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An overview of the theoretical background for the novel spectroscopic tool – two-dimensional (2D) optical spectroscopy –
is presented. Principles of nonlinear polarization induction, signal generation, and detection are described. Concepts of het-
erodyned four-wave mixing experimental technique and 2D spectra construction are detailed and the scheme of third-order
polarization calculation is consistently introduced. The system response function theory is formulated for a general multi-level
quantum system considering the system-field interaction perturbatively. Equations of motion for the system density opera-
tor relevant to the third-order response are presented. Basic quantum systems of a two-level atom, two-level molecule, and
a three-level system are considered and analytic expressions of the third-order signal are derived at certain limits. Molecular
complexes are described using the Frenkel exciton approach. 2D spectra of the excitonically-coupled dimers of two-level and
three-level chromophores are presented. Possibilities of extraction of separate spectral elements as well as performing quantum
control by the two-colour 2D spectroscopy for the dimer of excitonically-coupled two-level systems are demonstrated. Effects
of motional narrowing of one-dimensional J-aggregates of pseudoisocyanine and construction of the J-band as well as highly-
efficient excitonic energy transfer in photosynthetic Fenna–Matthews–Olson complex are illustrated by simulated time-resolved
2D spectra.
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1. Introduction

Nonlinear optical techniques performed using ultra-
short laser pulses in regions from IR to visible wave-
lengths are capable of probing various dynamical phe-
nomena on microscopic/nanoscopic scale. The four-
wave mixing (FWM) experiments are the simplest non-
linear techniques available for isotropic systems [1, 2].
In the time domain, experiments are performed by ap-
plying either two-pulses (pump-probe) or three-pulses
(homodyne three-pulse photon echo), or four-pulses
(coherent heterodyned signals) to generate and detect
the desired signal. The FWM signal is generated by
the induced third-order polarization, which is a para-
metric function of the delays between the adjacent laser
pulses. The polarization dynamics with respect to these
parameters reflect wide variety of ultrafast molecular
processes.

Recent development of nonlinear spectroscopies,
such as two-dimensional photon echo (2D PE) spec-
troscopy, is getting widely available for studies of ex-
citon coherence in various molecular systems [3–5].
Molecular dimer is the simplest system, where the spec-
tral features illustrating dynamics of quantum coher-
ence are expected [6–9]. Main features of one-colour
and multi-colour 2D PE spectra of a dimer are well
described theoretically [7, 8, 10–12]. 2D PE spec-
troscopy was the key tool demonstrating a complex
pathway network of the energy transfer and long-lasting
coherence in a photosynthetic Fenna–Matthews–Olson
(FMO) complex [13–15], as well as in LH3 com-
plexes from photosynthetic bacteria [4]. Recently the
2D PE spectra have also been recorded for conjugated
polymers [16] and cylindrical (bi-tubular) J-aggregates
[17, 18]. Apart from clear identification of exciton
transfer between the tubes, quantum coherence oscil-
lations were also observed. By analysing the J-band of
one-dimensional J-aggregate it was demonstrated that
2D PE spectroscopy visualizes the intra-band heteroge-
nous dephasing dynamics [19] and intra-band coher-
ences [17].

Sophisticated experimental techniques have been de-
veloped in the visible optical region maintaining co-
herence between pulses [20, 21]. In 2D optical spec-
troscopy, an experimental FWM scheme with hetero-
dyne detection is applied (Fig. 1). Three wave vectors
of ultra-short laser pulses exciting the sample at times
τ1, τ2, and τ3 are denoted as k1, k2, and k3, respectively.
The induced third-order polarization within the sample
is the source of the radiated electric field. Due to nonlin-
ear processes undergoing within the sample the signal
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Fig. 1. 2D PE experimental scheme with heterodyne detection and
definitions of variables in the lower panel: τ1, τ2, and τ3 are the
times of three laser pulses exciting the sample, while t1, t2, and t3

are the time variables for the system response function.

