[PDF]    http://dx.doi.org/10.3952/lithjphys.50304

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 335–344 (2010)

V. Ulevičius, S. Byčenkienė, N. Špirkauskaitė, and S. Kecorius
Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: ulevicv@ktl.mii.lt

Received19 March 2010; revised 23 August 2010; accepted 16 September 2010

During 25 March – 5 April 2010 intense wildfires in the Kaliningrad region (Russia) occurred. The resultant smoke plume blanketing the Lithuanian western part was seen in satellite images. Concurrently, an extremely high black carbon (BC) aerosol mass concentration was observed at the background Preila site (55$^{\ci55' N, 21$^{\ci00' E, 5 m a.s.l., Lithuania). The surface measurements and calculation of Ångström exponent of the absorption coefficient carried out separately for shorter and longer wavelengths (i. e., λ \lambda = 370–520 nm and λ \lambda = 590–950 nm) showed that high levels of BC aerosol were related to the transport of air masses rich in biomass burning products from the Kaliningrad region caused by active grass burning. During this event the BC aerosol mass concentration of 1-hour average reached 13000 ng m−3, while normally annual mean concentration values are about 750 ng m−3. The transport of the burning products from fire areas is associated with southeastern flow and strong advection of warm and dry air from South Europe in the lower troposphere. During the event the highest mean values of Ångström exponent of the absorption coefficient α\alpha 370−520 and α590−950 were observed (2.0±0.4 and 1.6±0.3, respectively). The mean values of Ångström exponent of the absorption coefficient during the study period obviously indicate that a major part of carbon mass in aerosol particles transferred by the regional air masses comes from the wildfire location.
Keywords: black carbon aerosol, aethalometer, biomass burning, Ångström exponent of the absorption coefficient
PACS: 92.60.Mt, 92.30.Ef, 92.20.Bk

V. Ulevičius, S. Byčenkienė, N. Špirkauskaitė, S. Kecorius
Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Tirtas juodosios anglies aerozolio masės koncentracijos padidėjimas Lietuvos pajūryje tolimosios pernašos metu iš gaisrų apimtų teritorijų Kaliningrado srityje 2010 metų kovo 25 – balandžio 5 dienomis. Didelis išmetamų teršalų iš gaisrų apimtų teritorijų kiekis sukūrė dūmų šleifą, nusidriekusį link Lietuvos jūros pakrantės. Tuo metu Preilos aplinkos užterštumo tyrimų stotyje buvo stebėta didelė juodosios anglies aerozolio masės koncentracija. Tyrimų metu Preiloje juodosios anglies vidutinė valandos masės koncentracija siekė 13000 ng m−3, kai vidutinė metinė vertė siekia 750 ng m−3. Teršalų koncentracijos matavimai ir sugerties koeficiento Angstremo eksponentės analizė, atlikta atskirai trumpų ir ilgų bangų diapazonuose (t. y. λ \lambda = 370–520 ir 590–950 nm), patvirtino, kad didelė juodosios anglies aerozolio masės koncentracija buvo susijusi su biomasės degimo produktų pernaša iš Kaliningrado srities aktyvių gaisrų židinių. Nustatytos didžiausios vidutinės sugerties koeficiento Angstremo eksponentės vertės α\alpha 370−520 ir α590−950 siekė atitinkamai 2,0±0,4 ir 1,6±0,3. Siejant juodosios anglies aerozolio koncentracijos kaitą su atmosferos cirkuliacija nustatyta, kad didžiausia koncentracija buvo susijusi su pietryčių srautu ir stipria šilto ir sauso oro advekcija į Lietuvos pajūrį iš Pietų Europos.

