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A simple model of the decaying quantum state composed of a one-dimensional electron moving in the potential with the
quantum dot separated from the infinite half-axis by the δ-function is studied. The quasibound quantum dot state properties
calculated by means of approximate methods (complex energy technique and local density of states method) are compared with
results obtained with the aid of an exact analytical non-stationary wave function. The physical meaning of the emitted electron
wave function peculiarities is discussed.
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1. Introduction

Progress in nanometre technology has triggered a
broad activity in low-dimensional quantum systems [1].
During the last five years the interest has shifted to
graphene, [2, 3] the single layer of graphite that is an
ideal two-dimensional system. It is expected that this
material will serve as a base for new electronic and
optical devices. Charge carriers in graphene behave
like “relativistic” massless particles, and due to the so-
called Klein effect [4] the control of their behaviour by
means of electromagnetic fields is one of the most chal-
lenging tasks. This situation occurs because the quan-
tum dots in graphene have no bound states and the elec-
trons escape from them sooner or later. Thus, the de-
scription of quasibound states becomes of importance.
For this purpose various approximate methods are used,
mostly those considering some approximate stationary
problem. One of them is the so-called complex energy
technique [5] (see also [6]), which relates the imaginary
part of energy eigenvalue with the inverse lifetime of
quasibound state. The other way to determine the above
lifetime is to extract it from the width of resonances in
the so-called local density of states of an artificially con-
fined system [7, 8]. The quasi-classical approach [9] for
the description of the quasibound states is also used.

The aim of this paper is to evaluate the advantages
and shortcomings of various approximate quasibound
state description methods comparing the results with
the exact solution for some analytically solvable model
of a decaying quantum state, which is an example of
most simple non-stationary problem. For this purpose
we use the model of one-dimensional (1D) quantum
system where the electron moves in the potential with
a repulsive δ function that separates the quantum dot
from the infinite half x axis. This model has been ex-
amined by a number of people, in particular, by Petzold
and Winter [10], and more recently by van Dijk [11–13]
mostly in relation with the problem of radioactive decay
of nucleus.

The paper is organized as follows. In Section 2 the
model is introduced and the exact solution is presented.
The peculiarities of the wave function of the quasi-
bound states are discussed in Section 3 paying atten-
tion to the pole and saddle contributions. In the next
three sections the approximate methods – complex en-
ergy technique, local density of states method, and the
quasi-classical approach – are given and their result is
compared with the exact analytical solution. The con-
clusions are given in Section 7, and in Appendix the
simple derivation of the wave function of the decaying
state is proposed.
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Fig. 1. Potential.

2. Model

We consider 1D electron moving in a potential

V (x) = Pδ(x− 1) (1)

shown in Fig. 1 by solid (blue on-line) curve. We re-
strict our consideration to the positive half-axis (x > 0).
That is why there is a hard wall at the origin (x = 0).
The Dirac function at the point x = 1 makes the quan-
tum dot in the region I (0 < x < 1) separating it from
the infinite region II (1 < x < ∞). For the sake of
simplicity we shall use the dimensionless units measur-
ing all distances in the widths a of this quantum dot, the
energy in ε0 = h̄2/ma2 units, and time inh̄/ε0 units.

Due to the penetrability of the narrow δ-type barrier
the quantum dot has no stationary states. Nevertheless,
if the the barrier is high enough (P ≫ 1), the tunnelling
of electron outside the dot is weak, and there are so-
called quasibound states. The self-consistent descrip-
tion of such state follows from the solution of the time
dependent Schrödinger equation

i
∂

∂t
Ψ(x, t) = HΨ(x, t) (2)

with the Hamiltonian

H = H0 + V (x) = −1

2

∂2

∂x2
+ V (x) (3)

and hard wall boundary condition

Ψ(0, t) = 0 . (4)

As we are going to solve the non-stationary problem the
above Schrödinger equation has to be supplemented by
some initial condition. For this purpose we use the wave
function of the ground state of the isolated quantum dot
(P = ∞) that reads

Φ(x) =
√
2 sin(πx) (5)

and is shown in Fig. 1 by dashed (green on-line) curve.

