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IMAGE FORMATION OF RADIALLY AND TEMPORALLY
TRUNCATED BESSEL BEAMS
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The Fourier-lens-formatted image of a radially truncated Bessel beam is theoretically calculated and compared with the
experimentally measured results. A peculiarity – the weak central spot in the focused image of an apertured Bessel beam – has
been recorded for the first time. Femtosecond-domain temporal evolution of the image of two types of superluminal localized
wave packets – the so-called Bessel-X pulse and the focused X wave – is studied theoretically. For the Bessel-X pulse the
aperture truncation leads to appearance of twin pulses in the image plane. In the case of the focused X wave, the ring changes
its colour revealing the full bandwidth of the ultrashort wave packet.
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1. Introduction

The existence of apparently non-diffracting and non-
spreading ultrabroadband wave packets – the so-called
localized waves [1] – in vacuum or linear media was
theoretically predicted already in 1983 [2] and in the op-
tical region experimentally proven afterwards [3]. Clas-
sification of the localized waves into subluminal, lumi-
nal, and superluminal ones – according to their group
velocity ratio to the speed of light c in vacuum – along
with their characteristic properties has been presented
in the review [4] and references therein.

Our aim in this article is to demonstrate what the in-
tensity distribution in the back focal plane of an imaging
device (lens, camera, etc) would look like if these super-
luminal light fields were to hit the device along its opti-
cal axis. In figurative words – we are investigating what
a person would see if a faster-than-light wavefield was
to fall straight into one’s eye. The main wavefield un-
der consideration is the Bessel-X pulse a. k. a. Bessel-X
wave (BXW) [3]. To simplify the understanding of the
image formation of the BXW, we first consider the im-
age formation of a (monochromatic) Bessel beam. The
reason for such approach is that the Bessel-X pulse is
nothing but a specific superposition of Bessel beams
of various frequencies. After studying the BXW we
take a glimpse at another more general wavefield hav-
ing superluminal group velocity: the focused-X-wave

(FXW). Throughout the text we consider only the far-
field paraxial case and image formation is calculated by
means of the Fourier transform only in the rear focal
plane of the imaging device.

2. Bessel beam

A perfect Bessel beam can be thought of as consist-
ing of an infinite number of plane waves, whose wave
vectors k (distributed uniformly) in the momentum
space lie on a conical surface that has a fixed cone ver-
tex angle 2θ. The result of such an axisymmetric super-
position is a wavefield which has a complex wave field
distribution that can be described by the zeroth order
Bessel function of the first kind ΨX (r1, t) = J0 (kρr1)·
exp (ikzz − iωt) where the axial wave number kz is the
component of k that is parallel to the optical axis and the
radial wavenumber kρ is perpendicular to it. Since a re-
alistic Bessel beam cannot have an infinite aperture nor
can the imaging device, we put a circular aperture stop
with a known radius r0 on the focusing lens that is used
to find the image (Fourier transform) of this radially
truncated Bessel function. Mathematically the opera-
tion and its result can be expressed as follows (the two-
dimensional Fourier transform of axisymmetric func-
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Fig. 1. The simplified scheme of set-up of the experiment to find the peculiar central intensity maximum. A HeNe laser at 633 nm, the
axicon’s cone vertex angle 175 deg, and glass with refractive index 1.45 were used.

Fig. 2. The circular aperture stop with a radius of 0.7 mm – placed on the lens symmetrically with respect to the optical axis of the Bessel
beam – produced a central maximum which can be seen in centres of both images. The image on the right is the experimental result and the

image on the left is the theoretical prediction.

tions can be taken via the one-dimensional Hankel
transform):