References / Nuorodos

[1] P.J. Crutzen and M.O. Andreae, Biomass burning in the tropics: Impact on atmospheric chemistry and biogeochemical cycles, Science 250, 1669–1678 (1990),
[2] M.O. Andreae and P. Merlet, Emission of trace gases and aerosols from biomass burning, Global Biogeochem. Cycles 15, 955–966 (2001),
[3] J.E. Penner, X.Q. Dong, and Y. Chen, Observational evidence of a change in radiative forcing due to the indirect aerosol effect, Nature 427, 231–234 (2004),
[4] J.S. Reid, T.F. Eck, S.A. Christopher, R. Koppmann, O. Dubovik, D.P. Eleuterio, B.N. Holben, E.A. Reid, and J. Zhang, A review of biomass burning emissions, part III: intensive optical properties of biomass burning particles, Atmos. Chem. Phys. 5, 827–849 (2005),
[5] D. Rose, A. Nowak, P. Achtert, A. Wiedensohler, M. Hu, M. Shao, Y. Zhang, M.O. Andreae, and U. Poschl, Cloud condensation nuclei in polluted air and biomass burning smoke near the mega-city Guangzhou, China – Part 1: Size-resolved measurements and implications for the modeling of aerosol particle hygroscopicity and CCN activity, Atmos. Chem. Phys. Discuss. 8, 17343–17392 (2008),
[6] P. Reutter, H. Su, J. Trentmann, M. Simmel, D. Rose, S.S. Gunthe, H. Wernli, M.O. Andreae, and U. Poschl, Aerosol- and updraft-limited regimes of cloud droplet formation: influence of particle number, size and hygroscopicity on the activation of cloud condensation nuclei (CCN), Atmos. Chem. Phys. 9, 7067–7080 (2009),
[7] T.L. Anderson, R.J. Charlson, S.E. Schwartz, R. Knutti, O. Boucher, H. Rodhe, and J. Heintzenberg, Climate forcing by aerosols – a hazy picture, Science 300, 1103–1104 (2007),
[8] V. Ramanathan and G. Carmichael, Global and regional climate changes due to black carbon, Nat. Geosci. 1(4), 221–227 (2008),
[9] R. Damoah, N. Spichtinger, C. Forster, P. James, I. Mattis, U. Wandinger, S. Beirle, and A. Stohl, Around the world in 17 days – hemispheric-scale transport of forest fire smoke from Russia in May 2003, Atmos. Chem. Phys. 4, 1311–1321 (2004),
[10] J.V. Niemi, H. Tervahattu, H. Vehkamäki, M. Kulmala, T. Koskentalo, M. Sillanpää, and M. Rantamäki, Characterization and source identification of a fine particle episode in Finland, Atmos. Environ. 38, 5003–5012 (2004),
[11] J.V. Niemi, H. Tervahattu, H. Vehkamäki, J. Martikainen, L. Laakso, M. Kulmala, P. Aarnio, T. Koskental, M. Sillanpää, and U. Makkonen, Characterisation of aerosol particle episodes in Finland caused by wildfires in Eastern Europe, Atmos. Chem. Phys. 5, 2299–2310 (2005),
[12] P.A. Simmonds, R. Manning, P. Derwent, M. Ciais, V. Ramonet, V. Kazan, and D. Ryall, A burning question: Can recent growth rate anomalies in the greenhouse gases be attributed to large-scale biomass burning events? Atmos. Environ. 39, 2513–2517 (2005),
[13] Y.J. Kaufman, D. Tanré, and O. Boucher, A satellite view of aerosols in the climate system, Nature 419, 215–223 (2002),
[14] H. Huntrieser, J. Heland, H. Schlager, C. Forster, A. Stohl, H. Aufmhoff, F. Arnold, H.E. Scheel, M. Campana, S. Gilge, R. Eixmann, and O. Cooper, Intercontinental air pollution transport from North America to Europe: Experimental evidence from airborne measurements and surface observations, J. Geophys. Res. 110, D01305 (2005),
[15] M. Sillanpää, A. Frey, R. Hillamo, A.S. Pennanen, and R.O. Salonen, Organic, elemental and inorganic carbon in particulate matter of six urban environments in Europe, Atmos. Chem. Phys. 5, 2869–2879 (2005),
[16] S. Saarikoski, M. Sillanpää, M. Sofiev, H. Timonen, K. Saarnio, K. Teinilä, A. Karppinen, J. Kukkonen, and R. Hillamo, Chemical composition of aerosols during a major biomass burning episode over northern Europe in spring 2006: experimental and modelling assessments, Atmos. Environ. 41, 3577–3589 (2007),
[17] V. Ulevičius, S. Byčenkienė, V. Remeikis, A. Garbaras, S. Kecorius, J. Andriejauskienė, D. Jasinevičienė, and G. Mocnik, Characterization of pollution events in the East Baltic region affected by regional biomass fire emissions, Atmos. Res. (2010) [in press],
[18] U. Dusek, G.P. Frank, L. Hildebrandt, J. Curtius, J. Schneider, S. Walter, D. Chand, F. Drewnick, S. Hings, D. Jung, S. Borrmann, and M.O. Andreae, Size matters more than chemistry for cloud-nucleating ability of aerosol particles, Science 312, 1375–1378 (2006),
[19] M. Kendall, R.S. Hamilton, J.Watt, and I.D.Williams, Characterisation of selected speciated organic compounds associated with particulate matter in London, Atmos. Environ. 35, 2483–2495 (2001),