is generated along directions ±k1±k2±k3. The signal
exclusively generated in ks = −k1 + k2 + k3 direction
is denoted as the photon echo signal. Since the absolute
interaction time is irrelevant due to the system being in
the thermal equilibrium before the first interaction, the
PE signal can be characterized as a three-variable func-
tionW (τ, T, t) of positive delay times between succes-
sive laser pulses τ ≡ τ2−τ1 and T ≡ τ3−τ2 and the de-
tection time t. The time delays between adjacent laser
pulses (τ and T ) are controlled with a high precision.
A two-dimensional one-sided Fourier transform of the
first delay time interval and the signal detection time,
that is, τ → ωτ and t→ ωt, is applied [13, 20, 22–24].
The transformed data can be plotted as two-dimensional
spectrograms with respect to the second delay time T
(Fig. 2). Diagonal peaks, ωτ = |ωt|, reflect the exciton
eigenstates and off-diagonal peaks, ωt ̸= |ωτ |, show
correlations and coherences within the system due to
many-exciton interactions. Delay time T is the the time
parameter used to reveal time evolution of the exciton
wavepacket [4, 10, 11, 13, 14, 17, 18, 24–26]. Since dif-
ferent delay times are independent parameters, the time
resolution of the 2D spectra (T delay) is in principle
unrelated to the frequency resolution (ωt and ωτ ), what
is never available in a classical pump-probe signal. In
experiments the resolution is limited by pulse lengths
and higher-order effects. The pulse overlap regions in-
duce variations in 2D spectra due to mixing with var-
ious interaction sequences [12]; higher order contribu-
tions induce intensity-dependence and exciton annihi-
lation [25].

Using the reduced density matrix formalism, the se-
quence of three system–field interactions can be repre-
sented as follows. At the initial time the system is in the
thermal equilibrium ρ̂gg. After the first interaction with
a weak ultra-short pulse the state of quantum coherence
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Fig. 2. Schematic representation of 2D spectra at fixed population
time T . Diagonal elements and cross-peaks are present. The in-
visible state, that is not available in the absorption spectrum (left),
is revealed by presence of the corresponding cross-peak. Homoge-

neous and inhomogeneous peak widths are separated.

ρ̂eg(t) is created. The second pulse after time τ creates
a population in the ground state ρ̂gg(τ, t) or in the ex-
cited state ρ̂ee(τ, t), or a coherence in the excited state
ρ̂ee′(τ, t) (e ̸= e′). The third interaction creates a great
variety of coherent sates and the electromagnetic field
is radiated by a stimulated emission, leaving the system
in the population state ρ̂ee(τ, T, t) or ρ̂gg(τ, T, t). Dur-
ing the time between interactions processes of dephas-
ing and state transfer take place. As it will be shown
later, a 2D optical spectroscopy enables the direct ob-
servation of dynamics of the density operator with an
excellent temporal and spectral resolution.

Various representations of 2D signal are possible.
The PE signal is denoted as “rephasing” since the
rephasing in the system is opposite after the first and
third interaction and at τ = t the inhomogeneous broad-
ening is eliminated. In spectra it is observed as peak
elongation along the main diagonal. Similarly, the sig-
nal, generated at non-PE direction +k1 − k2 + k3, is
denoted as non-rephasing. It does not have inhomoge-
neous contribution eliminated and the peak lineshapes
are oriented in anti-diagonal direction. The same signal
would be measured in the PE direction kPE if the first
and second pulses were switched (assuming τ < 0).
The sum of rephasing and non-rephasing signals gives
the total, pump-probe-like spectra [10, 11, 27]. Usually
the real part of the total or rephasing spectra is used for
interpretation.

In the experiment, both positive and negative delay
time τ values can be used. For a positive delay τ > 0,
the rephasing signal WR(ωτ , T, ωt) is obtained in the
PE direction ks = −k1 + k2 + k3. At the same time
signal denoted as non-rephasing at non-PE direction

+k1−k2+k3 is also available. The same signal would
be measured in the PE direction if the first and sec-
ond pulses were switched (assuming τ < 0). The sum
of rephasing and non-rephasing signals gives the total
pump-probe-like spectra [10, 11, 27]. Usually the real
part of the total or rephasing spectra is used for inter-
pretation.

More technical details about the experimental set-up
can be found elsewhere [5, 20, 28].

2. Theoretical background

2.1. Semi-classical concept of the excitation and
measurement

The core of the spectroscopy experiment is the semi-
classical approximation. It denotes the separation of
the incoming excitation field, the outgoing signal field,
and the system. Both fields are classical (electric) fields
and the system is considered as a quantum object. The
whole experiment can be partitioned into two stages.
In the first stage the system interacts with the incom-
ing field. Neglecting the magnetic system properties,
this interaction is described by the polarization operator
and the nonlinear polarization induction by the classi-
cal electric field is described by the quantum dynamics.
In the second stage the expectation value of the induced
polarization becomes a source of the signal field. This
stage is a problem of classical electrodynamics and is
described by the Maxwell equations.