So, we assume that at the initial moment t = 0we cut
the top of the Dirac function by fixing it with P < ∞.
Then electron starts to escape from the quantum dot,
and we describe this process by solving Eq. (2) in the
time interval 0 < t <∞ with the initial condition (5).

According to Refs. [11–13] the solution of this prob-
lem can be presented as the integral in the complex mo-
mentum k = u+ iv plane (see the simple derivation in
Appendix):

Ψ(x, t) =
1

iπ

∫ ∞

−∞
dk

F (k)

Q(k)
e−ik2t/2

×
{

eikx +
P

ik
Θ(x− 1)

[
eikx − eik(x−2)

]}
, (6)

where F (k) is given by Eq. (A12) and

Q(k) =

(
cos k +

2P

k
sin k

)2

+ sin2 k

=
P 2

k2

(
e2ik − 1 +

ik
P

)(
e−2ik − 1− ik

P

)
. (7)

Integrating the above wave function in the quantum dot
(in region I) we obtain the survival amplitude

w(t) =

∫ 1

0
dxΦ(x)Ψ(x, t)

=
1

π

∫ ∞

−∞
dk

F 2(k)

Q(k)
e−ik2t/2 (8)

and the quantity

W (t) = |w(t)|2 (9)

that gives the probability to find the electron in the ini-
tial state which in the case of small barrier penetrability
(P ≫ 1) coincides with the probability to find the elec-
tron in the dot [14].

Due to the factorization ofQ(k) function the expres-
sion of the wave function outside the dot (in region II)
can be presented in more simple form:

Ψ(x, t) =
1

πP

∫ ∞

−∞

dk k F (k) ei(kx−k2t/2)

e2ik − 1 + ik/P
. (10)
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Fig. 2. Complex k plane and the contours for integration of integral
(10).

3. Wave function outside the dot

The convergence of complex integral (10) depends
on the exponent in integrand (including the exponent in
function F (k)) whose argument can be rewritten as

f(k) =
k2t

2
−k(x−1) =

t

2

(
k − x− 1

t

)2

−(x− 1)2

2t
.

(11)
The sign of the first term indicates that there are two
quadrants (in respect of point k0 = (x − 1)/t) in the
complex k-plane (shaded (yellow on-line) in Fig. 2)
where the integral does not converge. Thus, the best
convergence is achieved by replacing the initial hori-
zontal integration contour C by the contour C̃ shown
in Fig. 2 by the (red on-line) solid line coinciding with
the bisector of the fourth quadrant and passing through
the saddle point k0. Transforming the integration con-
tour, however, we have to take into account the contri-
bution of poles that are crossed during this transforma-
tion. As the function F (k) has no poles only the zeros
of the integrand denominator matter. They are defined
by solving equation

e2ik = 1− ik
P
. (12)

Separating the real and imaginary parts of it

e−2v cos(2u) = 1 +
v

P
, (13a)

e−2v sin(2u) = − u

P
, (13b)

we easily define the curve

u = P

√
e−4v −

(
1 +

v

P

)2
, (14)

and zeroes of Eq. (12) solving numerically Eq. (13a)
along the curve (14). They are shown in Fig. 2 by (red
on-line) circles. We see that during the contour trans-
formation some of these points in the fourth quadrant

(shown as full circles) are intersected. Thus, calculat-
ing the wave function integral (10) the contribution of
the corresponding integrand poles

Ψn(x, t) =
π
√
2 k2n ei[kn(x−1)−k2nt/2]

P (π2 − k2n) (1 + 2P − 2ikn)
(15)

has to be taken into account together with the sad-
dle point contribution (the integral calculated along the
contour C̃). The pole contribution (15) gives the char-
acteristic exponential behaviour of the wave function.

In the case of weak tunnelling (P ≫ 1) the posi-
tion of poles (namely, the solution of Eq. (12)) can be
obtained by expansion in P−1 powers, and it leads to

kn = πn

(
1− 1

2P
− iπn

4P 2

)
, (16)

where n is an integer number nonequal to zero.
We see that the small tunnelling probability shifts

the poles corresponding to the real eigenvalues of the
isolated quantum dot πn into the lower complex half-
plane. It is also evident that the number of poles con-
tributing to the wave function integral depends on the
values of parameter (x − 1)/t. Namely, enlarging x,
we exclude step by step the contributions of poles.

