to SO(5) group and which is homomorphic to
Cl5,0 algebra can be used to map the Hamiltonian (13)
to Clifford algebra representation [25, 26]. Below we
shall briefly discuss two representations having SO(5)
and SO(4,1) symmetry that are associated, respectively,
with the Clifford algebras Cl5,0 and Cl4,1. The applica-
tion of Cl2,3 algebra still remains uninvestigated.

4.2. Cl5,0 algebra

The required 4×4matrices that have totally positive
signature, e21 = e22 = e23 = e24 = e25 = 1, are [25]

e1→ Γ1 =

[
σ̂y 0
0 −σ̂y

]
, (14)

e2→ Γ2 =

[
σ̂x 0
0 −σ̂x

]
, (15)

e3→ Γ3 = i
[
0−1
1 0

]
, (16)

e4→ Γ4 =

[
0 1
1 0

]
, (17)

e5→ Γ5 =

[
σ̂z 0
0 −σ̂z

]
. (18)

Using these matrices the Hamiltonian (13) can be
rewritten in the Clifford algebra as

H0 =
γ1k

2

2m0
+
γ2k

2

m0

5∑
n=1

dnen , (19)

where k2 = k2x+k
2
y+k

2
z and dn are the real-valued pro-

jections on the respective basis vectors ei in R5 space:

d1 =−
√
3kykz/k

2 , d2 = −
√
3kxkz/k

2 ,

d3 =−
√
3kxky/k

2 , d4 = −
√
3

2
(k2x − k2y)/k2 ,

d5 =−
1

2
(2k2z − k2x − k2y)/k2 . (20)

From (19) it is seen that the Hamiltonian is made up of
the scalar and vector inR5. Since the squares of projec-

tions give d21 + d22 + d23 + d24 + d25 = 1 for all possible
directions and magnitudes of k, the vector d represents
the radius of a 4D sphere in R5. This suggests that the
Hamiltonian can be diagonalized by an appropriate ro-
tation of the vector d =

∑5
n=1 dnen in R5 Euclidean

space. Thus, we can find the eigenvalues of the Hamil-
tonian and perform spin dynamics calculations without
using the Hilbert space at all. How this can be achieved
with the help of rotors R defined in the Clifford alge-
bra the reader should refer to paper [27]. Here we shall
present only the final result:

Hd = R̃HR =
k2

2m0
(γ1 + 2γ2e5)→


εL 0 0 0
0 εH 0 0
0 0 εH 0
0 0 0 εL

 ,
(21)

where εH,L = (γ1 ± 2γ2)k
2/(2m0) are the dispersions

of heavy- and light-mass holes. The matrix representa-
tion in (21) was obtained with the mapping (18). From
this short discussion it follows that in the Clifford alge-
bra one can calculate heavy- and light-hole energies and
spin polarizations by an appropriate rotation of the mul-
tivector in the five dimensional Euclidean space. For
more details the reader is directed to paper [27].

4.3. Cl4,1 algebra

The matrices that represent basis vectors in R5 now
are

e1→ Γ1 = i
[

0 σ̂x
−σ̂x 0

]
, (22)

e2→ Γ2 = i
[

0 σ̂y
−σ̂y 0

]
, (23)

e3→ Γ3 = i
[

0 σ̂z
−σ̂z 0

]
, (24)

e4→ Γ4 =

[
0 1
1 0

]
, (25)

e5→ Γ5 = i
[
−1 0
0 1

]
. (26)

These matrices as well as basis vectors have the signa-
ture e21 = e22 = e23 = e24 = 1 and e25 = −1. As a result,
the square of the pseudoscalar is negative, I2 = −1.
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The Hamiltonian (13) in this algebra assumes the fol-
lowing form:

H0 =
γ1k

2

m0
D0 +

2γ2k
2

m0
(27)

× (D1e4+D2e45+D3e215+D4e325+D5e135) ,

where the coefficients are D0 = 1/2, D1 = −d4/2,
D2 = d3/2, D3 = −d5/2, D4 = −d1/2, D5 = d2/2 .
Contrary to the expression (19), now the elements of
H0 in (27) have mixed grades. Therefore, the vector ro-
tation in 5D Euclidean space in finding the eigenvalues
is of little use. It can be shown that the diagonalized
form of H0 now is

