[PDF]    http://dx.doi.org/10.3952/lithjphys.50212

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 255–260 (2010)

B. Martinėnas and V. Špakauskas
Faculty of Fundamental Sciences, Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania
E-mail: vspaka@takas.lt

Received 10 March 2010; revised 30 April 2010; accepted 17 June 2010

A semi-empirical model intended for simulation of dispersion of aerosol particles with the diameter larger than 0.05 μm near roadways is proposed. The pollution source is simulated as a cut-off cylinder, formed due to traffic pollution on the roadways at the initial time moment and uniformly filled with aerosol particles. The aerosol particle transfer by the wind further from the roadway is simulated, its settling being influenced by the gravitation, particle buoyancy, and thermal pollutant plume rise effects. Good agreement between the model and experimental results is obtained.
Keywords: modelling, traffic pollution, aerosol particles (>0.05 μm), roadside
PACS: 92.60.Sz, 91.62.Rt, 92.60.Mt, 91.67.gp

B. Martinėnas, V. Špakauskas
Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Darbe pasiūlytas kvaziempirinis modelis, skirtas didesnio nei 0,05 μm skersmens dalelių sklaidai pakelėje modeliuoti ir [2] darbe pateiktiems eksperimentiniams rezultatams aprašyti. Matematiškai aprašytas aerozolio dalelių (>0,05 μm) pasiskirstymas taršos šaltinyje leidžia sumodeliuoti teršalų koncentracijos kaitą transporto magistralės šalikelėje. Eksperimentiniai duomenys [2] rodo, kad aerozolio dalelių, priklausančių 0,05–0,1 ir 0,1–0,22 μm frakcijoms, sklaida priklauso nuo pažemio vėjo greičio. Kai vėjo greitis buvo 1 m/s, abiejų frakcijų aerozolio dalelių koncentracija pradžioje mažėjo iki 60 m nuo kelio ir vėl padidėjo ties 90 m, o toliau vėl mažėjo. Kai vėjo greitis 2,5 m/s, 0,05–0,1 μm dydžio aerozolio dalelių koncentracijos mažėjimas buvo stebimas iki 90 m, didėjimas – iki 150 m, o toliau vėl mažėjimas. Kai pažemio vėjo greitis buvo 2,5 m/s, 0,1–0,22 μm dydžio aerozolio dalelių koncentracija tolstant nuo kelio mažėjo tolygiai. Modeliuojant taršos šaltinį kaip nupjautinį cilindrą, kuris pradiniu laiko momentu dėl autotransporto taršos susiformuoja ant kelio ir yra tolygiai užpildomas aerozolio dalelėmis, vėjo nešamomis tolyn nuo kelio bei veikiamomis gravitacijos, dalelių plūdrumo ir terminio kilimo efektų, gauname aerozolio dalelių koncentracijos kaitą šalikelėje geriau derančią su eksperimentiniais duomenimis [2, 3, 13, 14].

References / Nuorodos

[1] D. Martuzevicius, S.A. Grinshpun, T. Reponen, R.L. Gorny, R. Shukla, J. Lockey, S. Hu, R. McDonald, P. Biswas, L. Kliucininkas, and G. LeMasters, Spacial and temporal variations of PM2.5 concentration and composition throughout an urban area with high freeway density – the Greater Cincinati study, Atmos. Environ. 38, 1091–1105 (2004),
[2] Y. Zhu, W.C. Hinds, S. Kim, and C. Sioutas, Concentration and size distribution of ultrafine particles near a major highway, J. Air Waste Manag. Assoc. 52, 1032–1042 (2002),
[3] Roadside soil and plant pollution, Information note. Economy, Environment, Design 73 (SETRA, 2005),
[4] N. Li, M. Hao, R.F. Phalen, W.C. Hinds, and A.E. Nel, Particulate air pollutants and asthma: A paradigm for the role of oxidative stress in PM-induced adverse health effects, Clin. Immunol. 109(3), 250–265 (2003),
[5] J. Ovadnevaitė, K. Kvietkus, and A. Maršalka, 2002 summer fires in Lithuania: Impact on the Vilnius city air quality and the inhabitants health, Sci. Total Environ. 356, 11–21 (2006),
[6] N.S. Holmes and L. Morawska, A review of dispersion modeling and its application to the dispersion of particles: An overview of different dispersion models available, Atmos. Environ. 40, 5902–5928 (2006),
[7] S. Gokhale and M. Khare, A review of deterministic, stochastic and hybrid vehicular exhaust emission models, Int. J. Transport Manag. 2, 59–74 (2004),
[8] K.S. Rao, R.L. Gunter, J.R. White, and R.P. Hosker, Turbulence and dispersion modeling near highways, Atmos. Environ. 36, 4337–4346 (2002),
[9] A.M. Sahlodin, R. Sotudeh-Gharebagh, and Y. Zhu, Modeling of dispersion near roadways based on the vehicle-induced turbulence concept, Atmos. Environ. 41, 92–103 (2007),
[10] A. Venkatram, V. Isakov, E. Thoma, and R. Baldauf, Analysis of air quality data near roadways using a dispersion model, Atmos. Environ. 41, 9481–9497 (2007),
[11] N. Bukowiecki, J. Dommen, A.S.H. Prevot, R. Richer, E. Weingartner, and U. Baltensperger, A mobile pollutant measurement laboratory – measuring gas phase and aerosol ambient concentrations with high spatial and temporal resolution, Atmos. Environ. 36, 5569–5579 (2002),
[12] U. Baltensperger, N. Streit, E. Weingartner, S. Nyeki, A.S.H. Prevot, R. Van Dingen, A. Virkkula, J.P. Putaud, A. Even, H. ten Brink, A. Blatter, A. Neftel, and H.W. Gäggeler, Urban and rural aerosol characterization of summer smog events during the PIPAPO field campaign in Milan, Italy, J. Geophys. Res. 107(D22), 8193 (2002),
[13] Y. Zhu, W.C. Hinds, S. Kim, S. Shen, and C. Sioutas, Study of ultrafine particles near a major highway with heavy – duty diesel traffic, Atmos. Environ. 36, 4323–4335 (2002),
[14] S. Juknevičius, D. Matyžiūtė-Jodkonienė, and N. Sabienė, Contamination of soil and grass by heavy metals along the main roads in Lithuania, Ekologija 53(3), 70–74 (2007),
[15] D. Imhol, E. Weingartner, U. Vogt, A. Dreiseidler, E. Rosenbohm, V. Scheer, R. Vogt, O.J. Nielsen, R. Kurtenbach, U. Corsmeier, M. Kohler, and U. Baltensperger, Vertical distribution of aerosol particles and NOx close to a motorway, Atmos. Environ. 39, 5710–5721 (2005),
[16] W.C. Hinds, C. Sioutas, and Y. Zhu, Relationship between ultrafine particle size distribution and distance from highway (National Center for Environ. Res. & Quality Assurance, 2004),
[17] P. Linden, Plume dynamics, Mechanical and Environmental Engineering Laboratory (2010),
[18] D.P. Chock, A simple line-source model for dispersion near roadways, Atmos. Environ. 12, 823–829 (1978),