Due to real negative exponent argument along the
transformed contour C̃ the saddle point contribution
can be easily estimated numerically with any desired
accuracy. As the choice of the integration contour C̃
along the bisector of the fourth quadrant is quite arbi-
trary the separation of the saddle and pole contributions
is rather provisory. Nevertheless, it is rather useful for
the interpretation of processes ongoing in the quantum
dot.

The real part of the exact wave function (10) includ-
ing all saddle and pole contributions is shown in Fig. 3
for P = 3, which is the case of small tunnelling prob-
ability. The imaginary part of it looks similar, except
some non-essential phase shift. We see two character-
istic electron wave function features. First, there are
well expressed wave crests along the direction shown
by (blue on-line) dashed line. It corresponds to equa-
tion x = vf t, where

vf = ε/k = k/2 ≈ 1.39 (17)

coincides with the phase velocity of the electronic wave,
corresponding to the momentum k of the ground state
of the dot. The next evident feature is that the main
pulse of emitted electron wave moves faster. Its motion
is indicated by the (red on-line) solid linex = vgtwhere
vg = dε/dk = k coincides with the group velocity.
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Fig. 3. The real wave function component outside the dot.

Fig. 4. Modulus of the wave function squared outside the dot.

Thus, the vacuum is a rather dispersive media for the
classical electron.

From now on we shall not pay attention to the wave
function’s phase, restricting the consideration to the
wave function modulus squared corresponding to the
probability to find electron in a given point x. That is
why instead of Fig. 3 we shall plot a more simple Fig. 4.
Although this plot is much more regular, nevertheless
we see clearly some waving in front and after the main
pulse that is indicated by the bright stripe. This wav-
ing has to be related to the initial condition. The matter
is that by cutting off the barrier (see the discussion in
Sec. 2) at the initial moment t = 0 we perturb the sys-
tem, and as a result all electron states become excited.
Consequently, the dot emits the electron from all these
excited states with the corresponding group velocities
kn ≈ πn. The electron pulse emitted from the first
excited state (n = 2) can be clearly seen in Fig. 4 (in-
dicated by the (yellow on-line) solid line).

This electron emission from various excited states is
seen more clearly in Fig. 5 where the pole contribu-
tions to wave function (15) are plotted. Here we see

Fig. 5. The coordinate dependence of the electron wave function
modulus squared outside the dot at various time moments including

only the pole contribution.

the vertical wavefronts moving from the dot with the
above group velocities. The wavefronts corresponding
to the electron emission from the ground state, the first
excited state, and even from the second one are seen.

Note there are well resolved oscillations after the
main pulse in the region of small times gradually dis-
appearing when the time grows up. In quantum me-
chanics, however, there are no sharp pulses nor wave-
fronts due to known smearing of wave packets, which
is inherent to any wave process. So it is evident that the
saddle contribution is of importance. It is confirmed by
Fig. 6 where the wave function with both, saddle and
pole contributions included, is shown. We see that the
saddle contribution is important in region II , especially
close to the main emission pulse. This saddle contribu-
tion smears the wavefronts, although it does not change
the picture qualitatively, and the pulses corresponding
to the electron emission from the ground and excited
levels are quite distinguishable.

In order to reveal the physical meaning of the

Fig. 6. The same as in Fig. 5 but with both saddle and pole contri-
butions included.
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Fig. 7. The time dependence of the wave function at the quantum
dot edge.

oscillations following the main pulse we calculated the
wave function values at the quantum dot edge (x = 1).
They are shown in Fig. 7. These oscillations at the
quantum dot edge can be considered as an origin of the
above waving of the wave function outside the dot fol-
lowing the main electron emission pulse. In the case
of P = 3 the quantum dot edge wave function oscilla-
tions decay rather fast with time, and the wave function
modulus squared approaches the (blue on-line) dotted
curve which indicates the first pole contribution. The
oscillations are pronounced much better for less pene-
trable barrier as it is seen in the case of P = 10 shown
by (green on-line) dashed curve. It is remarkable that
in the asymptotic region (t → ∞) they convert into si-
nusoidal oscillation with the period T0 = 0.463. This
period coincides pretty well with the period of beats ap-
pearing due to the interference of the ground and first
excited states’ wave functions:

|Ψ|2 ∼ |e−iε1ψ1 + e−iε0ψ0|2 → cos[(ε1 − ε0)t] (18)

with T = 2π/(ε1 − ε0) ≈ 0.470. Thus, the wave func-
tion outside the dot is quite sensitive to the details of
initial state preparation. It demonstrates not only the
emission from all excited states, but also the interfer-
ence of their wave functions.