H0 =
εH + εL

2
+
εH − εL

2
Ie5 →


εH 0 0 0
0 εH 0 0
0 0 εL 0
0 0 0 εL

 ,

(28)

and consists of a sum of the scalar and pseudoscalar.
The Hamiltonian (28) represents degenerate energy

bands with no SO splitting and, therefore, with no spin
precession dynamics. (In the following the operators
written in the representation (28) will be in the calli-
graphic font.) To work on further, in the description
of spin dynamics the SO interaction must be included.
The needed SO interaction Hamiltonian mapped onto
Cl4,1 algebra is [28]

H1 = (29)

c

2

(√
3kxe1+

√
3kye2+2kze35+kxe245−kye415

)
,

where c is the SO splitting strength. The spin dynam-
ics is described by similar differential equation as (7)
except that now the pseudoscalar is I ≡ e12345 and the
expression in the square brackets in (7) should be re-
placed by the total HamiltonianH = H0 +H1 written
in Cl4,1. As previously, the solution can be written im-
mediately: ψ(t) = e−IHt. Thus, the problem reduces
to calculation of the exponential of the mixed multivec-
tor which should give all possible spin precession fre-
quencies (compare Eqs. (9)–(10)). However, now the
resulting series after the expansion of the exponent can-
not be summed up in a closed form. Why? This can be
seen from the eigenvalues of the Hamiltonian H . Af-
ter the inclusion of the SO interaction all energy levels
become nondegenerate. The spectrum of such Hamilto-
nian is described by the fourth order algebraic equation,
the roots of which in general cannot be calculated ex-
plicitly. Thus, to find an analytical solution for all pos-

sible spin precession frequencies one is forced to rely
on approximate methods, similarly as it is in the treat-
ment of problem within standard quantum mechanics.
In the following we shall briefly discuss how this can
be achieved in the Clifford algebra formalism.

At first, we shall assume that all operators have been
rewritten in the energy representation of the degenerate
Hamiltonian (28). Then, one can exploit the fact that
the SO splitting of bands is small compared to degen-
erate light- or heavy-hole energy. To proceed with the
perturbation theory we introduce the projection opera-
tors onto heavy- and light-mass energy bands:

PH =
1

2
(1 + Ie5) , PL =

1

2
(1− Ie5) . (30)

It is easy to check that these operators are idempotent,
P2

H = PH and P2
L = PL, and orthogonal, PLPH =

0. The degenerate Hamiltonian (28) remains invariant
to action of the projection operators. To see where the
perturbation theory comes in let us apply the projection
operators to an arbitrary operator A,

(PH + PL)A(PH + PL) =

PHAPH + PLAPL + PHAPL + PLAPH . (31)

The above operator equation is exact. In the following
we shall neglect the cross terms, PHAPL and PLAPH,
which should be small if light- and heavy-mass bands
are far apart. Thus, in our perturbation theory the SO in-
teraction couples the terms in the degenerate band man-
ifolds only. The calculations along these lines give us
the heavy- and light-mass band Hamiltonians:

HH =
γ1−2γ2
2m

k2 − 3
√
3

2
ck

[
(cos θ sin2θ + sin θ

×cos2θ e2) cos 2φ−
3+cos 2θ

4
sin θ sin 2φ e3

]
, (32)

HL =
γ1+2γ2
2m

k2 −
√
3

2
ck

[
(cos θ sin2θ + sin θ

×cos2θ e2) cos 2φ+
1+3 cos 2θ

4
sin θ sin 2φ e3

]
, (33)

where θ and ϕ are polar angles of the wave vector k. It
is seen that the SO splitting vanishes if θ = 0, i. e. when
the hole wave vector is k ∥ [001], or the vector points to-
wards equivalent crystallographic directions. This is a
well-known fact for cubic semiconductors. The largest
SO splitting is at k ∥ [011]. The structure of the mul-
tivectors (32) and (33) suggests (compare it with the
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Fig. 2. Spin trajectories of the light-mass hole for various parameter
ϑ values. The hole wave vector has polar angles θ = 0.01, φ =
π/4 and is drawn by vertical line. The horizontal line is the spin

precession axis.

multivector (19), where all basis vectors appear in the
Hamiltonian) that the Clifford algebra that describes
hole spin dynamics in decoupled heavy–light band ap-
proximation can be reduced to lower dimensional Clif-
ford algebra. Indeed, it can be shown rigorously that
in this approximation the total angular momentum op-
erator which determines the precession of the spin po-
larization vector also reduces to lower Clifford algebra,
namely, to Cl3,0 algebra. The latter, as discussed ear-
lier, describes conduction band electron spin precession
when electron is in a superposition of nearly degener-
ate twofold energy band. However, now the elements
of Hamiltonians and respective total angular momen-
tum operators are different from those for electron. As
a result, hole spin procession trajectories will be differ-
ent, too.

