[PDF]    http://dx.doi.org/10.3952/lithjphys.49403

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 389–402 (2009)


ADDITION OF NUCLEOPHILE TO BENT BONDS OF THE CARBONYL GROUP
V. Gineitytė
Institute of Theoretical Physics and Astronomy of Vilnius University, A. Goštauto 12, LT-01108 Vilnius, Lithuania
E-mail: gineityte@itpa.lt

Received 26 February 2009; revised 27 October 2009; accepted 18 December 2009

Bimolecular nucleophilic addition (AdN2) reactions of carbonyl compounds are modelled and studied using the semilocalized approach to chemical reactivity suggested previously. The approach consists in the direct obtaining of the one-electron density matrix of the whole reacting system in the form of a power series in the basis of orbitals localized on separate bonds. The double C=O bond is represented by two equivalent bent bonds, one of them being under attack of a nucleophile. The results support the previous hypothesis about an increasing polarity of the C=O bond under the influence of an external cation attached to a lone electron pair of the oxygen atom and yield a new interpretation of this effect in terms of interorbital interactions. Coordination of the oxygen atom by a subsidiary cation is shown to ensure also an increase of charge transfer from nucleophile to the reacting CO bond at later stages of the process. These results serve to account for the known catalytic effect of acids in AdN2 reactions. Effects of substituents of various types upon the same charge transfer are explored and interpreted too. A certain analogy is concluded between early stages of the reaction under study and of the SN2 process of alkyl halogenides. Advantages of the bent bond model of the C=O bond versus the usual σσ ππ-model are discussed in respect of interpretation of chemical reactivity.
Keywords: bimolecular nucleophilic addition, carbonyl compounds, the bent bond model, chemical reactivity, bond orbitals
PACS: 31.15.-p, 31.15.X-, 31.15.xp


NUKLEOFILO PRIJUNGIMAS PRIE KARBONILO GRUPĖS BANANINIŲ JUNGČIŲ
V. Gineitytė
Vilniaus universiteto Teorinės fizikos ir astronomijos institutas, Vilnius, Lietuva

Pasiūlytas ir pritaikytas karbonilo junginių nukleofilinio prijungimo reakcijų modelis, besiremiantis bananinių jungčių koncepcija, anksčiau gautomis reaguojančios sistemos viendalelinės tankio matricos išraiškomis ir Hiukelio artiniu hamiltoniano matricai. Bazinės modelio funkcijos parinktos taip, kad jos būtų lokalizuotos ant atskirų reaguojančios sistemos cheminių jungčių. Dviguboji CO jungtis modeliuojama dviem ekvivalenčiomis bananinėmis jungtimis, kurių viena yra atakuojama nukleofilo. Gauti rezultatai pagrindžia prielaidą, kad CO jungtis tampa labiau poliarine, kai deguonies atomas yra koordinuojamas katijonu. Be to, atsiranda galimybė interpretuoti šį reiškinį pasitelkiant tarporbitalines sąveikas. Parodyta, jog toks pat koordinavimas sukelia ir krūvio pernešimo tarp nukleofilo ir reaguojančios CO jungties padidėjimą vėlesnėse proceso stadijose. Šie rezultatai leidžia paaiškinti rūgštinės katalizės reiškinį nagrinėjamose reakcijose. Taip pat ištirta prie anglies atomo esančių pakaitų įtaka minėtajam krūvio pernešimui, patvirtinant analogiją tarp nukleofilinio prijungimo prie CO jungties ir nukleofilinės substitucijos reakcijų alkanų dariniuose ankstyvųjų stadijų. Aptarti bananinių jungčių modelio privalumai lyginant su standartiniu (sigma-pi) modeliu dviguboms jungtims.