Finishing the discussion about the exact solution of
the non-stationary Schrödinger equation let us say some
words about the electron behaviour in the dot. The cal-
culation of complex integral (8) defining the survival
amplitude and finally the probability to find the elec-
tron in the dot is similar to the calculation of Eq. (10)
that was just considered. It is even more simple, be-
cause the argument of exponent in the integrand does
not depend on the coordinate x. The single difference

Fig. 8. Survival amplitude (8): solid curves represent the exact so-
lution, dashed curves the first pole contribution.

is that the functionQ(k) has twice more zeroes as com-
pared with the function in denominator of integral (10).
The additional poles can easily be obtained by means
of reflection v → −v. The result for survival amplitude
in the case of P = 3 is shown in Fig. 8 by solid curves.
The contribution of the first pole is shown by the dashed
curves. The coincidence of solid and dashed curves al-
lows to conclude that the behaviour of the electron in
the dot, namely, the survival amplitude, the energy of
the state, and the lifetime are described satisfactorily by
the single pole approximation in contrary to the func-
tion outside the dot where the poles corresponding to
the excited states and the saddle contribution are im-
portant.

4. Complex energy method

Now we switch our attention to the main purpose of
our consideration and discuss the approximate methods.

We start with the most simple one — the complex
energy method. This method is based on the assump-
tion that the non-stationary process of decay can be de-
scribed by some fictitious stationary problem with com-
plex energy eigenvalue. The Schrödinger equation is
solved in the dot assuming the radiative boundary con-
dition at its edge, namely, with the assumption that in
the region II the wave function is composed of a single
outgoing exponent. In the electrodynamics it is known
as a Sommerfeld radiation boundary condition [15].

So inserting the wave function

Ψ(x, t) = e−iEtΨ(x) (19)

into Eq. (2), we arrive at the eigenvalue problem

{H − E}Ψ(x) = 0 . (20)
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The solution of this equation is similar to the solution
presented in Appendix where we were looking for the
complete set of eigenfunctions. The only difference is
that now the wave function outside the dot is composed
of a single outgoing exponent. Thus, the solution of
Eq. (20) reads

Ψ(x) =

A sin(kx) , 0 < x < 1 ,

Beik(x−1) , 1 < x <∞ .
(21)

Applying boundary conditions (A6) we arrive at the fol-
lowing set of algebraic equations:

A sin k = B , (22a)

ikB − kA cos k = 2PA sin k . (22b)

Finally, zeroing its determinant we obtain the disper-
sion equation (12). Consequently, the eigenvalues of
complex momentum coincide with the poles shown in
Fig. 2. In the case of weak tunnelling they are given by
Eq. (16). Thus, we obtain the following complex energy
eigenvalues:

En = E(0)
n − iΓn =

1

2
k2n =

1

2

(
u2n − v2n

)
+ iunvn .

(23)
It is evident that only filled (red on-line) circles in the
fourth quadrant have to be taken into account, as the
zeroes in the third quadrant lead to the wave function
growing in time that has no physical sense.

Finally the result obtained by the complex energy
technique is shown in Fig. 9. The positions of quasi-
bound states and their widths are shown as a function
of barrier height P .

Substituting the eigenvalue kn into Eq. (21) we ob-
tain the corresponding eigenfunction.

|Ψn(x)|2 =
1

2
|An|2

×


cosh(2vnx)− cos(2unx) , 0 < x < 1 ,

[cosh(2vnx)− cos(2unx)]e2vn(x−1) ,
1 < x <∞ .

(24)

The modulus of the ground state wave function squared
is shown in Fig. 10. It resembles the wave function
plots presented in Fig. 5, what is quite natural because
the complex energy method coincides with the one pole
approximation. Of course there are no wavefronts nor
pulses, and no fine structure. It allows us to conclude
that the complex energy method can hardly be useful

Fig. 9. Quasi-bound states as functions of the barrier heightP : solid
(red on-line) curves mark the energy of the state and the widths are

shown as (yellow on-line) faded regions.