Ψρ (ρ, t) =

2π exp (−iωt)
r0∫
0

r1J0 (kρr1) J0 (ρr1) dr1 =

2π exp (−iωt)
r0

k2ρ − ρ2
[kρJ0 (ρr0) J1 (kρr0)−

− ρJ0 (kρr0) J1 (ρr0)] , (1)

where r1 denotes the radial coordinate in the front focal
plane and we have set z = 0 to the front focal plane.
As can be seen from the result (1) by setting the radial
coordinate r3 = ρF/k ⇒ r3 ∼ ρ of the rear focal
plane to zero, the intensity of the central spot depends
on square of the Bessel function of the first order J1.
The relationship between J0 and J1 is that the derivative

of J0 is −J1 which in our case means that if there is
an intensity minimum at the edge of the aperture stop,
then there is an intensity maximum in the centre of the
image and vice versa. To verify the existence of such
an effect, we carried out a simple experiment (Fig. 1)
with two aperture stops – one of which should provoke
a maximum in the centre of the image (Fig. 2) and the
other one should not (result not shown in this article).

It might be noteworthy to say that to our best knowl-
edge this peculiar central maximum has never before
experimentally recorded on a picture – at least we found
no publication on such an experiment. Mathematically
this central spot has been derived in [5], but the cen-
tral maximum in their experimental result is indistin-
guishable – presumably because they did not use a small
enough aperture. The focusing properties of Bessel
beams have also been theoretically studied in [6] and
[7], but in these no particular emphasis has been put
on this central spot nor do they have the relevant ex-
perimental part. From our experimental result (Fig. 2)



O. Rebane et al. / Lithuanian J. Phys. 50, 89–94 (2010) 91

we can see that there is a sufficiently good accordance
between the theoretical and the experimental results.
By “sufficiently good accordance” here we mean that
even though the theoretical image has been computed
for an ideal Bessel beam – i. e., we have not consid-
ered the Gaussian intensity profile before the axicon
nor the axicon-specific-effect of intensity growth after
the axicon, neither have we considered the effects of
monochromatic light to our CCD-camera or the exact
“noisy” shape of the aperture stop – still we can see
a remarkable resemblance of the two images and most
importantly we see the central maximum spot.

3. Bessel-X pulse

Whereas the Bessel beam could be described by a
cone of fixed-length (monochromatic) wave vectors that
form a static intensity distribution as well as a static
image, the BXW is formed from an infinite number of
ultrashort coherent pulses. The wave vectors of these
pulses also lie uniformly on a conical surface with a
fixed cone angle, but now the spectrum is polychro-
matic – as is the case with short pulses – which allows
us to describe the Bessel-X pulse as a special superpo-
sition of Bessel beams. The BXW also is the simplest
localized wave field which has its apex moving rigidly
(the wave packet is propagation-invariant) and superlu-
minally (in the case of BXW the intensity distribution as
well as the wave function or EM-field distribution have
these properties) along the optical axis of the pulse.

Keeping in mind that the BXW is a superposi-
tion (S(k) representing the spectrum of it) of many
monochromatic Bessel beams,

Ψbxw (r3, t) =

∞∫
−∞

Ψρ (r3, k, t) S (k) dk =

=
r0

F 2 sin2 θ − r23

∞∫
−∞

exp (−ikct)
i

× exp
[

ik
(
2F +

r23
2F

)]
S (k)

[
F sin θJ0

(
r3k

F
r0

)

× J1 (kρr0)− r3J0 (kρr0) J1

(
r3k

F
r0

)]
dk , (2)

it is possible to derive some properties of the image of
the Bessel-X pulse intuitively. Namely – by changing
the monochromatic Bessel beam’s colour, but not the

cone angle, we get different width to the Bessel func-
tion hitting the lens, which in turn means that for some
frequencies – in fact for most of them – the image has
to have a central intensity spot. This means that the im-
age of a BXW always has to show a central intensity
spot. Since all the component Bessel beams of differ-
ent frequencies produce a ring in the image, it also has
to have a very intense ring. Here we have not considered
relation between the phases of different Bessel beam
components – therefore we do not know the temporal
behaviour of the image. The time-dependence will be-
come clear if we approximate the complex electric field
distribution of ultrashort optical pulses, that the BXW
consists of, with the first derivative of the Dirac delta
function Aδ′(z) (in time domain) and take the Fourier
transform of such a wave field.