References / Nuorodos


[1] Chemical Applications of Topology and Graph Theory, ed. R.B. King (Elsevier, Amsterdam, 1983),
http://www.amazon.co.uk/Chemical-Applications-Topology-Theoretical-Chemistry/dp/0444422447
[2] R. Herges, Chem. Rev. 106, 4820 (2006),
http://dx.doi.org/10.1021/cr0505425
[3] M.J.S. Dewar and R.C. Dougherty, The PMO Theory of Organic Chemistry (Plenum Press, New York, 1975),
http://dx.doi.org/10.1007/978-1-4615-1751-1
[4] D.-K. Seo, G. Papoian, and R. Hoffmann, Int. J. Quantum Chem. 77, 408 (2000),
http://dx.doi.org/10.1002/(SICI)1097-461X(2000)77:1%3C408::AID-QUA41%3E3.0.CO;2-1
[5] L. Rincon, J. Mol. Struct. (Theochem) 731, 213 (2005),
http://dx.doi.org/10.1016/j.theochem.2005.04.032
[6] M. Edenborough, Organic Reaction Mechanisms. A Step by Step Approach (Taylor and Francis, Ltd., London, 1999),
https://www.crcpress.com/Organic-Reaction-Mechanisms-A-Step-by-Step-Approach-Second-Edition/Edenborough/9780748406418
[7] P. Laszlo, Logique de la synthese organique (Ecole Polytechnique, Paris, 1990),
http://www.editions-ellipses.fr/product_info.php?products_id=1398
[8] A.S. Dnieprovskii and T.I. Temnikova, Theoretical Fundamentals of Organic Chemistry (Khimia, Leningrad, 1991) [in Russian]
[9] M. Uemura, K. Yagi, M. Inasaki, M. Nomura, H. Yorimitsu, and K. Oshima, Tetrahedron 62, 3523 (2006),
http://dx.doi.org/10.1016/j.tet.2006.01.097
[10] R. Gancarz, Tetrahedron 51, 10627 (1995),
http://dx.doi.org/10.1016/0040-4020(95)00634-K
[11] P. Cabon, R. Rumin, J.Y. Salaun, S. Triki, and H. Des Abbayes, Organometallics 24, 1709 (2005),
http://dx.doi.org/10.1021/om049030r
[12] A. Bogevig, K.V. Gothelf, and K.A. Jorgensen, Chem. Eur. J. 8, 5652 (2002),
http://dx.doi.org/10.1002/1521-3765(20021216)8:24<5652::AID-CHEM5652>3.0.CO;2-J
[13] M. Arno, R.J. Zaragoza, and L.R. Domingo, Tetrahedron: Asymmetry 15, 1541 (2004),
http://dx.doi.org/10.1016/j.tetasy.2004.03.031
[14] M. Bruvoll, T. Hansen, and E. Uggerud, J. Phys. Org. Chem. 20, 206 (2007),
http://dx.doi.org/10.1002/poc.1170
[15] H. Liu and Y. Shi, J. Comput. Chem. 15, 1311 (2004),
http://dx.doi.org/10.1002/jcc.540151112
[16] N. Tezer and R. Ozkan, J. Mol. Struct. (Theochem) 546, 79 (2001),
http://dx.doi.org/10.1016/S0166-1280(01)00430-4
[17] F. Ogliaro, D.L. Cooper, and B. Karadakov, Int. J. Quantum Chem. 74, 223 (1999),
http://dx.doi.org/10.1002/(SICI)1097-461X(1999)74:2<223::AID-QUA17>3.0.CO;2-1
[18] F.A. Carroll, Perspectives on Structure and Mechanism in Organic Chemistry (Brooks/Cole, Pacific Grove, 1998)
[19] V. Gineityte, J. Mol. Struct. (Theochem) 588, 99 (2002),
http://dx.doi.org/10.1016/S0166-1280(02)00146-X
[20] V. Gineityte, Int. J. Quantum Chem. 94, 302 (2003),
http://dx.doi.org/10.1002/qua.10704
[21] V. Gineityte, J. Mol. Struct. (Theochem) 343, 183 (1995),
http://dx.doi.org/10.1016/0166-1280(95)90555-3
[22] V. Gineityte, J. Mol. Struct. (Theochem) 541, 1 (2001),
http://dx.doi.org/10.1016/S0166-1280(00)00628-X
[23] V. Gineityte, J. Mol. Struct. (Theochem) 663, 47 (2003),
http://dx.doi.org/10.1016/j.theochem.2003.08.063
[24] V. Gineityte, J. Mol. Struct. (Theochem) 680, 199 (2004),
http://dx.doi.org/10.1016/j.theochem.2004.03.036
[25] E.A. Robinson and R.J. Gillespie, J. Chem. Educ. 57, 329 (1980),
http://dx.doi.org/10.1021/ed057p329
[26] G.A. Gallup, J. Chem. Educ. 65, 671 (1988),
http://dx.doi.org/10.1021/ed065p671
[27] J.C. Paniagua, A. Moyano, and L.M. Tel, Int. J. Quantum Chem. 26, 383 (2004),
http://dx.doi.org/10.1002/qua.560260307
[28] K.B. Wiberg, Acc. Chem. Res. 29, 229 (1996),
http://dx.doi.org/10.1021/ar950207a
[29] M. Eckert-Maksic, Z.B. Maksic, and R. Gleiter, Theor. Chim. Acta 66, 193 (1984),
http://dx.doi.org/10.1007/BF00549669
[30] W.E. Palke, J. Am. Chem. Soc. 108, 6543 (1986),
http://dx.doi.org/10.1021/ja00281a017
[31] P.A. Schultz and R.P. Messmer, J. Am. Chem. Soc. 110, 8258 (1988),
http://dx.doi.org/10.1021/ja00232a061
[32] P.A. Schultz and R.P. Messmer, J. Am. Chem. Soc. 115, 10925; 10943 (1993),
http://dx.doi.org/10.1021/ja00076a058
http://dx.doi.org/10.1021/ja00076a060
[33] R.P. Messmer and P.A. Schultz, Phys. Rev. Lett. 57, 2653 (1986),
http://dx.doi.org/10.1103/PhysRevLett.57.2653
[34] C.W. Bauschlicher, Jr. and P.R. Taylor, Phys. Rev. Lett. 60, 859 (1988),
http://dx.doi.org/10.1103/PhysRevLett.60.859
[35] J.A. Pople and D.P. Santry, Mol. Phys. 7, 269 (1964),
http://dx.doi.org/10.1080/00268976300101031
[36] C. Sandorfy, Can. J. Chem. 33, 1337 (1955),
http://dx.doi.org/10.1139/v55-162
[37] H. Yoshizumi, Trans. Faraday Soc. 53, 125 (1957),
http://dx.doi.org/10.1039/tf9575300125
[38] V. Gineitytė, Lithuanian J. Phys. 45, 7 (2005),
http://dx.doi.org/10.3952/lithjphys.45101
[39] V. Gineityte, J. Mol. Struct. (Theochem) 585, 15 (2002),
http://dx.doi.org/10.1016/S0166-1280(02)00028-3
[40] V. Gineityte, J. Mol. Struct. (Theochem) 434, 43 (1998),
http://dx.doi.org/10.1016/S0166-1280(98)00071-2
[41] V. Gineityte, J. Mol. Struct. (Theochem) 713, 93 (2005),
http://dx.doi.org/10.1016/j.theochem.2004.09.037
[42] V. Gineityte, J. Mol. Struct. (Theochem) 810, 91 (2007),
http://dx.doi.org/10.1016/j.theochem.2007.02.002