[20] O. Dubovik, B. Holben, T.F. Eck, A. Smirnov, Y.J. Kaufman, M.D. King, D. Tanre, and I. Slutsker, Variability of absorption and optical properties of key aerosol types observed in worldwide locations, J. Atmos. Sci. 59, 590–608 (2002),
[21] T.F. Eck, B.N. Holben, D.E. Ward, M.M. Mukelabai, O. Dubovik, A. Smirnov, J.S. Schafer, N.C. Hsu, S.J. Piketh, A. Qeface, J.L. Roux, R.J. Swap, and I. Slutsker, Variability of biomass burning aerosol optical characteristics in southern Africa during the SAFARI 2000 dry season campaign and a comparison of single scattering albedo estimates from radiometric measurements, J. Geophys. Res. Atmos. 108(D13), 8477 (2003),
[22] B.E. Anderson, W.B. Grant, G.L. Gregory, E.V. Browell, J.E.Collins Jr., G.W. Sachse, D.R. Bagwell, C.H. Hudgins, D.R. Blake, and N.J. Blake, Aerosols from biomass burning over the tropical South Atlantic region: Distributions and impacts, J. Geophys. Res. 101, 24117–24137 (1996),
[23] F. Echalar, P. Artaxo, J.V. Martins, M. Yamasoe, and F. Gerab, Long-term monitoring of atmospheric aerosols in the Amazon Basin: Source identification and apportionment, J. Geophys. Res. 103(31), 849–864 (1998),
[24] J. Haywood, S. Osborne, P. Francis, A. Keil, P. Formenti, M.O. Andreae, and P.H. Kaye, The mean physical and optical properties of regional haze dominated by biomass burning aerosol measured from the C-130 aircraft during SAFARI 2000, J. Geophys. Res. Atmos. 108(D13), 8473 (2003),
[25] P. Formenti, O. Boucher, T. Reiner, D. Sprung, M.O. Andreae, M. Wendisch, H. Wex, D. Kindred, M. Tzortziou, A. Vasaras, and C. Zerefos, STAAARTE-MED 1998 summer airborne measurements over the Aegean Sea 2. Aerosol scattering and absorption, and radiative calculations, J. Geophys. Res. Atmos. 107(D21), 4551 (2002),
[26] L. Giglio, Characterization of the tropical diurnal fire cycle using VIRS and MODIS observations, Remote Sens. Environ. 108, 407–421 (2007),
[27] J.S. Reid, E.M. Prins, D.L. Westphal, C.C. Schmidt, K.A. Richardson, S.A. Christopher, T.F. Eck, E.A. Reid, C.A. Curtis, and J.P. Hoffman, Real-time monitoring of South American smoke particle emissions and transport using a coupled remote sensing/box-model approach, Geophys. Res. Lett. 31, L06107 (2004),
[28] R. Honrath, R.C. Owen, M. Val Martin, J.S. Reid, K. Lapina, P. Fialho, M.P. Dziobak, J. Kleissl, and D.L. Westphal, Regional and hemispheric impacts of anthropogenic and biomass burning emissions on summertime CO and O3 in the North Atlantic lower free troposphere, J. Geophys. Res. Atmos. 109(D), D24310 (2004),
[29] R.R. Draxler and G.D. Rolph, HYSPLIT (HYbrid Single-Particle Lagrangian Integrated Trajectory) Model access via NOAA ARL READY Website http://ready.arl.noaa.gov/HYSPLIT.php (NOAA Air Resources Laboratory, Silver Spring, MD, 2003)
[30] G.D. Rolph, Real-time Environmental Applications and Display sYstem (READY) Website http://ready.arl.noaa.gov (NOAA Air Resources Laboratory, Silver Spring, MD, 2010)
[31] A. Virkkula, T. Mäkelä, R. Hillamo, T. Yli-Tuomi, A. Hirsikko, K. Hämeri, and I.K. Koponen, A simple procedure for correcting loading effects of aethalometer data, J. Air Waste Manag. Assoc. 57, 1214–1222 (2007),
[32] J. Sandradewi, A.S.H. Prévôt, E. Weingartner, R. Schmidhauser, M. Gysel, and U. Baltensperger, A study of wood burning and traffic aerosols in an Alpine valley using a multi-wavelength Aethalometer, Atmos. Environ. 42, 101–112 (2008),
[33] J. Andriejauskienė, V. Ulevičius, M. Bizjak, N. Špirkauskaitė, and S. Byčenkienė, Black carbon aerosol at the background site in the coastal zone of the Baltic Sea, Lith. J. Phys. 48, 183–194 (2008),
[34] A. Garbaras, J. Andriejauskienė, R. Barisevičiūtė, and V. Remeikis, Tracing of atmospheric aerosol sources using stable carbon isotopes, Lith. J. Phys. 48, 259–264 (2008),
[35] T.W. Kirchstetter, T. Novakov, and P.V. Hobbs, Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon, J. Geophys. Res. Atmos. 109, D21208 (2004),
[36] M. Schnaiter, H. Horvath, O. Möhler, K.H. Naumann, H. Saafhoff, and O.W. Schock, UV–VIS–NIR spectral optical properties of soot and soot-containing aerosols, J. Aerosol Sci. 34, 1421–1444 (2003),
[37] M. Schnaiter, C. Linke, O. Möhler, K.H. Naumann, H. Saathoff, R. Wagner, U. Schurath, and B. Wehner, Absorption amplification of black carbon internally mixed with secondary organic aerosols. J. Geophys. Res. Atmos. 110, D19204 (2005),
[38] D.E. Day, J.L. Hand, C.M. Carrico, G. Engling, and W.C. Malm, Humidification factors from laboratory studies of fresh smoke from biomass fuels, J. Geophys. Res. Atmos. 111, D22202 (2006),