Figure 2 illustrates the precession character of total
angular momentum ⟨J⟩ of light-mass hole that was cal-
culated within the framework of the Clifford algebra.
In this approximation the hole spin ⟨S⟩ precession co-
incides with that for ⟨J⟩ but with the polarization vec-
tor lengths reduced by factor 2/3. We see that now ⟨J⟩
and ⟨S⟩ precession trajectories are ellipses rather than
circles as was the case for the conduction band elec-
trons. This conclusion is consistent with our earlier
calculations done within a standard quantum mechan-
ical formalism [16, 29]. It can be shown that the pre-
cession axis around which hole spin rotates is perpen-
dicular to the hole wave vector k for all directions of k.
Similar calculations yield that the heavy-hole preces-
sion trajectories for ⟨J⟩ reduce to vibrations along the
straight lines of length 3/2, the orientation of which in
spin space depends on the direction of k. This is also in
agreement with earlier calculations [16, 29].

5. Conclusions

This short overview demonstrates that the Clifford
algebra can be used in the analysis of electron and hole
properties in semiconductors with some advantage over
the standard methods. In the standard quantum me-
chanics one works in the Hilbert space spanned by lin-
early independent state vectors that may be represented
by columns, and where the quantum mechanical oper-
ators (matrices) are acting on the state vectors. In the
Clifford algebra one works in the Euclidean space Rn

and both the spinors and operators are treated on the
same footing, and as a result the formal difference be-
tween them vanishes. In case of electrons in cubic semi-
conductors, the conduction bands can be treated within
Cl3,0 Clifford algebra. The spin precession trajectories
in this case can be very easily calculated, in fact, in few
strokes. There is no need to construct unitary matrices
and to shuttle between σ̂z and energy representations.
The application of the multivector formalism to nanos-
tructures where the space quantization plays an impor-
tant role is uninvestigated as yet, although the multivec-
tor calculus needed for this purpose is already worked
out [30].

In the case of the valence bands the situation is more
complicated. There is a number of Clifford algebras
that can be applied for this purpose. Two of these, Cl5,0
and Cl4,1, have been addressed here. At this stage of
the investigation it is difficult to indicate whichever of
algebras will be superior. However, preliminary calcu-
lations show that spin precession equations for valence
band holes can be found in a more straightforward way
with the help of the Cl4,1 Clifford algebra.
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CLIFFORDO ALGEBROS TAIKYMAS SUKINIŲ SAVYBIŲ ANALIZĖJE PUSLAIDININKIAMS

A. Dargys
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka
Kvantinė mechanika suformuluota matematinės Hilberto erdvės

sąvokomis, kur svarbų vaidmenį turi būsenų vektoriai bei opera-
toriai, kurie vienus Hilberto erdvės vektorius perveda į kitus. Ta-
čiau yra žinoma alternatyvi kvantinėsmechanikos formuluotė [1, 2],
kurioje dalelės būsena bei fizikinius dydžius aprašantys operatoriai
yra nusakomi Cliffordo algebros sąvokomis, būtent, per daugiama-
tės Euklido erdvės vektorius ir multivektorius. Pastarieji yra su-
konstruoti iš n-matės tiesinės Euklido erdvės bazinių vektorių visų
galimų sandaugų. Būdinga tokių bazinių vektorių savybė ta, kad

jie tarpusavyje antikomutuoja, todėl Cliffordo algebros multivekto-
riais galima aprašyti spinorius bei jų dinamiką išoriniuose laukuose.
Multivektoriaus projekcijos, kurios nusako matuojamus dydžius,
yra realūs (o ne kompleksiniai, kaip Hilberto erdvės atveju) skai-
čiai. Cliffordo algebroje dalelės būsena ir operatoriai yra lygiaver-
tės sąvokos ir nusakomos panašiai. Straipsnyje trumpai apžvelgta,
kaip galima pritaikyti Cliffordo algebros formalizmą sukinių savy-
bių analizėje. Aptarta kubinės simetrijos puslaidininkio laidumo
juostos elektrono ir valentinės juostos skylės sukinio precesija bei
kaip ją būtų galima apskaičiuoti naudojant Cliffordo algebrą.