After some cumbersome derivation1, using the cir-
cumstance that far from the argument’s origin the func-
tion J0 can be approximated by the cos function and J1
with the sin function, we get the approximate wave field
near the intense ring to be

Ψbxw_far (r3, t) =
4 cos θ(

F 2θ2 − r23
) √ F

r3θ

×

1
cos θ

(
2F+

r23
2F

−tc

)∫
−∞

s (z) ∗ g (z) dz =

=
−1 cos θ
(F θ + r3)

√
F

r3 θ
A cos θ

[
δ

(
2F +

r23
2F

+
r0
F
r3

+r0θ−tc

)
+ δ

(
2F+

r23
2F

− r0
F
r3−r0θ−tc

)]

+
1 cos θ

i(r3 − Fθ)

√
F

r3θ
A cos θ

[
δ

(
2F +

r23
2F

+
r0
F
r3

−r0θ−tc

)
− δ

(
2F+

r23
2F

− r0
F
r3+r0θ−tc

)]
. (3)

Here s(z) = Aδ′(z) represents the ultrashort pulse in
time domain and g(z) is the backward Fourier trans-
form of the sin− cos approximation of (1). The asterisk
denotes convolution operation as usual, F is the focal
length of the focusing lens, r0 is the radius of the aper-
ture stop, and r3 is the radial coordinate in the back focal
plane.
1 To make the equations shorter, the sine and tangent of a paraxial

angle are substituted with the angle.
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It gets even more complex in the centre of the image
(here we denote (−tc+ 2F )/ cos θ ≡ z):

Ψbxw_cen (0, t) =

∞∫
−∞

Ψ3 (0, k, t) S (k) dk =

=
2πr0
iF θ

1

2π

∞∫
−∞

Sz (kz) J1 (k sin θ r0)

× exp
[

ikz
1

cos θ
(−tc+ 2F )

]
dkz

=
2 cos θ
F θ2

Aδ′ (z) ∗
z rect

(
z

2r0 θ

)
√
(r0θ)

2 − z2
=

=
2A cos θ

F θ2
[
(r0θ)

2 − z2
] 3

2

{
(r0θ)

2 rect

(
z

2r0 θ

)

+ (r0θ)
2 z

[
δ (z + r0θ)− δ (z − r0θ)

]
− z3

[
δ (z + r0θ)− δ (z − r0θ)

]}
. (4)

By examining the time differences between these
flashes, the results can be interpreted in the way that the
so-called boundary waves [8] (in the sense of bound-
aries acting as if they were the secondary sources ac-
cording to the Huygens–Fresnel principle) appear from
the edges of the aperture stop – Fig. 3 parts 1 and 3 –
and contribute to the temporally resolved image. If we
were to look at the ring’s position (Eq. (3)) and we could
measure the temporal behaviour of such fast effects,
three time instances could clearly be resolved: first we
would see the boundary wave that appears when the
BXW’s two-sided “light cone” first meets the aperture
stop (Fig. 3 part 1), then we would see the main field
converged by the lens, and finally we would see the sec-
ond boundary wave appear; this last one is formed when
the light cone’s tail hits the aperture stop (Fig. 3 part 3).
We are interested in the central spot of the image: from
the theory we can conclude that at two instants the cen-
tral spot “shines out” when the intensity is particularly
high (Eq. (4)). Both of these central spot flashes (Fig. 3
parts 6 and 7) can be interpreted as a sum of boundary
waves from the geometric shadow region diffracting to
centre of the image. Between these pulses – the spots
that we predicted from the intuitive model – the inten-
sity is very small but oddly not zero.