Fig. 10. Modulus of the wave function squared, obtained by the
complex energy method.

for the wave function calculation of the decaying quasi-
bound state. However, it gives us reasonable average
characteristics of this state, such as approximate energy
and lifetime.

5. Local density approximation

The density of states, or the number of available elec-
tron states per unit energy plays an important role in de-
scription of various quantum effects. Formally its math-
ematical definition reads:

ρ(ε, x) =
∑
n

δ(ε− En) . (25)



A. Matulis and G. Kiršanskas / Lithuanian J. Phys. 49, 373–381 (2009) 379

Fig. 11. Local density of states in quantum dot.

When the electron spatial distribution is of interest, the
local density of states

ρ(ε, x) =
∑
n

δ(ε− En)|Ψn(x)|2 (26)

is used instead. Integral version of this definition reads:

ρ(ε, x) =
L

π

∫
dk δ{ε− E(k)}|Ψ(x)|2

=
L

π

(
dε
dk

)−1

|Ψ(x|ε)|2 . (27)

Integrating it over the region I we obtain the density of
states in the quantum dot:

ρdot(ε) =
L

π

(
dε
dk

)−1 ∫ 1

0
|Ψ(x|ε)|2dx . (28)

This quantity is useful for description of quantum dot
properties, such as the tunnelling current directed per-
pendicular to the dot, measured using scanning tun-
nelling microscopy (STM) or power absorption in near-
field spectroscopy [7, 8].

Replacing the wave function by the eigenfunction
used in the derivation of exact solution (A5) with nor-
malization coefficient (A11) we obtain the following
expression of local density of states in the decaying
quantum dot:

ρdot(ε) =
1

πkQ(k)

{
1− sin(2k)

2k

}
, (29)

which is shown in Fig. 11. It is evident that if the
zeroes of function Q(k) are close to the real axis (as
they are in the case of large P values), they determine
the local density of states in the vicinity of the quasi-
bound state leading to the standard Lorentzians. Con-
sequently, the position and the width of the resonant
state are described by the same function Q(k) which

appears either in exact solution or in the complex en-
ergy method.

6. Quasi-classical approach

Finally, some words about the simplest quasi-classi-
cal method, which was used by Gamow in his theory of
radioactive decay. In this case we have to calculate the
probability of electron to tunnel through the δ-barrier.
It reads:

W =
k2

k2 + P 2
≈ k2

P 2
. (30)

Multiplying this quantity by the frequency of the clas-
sical electron reaching the quantum dot edge we obtain
the approximate probability for electron to escape from
the dot:

v

S
W =

k · k2

2 · P 2
=

k3

2P 2
. (31)

It coincides with the width of the quasi-bound state de-
fined from the approximate Eq. (16).

7. Conclusions

The comparison of the exact solution with those ob-
tained by approximate methods enables us to make the
following conclusions.

The first pole approximation is quite sufficient for
the calculation of the average properties of the quasi-
bound state in the quantum dot. That is why various
approximate methods can be used, and they lead to the
equivalent results, because most of them are based on
the calculation of that pole.

The wave function of emitted electron from the dot is
a much more delicate quantity. It is rather sensitive to
the boundary conditions at the dot edge, and to the ini-
tial condition, due to which the other quantum dot states
might be excited. That is why the above wave function
of emitted electron demonstrates the emission pulses
from those excited states moving with different veloci-
ties, and the interference of excited state wave functions
in the dot as well. In order to calculate these peculiar
wave function features the poles and saddle point con-
tribution have to be properly taken into account.
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Appendix

Solution of non-stationary Schrödinger equation

In this appendix, we present the simple derivation of
Eq. (2) solution based on its expansion into the series of
some stationary problem eigenfunctions. It can be done
by means of the following artificial procedure. We add
one more hard wall to the potential at the point x =
L+1, shown in Fig. 1 by the dotted light (blue on-line)
curve, and the corresponding boundary condition

Ψ(L+ 1, t) = 0 . (A1)

Now we have the finite system, and its wave function
can be obtained applying the standard expansion into
the series of eigenfunctions

Ψ(x, t) =
∑
n

cne−iεntψn(x) (A2)

with the coefficients calculated as overlap integrals of
eigenfunctions and initial function (5),

cn =

∫ L+1

0
dxΦ(x)ψn(x) ≡

∫ 1

0
dxΦ(x)ψn(x) .

