[PDF]    http://dx.doi.org/10.3952/lithjphys.49406

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 49, 439–444 (2009)

M. Treideris, I. Šimkienė, A. Rėza, and J. Babonas
Semiconductor Physics Institute, A. Goštauto 11, LT-01108 Vilnius, Lithuania
E-mail: marius@pfi.lt

Received 22 May 2009; revised 10 November 2009; accepted 18 December 2009

The composite samples of porous n-Si, which have been prepared by anodic etching and embedded with Ni and Co nanostructures by electroless process, were investigated by null-ellipsometry technique. The ellipsometric data were analysed in the multilayer model and the composition of porous layer on the substrate surface was determined. The null-ellipsometry technique was shown to be an efficient tool for nondestructive testing and characterization of porous n-Si samples with embedded transition metal structures.
Keywords: porous n-Si, transition metal nanoparticles, null-ellipsometry
PACS: 78.66.Sq, 81.07.-b, 81.70.Fy

M. Treideris, I. Šimkienė, A. Rėza, J. Babonas
Puslaidininkių fizikos institutas, Vilnius, Lietuva

Nul-elipsometrijos metodu ištirti sudėtingosios sandaros porėtieji n-Si dariniai, paruošti anodiniu ėsdinimu, su Ni ir Co dalelėmis, įterptomis elektrocheminio proceso būdu. Elipsometriniai duomenys išanalizuoti, pasinaudojant daugiasluoksniu modeliu ir nustatytas porėtojo sluoksnio, suformuoto padėklo paviršiuje, sąstatas. Gauti duomenys parodė, kad nul-elipsometrija yra efektyvus neardantis būdas charakterizuoti porėtojo n-Si darinius su įterptomis pereinamųjų metalų dalelėmis.

References / Nuorodos

[1] I. Šimkienė, Porous dielectric and semiconductor films in nanotechnology, Lithuanian J. Phys. 43(5), 319–334 (2003)
[2] L.T. Canham, Silicon quantum wire array fabrication by electrochemical and chemical dissolution of wafers, Appl. Phys. Lett. 57, 1046–1048 (1990),
[3] H. Föll, J. Carstensen, and S. Frey, Porous and nanoporous semiconductors and emerging applications, J. Nanomater. 2006, 91635 (2006),
[4] L. De Stefano, L. Moretti, A. Lamberti, O. Longo, M. Rocchia, A.M. Rossi, P. Arcari, and I. Rendina, Optical sensors for vapors, liquids, and biological molecules based on porous silicon technology, IEEE Trans. Nanotechnol. 3(1), 49–54 (2004),
[5] M. Arroyo-Hernandez, R.J. Martin-Palma, J. Perez-Rigueiro, J.P. Garcia-Ruiz, J.L. Garcia-Fierro, and J.M. Martinez-Duart, Biofunctionalization of surfaces of nanostructured porous silicon, Mater. Sci. Eng. C 23, 697–701 (2003),
[6] A. Tinsley-Bown, R.G. Smith, S. Hayward, M.H. Anderson, L. Koker, A. Green, R. Torrens, A.-S. Wilkinson, E.A. Perkins, D.J. Squirrell, S. Nicklin, A. Hutchinson, A.J. Simons, and T.I. Cox, Immunoassays in a porous silicon interferometric biosensor combined with sensitive signal processing, Phys. Status Solidi A 202(8), 1347–1356 (2005),
[7] J.J. Saarinen, A.M.Weiss, P.M. Fauchet, and J.E. Sipe, Optical sensor based on resonant porous silicon structures, Opt. Express 13(10), 3754–3764 (2005),
[8] D.Y. Lee, J.W. Park, J.Y. Leem, J.S. Kim, S.K. Kang, J.S.Son, H.B. Kang, Y.H. Mun, D.K. Lee, D.H. Kim, and I.H. Bae, Strong and stable red photoluminescence from porous silicon prepared by Fe-contaminated silicon, J. Cryst. Growth 260, 394–399 (2004),
[9] S. Yae, T. Hirano, T. Matsuda, N. Fukumuro, and H. Matsuda, Metal nanorod production in silicon matrix by electroless process, Appl. Surf. Sci. 255, 4670–4672 (2009),
[10] Z.G. Sun and H. Akinaga, Enhanced coercive field of cobalt film deposited on noodle-like porous silicon substrates, Appl. Phys. Lett. 86, 181904 (2005),
[11] S. Balakrishnan, Y.K. Gun'ko, T.S. Perova, M. Venkatesan, E.V. Astrova, and R.A. Moore, Magnetic nanoparticles – porous silicon composite material, Phys. Status Solidi A 202(8), 1698–1702 (2005),
[12] P. Granitzer, K. Rumpf, and H. Krenn, Ferromagnetic nanostructures incorporated in quasi-one-dimensional porous silicon channels suitable for magnetic sensor applications, J. Nanomater. 2006, 18125 (2006),
[13] A.N. Vinogradov, E.A. Gan'shina, V.S. Guschin, V.M. Demidovich, G.B. Demidovich, S.N. Kozlov, and N.S. Petrov, Magnetooptical and magnetic properties of granular cobalt – porous silicon nanocomposites, Techn. Phys. Lett. 27(7), 567–569 (2001),
[14] M. Inoue, H. Uchida, P.B. Lim, A.V. Baryshev, and A.V. Khanikaev, Magnetophotonic crystals: Now and future, Adv. Sci. Technol. 45, 2588–2597 (2006),
[15] A. Huczko, Template-based synthesis of nanomaterials, Appl. Phys. A 70, 365–376 (2000),
[16] M. Lai and D.J. Riley, Templated electrosynthesis of nanomaterials and porous structures, J. Colloid Interf. Sci. 323, 203–212 (2008),
[17] G.-J. Babonas, Ellipsometry, in: Optical Spectroscopy of Surface, ed. V. Vaičikauskas (TEV, Vilnius, 2008) pp. 43–77 [in Lithuanian]
[18] G. Ambrazevičius, G. Zaicevas, V. Jasutis, D. Leščinskas, T. Lideikis, I. Šimkienė, and D. Gulbinaitė, Layered structure of luminescent porous silicon, J. Appl. Phys. 76(9), 5442–5446 (1994),
[19] J. Sabataitytė, A. Rėza, I. Šimkienė, A. Matulis, and G.J. Babonas, Studies of porous layer formalion in p-Si by spectroscopic ellipsometry, in: Self-Formation Theory and Applications, ed. S. Janušonis (Scitec Publications Ltd, Switzerland, 2004) pp. 145–150
[20] G.J. Babonas, A. Niilisk, A. Reza, A. Matulis, and A. Rosental, Spectroscopic ellipsometry of TiO2/Si, Proc. SPIE 5122, 50–55 (2003),
[21] www.sopra-sa.com
[22] P. Petrik, E. Vazsonyi, M. Fried, J. Volk, G.T. Andrews, Cs.S. Daroczi, I. Barsony, and J. Gyulai, Optical models for the ellipsometric characterization of porous silicon structures, Phys. Status Solidi C 2(9), 3319–3323 (2005),
[23] S. Balakrishnan, Y.K. Gun'ko, T.S. Perova, R.A. Moore, M. Venkatesan, A.P. Douvalis, and P. Brouke, Dendrite-like self-assembly of magnetite nanoparticles on porous silicon, Small 2(7), 864–869 (2006),
[24] U. Kreibig and M. Vollmer, Optical Properties of Metal Clusters (Springer, Berlin, 1995),