Fig. 3. An illustration to our interpretation of the time-dependent
intensity distribution in the central cross-section of the imaging de-
vice. The focusing lens in the centre of the aperture stop is not
depicted nor are the different intensities distinguishable. The nine
subpictures are enumerated according to their order of occurrence.
In part 1 the double light cone first hits the aperture stop and pro-
duces a secondary wave (1st boundary wave) in the shadow region.
In part 3 the tail of the light cone hits the aperture stop and the sec-
ond boundary wave is formed. In parts 6 and 7 the moving central
spots can clearly be distinguished. In part 7 the boundary wave
reaches the ring’s position, part 8 shows the arrival of the intense
converged geometrical field, and part 9 depicts the arrival of the
second boundary wave to the Fourier plane in the ring’s position.

Intensity differences between the ring and the bound-
ary waves are not depicted on Fig. 3 but of course the
converging geometrical waves are much more intense
(Eq. (3)) than the boundary waves. The X-shaped cross-
section of the converging geometrical waves – a so-
called Bessel pulse [9] that is most clearly depicted on
Fig. 3 parts 4 and 5 – and its central maximum’s accel-
erating motion have already been directly recorded [9]
using a novel technique called SEA TADPOLE [10].

4. Focused X wave

Just for the purpose of exploring the theoretically de-
rived images of the superluminal localized wave fields
we introduce the FXW and its image. As already men-
tioned, a generalized localized wave field can be syn-
thesized [11] which has its central intensity maximum
moving at superluminal group velocity – the Focused-
X-Wave (FXW, the term proposed in [12]). To avoid
confusion, we note that the word focused here has noth-
ing to do with optical focusing – it simply describes the
shape of the wave function of the FXW. The FXW can
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also be described as a superpostion of Bessel beams,
but with another dispersion relation between the ax-
ial wavenumber and the frequency, which makes the
angle θ frequency-dependent [11]. Here the Bessel
beams’ cone vertex angles as well as k-vector lengths
vary – they are following a hyperbolic relation between
the wave number’s axial component kz and the radial
component kρ. The longer wave vectors that have a
larger angle between the optical axis and themselves are
weighed down by some spectral function like falling ex-
ponent.

When calculating the Fourier image of such a wave
field – for simplicity the aperture has been taken in-
finitely wide – we found that the result should be a
static picture of a concentric “rainbow”. This result is
of course a purely theoretical one and at first glance also
illogical – there should be some temporal dependence
since it is a pulse – but the ideas of infinite aperture and a
perfect lens are also quite illogical so the static rainbow
hypothesis here might as well be true. These problems
we left to a future study.

5. Conclusions

We have investigated the image formation of Bessel
beams and found a peculiar aperture-dependent spot in
the centre of the image. We have also experimentally
verified the existence of such central spot for the first
time. We have carried out calculations of the spatiotem-
poral properties of the image of a Bessel-X pulse and
we found out that the resultant time-dependent image
can most easily be interpreted by the notion of bound-
ary wave diffraction. As a result, which needs further
study, we considered the oddities found in an infinite-
aperture image of a FXW light field: namely the appar-
ently static intensity distribution for a pulsed wave field
such as FXW.
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LAIKE IR ERDVĖJE APRIBOTŲ BESELIO PLUOŠTŲ VAIZDO FORMAVIMAS

O. Rebane, M. Lõhmus, P. Saari

Tartu universiteto Fizikos institutas, Tartu, Estija

Santrauka
Lęšio suformuotas radialiai apriboto Beselio pluošto Furjė vaiz-

das yra apskaičiuotas teoriškai ir palygintas su eksperimentiniais
matavimo rezultatais. Jo ypatybė – silpna centrinė dėmė apertūrą
perėjusio Beselio pluošto fokusuotame vaizde – užfiksuota pirmą
kartą. Teoriškai tiriama dviejų tipų šviesos lokalizuotų bangų pa-

ketų – vadinamojo Beselio X impulso ir fokusuotosios X bangos –
atvaizdo evoliucija femtosekundiniame diapazone. Beselio X im-
pulso apertūrinis apribojimas sukelia dvigubų impulsų atsiradimą
atvaizdo plokštumoje. Fokusuotosios X bangos atveju žiedas kei-
čia spalvą, parodydamas visą ultratrumpųjų bangų paketo spektrinį
plotį.