(A3)
The eigenfunctions follow from stationary Schrödin-

ger equation

{H − εn}ψn(x) = 0 (A4)

with hard wall boundary conditions (4) and (A1). Solv-
ing the above equation in I and II regions we obtain
the following function:

ψn(x) =

{
A sin(knx) , 0 < x < 1 ,

B sin [kn(x− L− 1)] , 1 < x < L+ 1 ,
(A5)

satisfying automatically the above boundary condi-
tions. Here the electron momentum is defined as kn =√
2εn. Now replacing the Dirac function in Hamilto-

nian (3) by the corresponding boundary conditions

ψ(I)
n (1) =ψ(II)

n (1) , (A6a)

d
dx
ψ(II)
n (1)− d

dx
ψ(I)
n (1) = 2Pψ(I)

n (1) , (A6b)

we arrive at the following set of equations for the coef-
ficients:

A sin kn =−B sin(knL) , (A7a)

ADn =B cos(knL) , (A7b)

where

Dn ≡ D(kn) , D(k) = cos k +
2P

k
sin k . (A8)

Equating the determinant to zero we obtain the dis-
persion equation

tan(kL) = − 1

D(k)
sin k , (A9)

the solution of which gives us the electron momentum
kn and finally the eigenvalue εn.

Having in mind the wave function normalization and
the limit L→ ∞ we obtain the coefficient

B =

√
2

L
. (A10)

Then the coefficient A follows from Eqs. (A7a) and
(A9):

A=−B sin(knL)
sin kn

=

√
2/L tan(knL)

sin kn
√
1 + tan2(knL)

=

√
2

LQ(kn)
. (A11)

Now we calculate integral (A3)

cn
A

=
√
2

∫ 1

0
dx sin(knx) sin(πx)

=

√
2π sin k

(π2 − k2)
≡ F (k) (A12)

and present the solution of our non-stationary problem
(2) as

Ψ(x, t) =
2

L

∑
n

F (kn)

Q(kn)
e−iεnt

×

sin(knx) , x < 1,√
Q(kn) sin [kn(x− 1− L)] , x > 1 .

(A13)

We have to perform one more step, namely, to calculate
the limit L → ∞. We see that the dispersion Eq. (A9)
is composed of the rapidly varying function tan(kL)
equated to the slowly varying one. Consequently, in
the case of large L the distance between eigenvalues is
∆k = π/L and this enables us to calculate the above
limit using just the formal replacement

kn → k and
∑
n

→ L

π

∫ ∞

0
dk . (A14)
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The only thing that should be taken into account is the
wave function (A13) dependence on large value L. It
can be eliminated using the trigonometric expression

sin [k(x−1−L)] = sin [k(x−1)] cos(kL)

− sin(kL) cos [k(x−1)] (A15)

and having in mind that

sin(kL) = − sin k√
Q(k)

, cos(kL) =
D(k)√
Q(k)

,

(A16)
what follows from Eq. (A9).

Thus, performing the limit L→ ∞ and using above
equations we immediately arrive at the final wave func-
tion Eq. (6).
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Santrauka
Nagrinėjamas paprastas skylančios kvantinės būsenos modelis,

kuriame vienmatis elektronas juda potenciale, susidedančiame iš
Dirako smaile atskirto kvantinio taško nuo begalinės teigiamos x
pusašės. Kvantinio taško charakteristikos (kvazistacionaraus lyg-
mens energija bei gyvavimo trukmė) ir išspinduliuoto elektrono

banginė funkcija, apskaičiuoti artutiniais kompleksinės energijos
bei lokalaus lygmenų tankio metodais, palyginami su tiksliu analizi-
niu sprendiniu, išreikštu kontūriniu integralu kompleksinėje elekt-
rono impulso plokštumoje. Aptariamos fizikinės išspinduliuoto
elektrono banginės funkcijos ypatumų priežastys.