Using the density matrix formalism, the Maxwell-
Liouville equations describe the excitation and genera-
tion processes:

∇×∇×E(r, t) +
1

c2
∂2

∂t2
E(r, t)

=−4π

c2
∂2

∂t2
P (r, t) , (1)

P (r, t) =Tr[P̂ (r) ρ̂(t)] , (2)

∂ρ̂(t)

∂t
=− i

h̄

[
Ĥse(Ei(r, t)), ρ̂(t)

]
. (3)

They read as follows: the first equation is the rela-
tionship between induced nonlinear polarizationP (r, t)
of the system and the outgoing electric field (signal
E(r, t)). This expression will be simplified reasonably
assuming the phase-matching experimental geometry
in Sec. 2.3. Second equation is the definition of nonlin-
ear polarization as the trace of the polarization operator
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and the density matrix product. The third expression is
equation of motion of the system density matrix driven
by the excitation field Ei(r, t). Here Ĥse is the semi-
classical Hamiltonian describing the quantum system
under influence of the classical electric field as an ex-
ternal force. Thus it is obvious that having described
the density matrix properly we would be able to obtain
the nonlinear polarization which is the main goal of the
theory of nonlinear spectroscopy.

Equations (1)–(3) are the fundamental equations of
the microscopic spectroscopy formulation. They de-
scribe an arbitrary spectroscopy experiment. In the fol-
lowing we will separately present all the important parts
of the theoretical consideration of the nonlinear spectro-
scopic measurement.

2.2. Multi-wave mixing

Incoming optical electric fields induce the dynamic
polarization in the medium. In phenomenological de-
scription, if the system is nonlinear, we can expand the
polarization in terms of the incoming field harmonic
components as follows:

P (ω) =α(ω)E(ω) (4)

+ β(ω : ω1, ω2)E(ω1)E(ω2)

+ γ(ω : ω1, ω2, ω3)E(ω1)E(ω2)E(ω3)

+ . . . .

α, β, and γ are the linear, quadratic, and the third-order
susceptibilities, respectively. The optical field in princi-
ple may be given by a superposition of harmonic com-
ponents. Then Eq. (4) will involve summations (inte-
grals) over the incoming field frequencies.

Let us consider the second-order contribution

P (2)(ω) = β(ω : ω1, ω2)E(ω1)E(ω2) . (5)

The incoming field

E(t) = cos(k0r − ω0t)E [σω(t− τ)] (6)

with E (x) ∝ exp(−x2/2) corresponds to a single pulse
with wave vector k0 and central frequencyω0, for which
ω0 = |k0|c holds. The Fourier transform of the pulse
gives

E(ω) ∝ exp(±ik0r)E [(ω ∓ ω0)/σω] . (7)

In the case of the narrow-bandwidth pulse we may sub-
stitute ω ≈ ±ω0 (note that ω here is a Fourier variable
so it is positive and negative) into Eq. (5) and have

P (2)(ω)≈ Ē Ē {exp[i(k0 + k0)r]β(ω : ω0, ω0) (8)

+ exp[i(k0 − k0)r]β(ω : ω0,−ω0)

+ exp[i(−k0 + k0)r]β(ω : −ω0, ω0)

+ exp[i(−k0 − k0)r]β(ω : −ω0,−ω0)} .

Here Ē = E (0). We thus get that incoming fields are
mixed together and the induced polarization may in-
volve various combinations of the incoming field wave
vectors. Additionally we can associate these various
wave vector configurations with different nonlinear pro-
cesses. For instance,

β(ω : ω0, ω0) ≈ δ(ω − 2ω0)β(2ω0 : ω0, ω0) (9)

is the second harmonic generation and

β(ω : ω0,−ω0) ≈ δ(ω)β(0 : ω0, ω0) (10)

represents the electro-optic rectification.
At higher orders of the fields we would similarly have

mixing of incoming fields and would obtain a set of pos-
sible signal wave vectors. This phenomenon is called
multi-wave mixing.

2.3. Signal detection

The nonlinear polarization induced within the sam-
ple is the source of the radiating electric field. The
relationship between the laser field induced polariza-
tion (with respect to incoming fields) and the outgoing
signal electric field is described by the first expression
from the Maxwell-Liouville equation set (Eq. (1)). We
consider that the total polarization P (r, t) can be ex-
panded as a series of components according to its prop-
agation direction:

P (r, t) =
∑
n=1

∑
s

P (n)
s (t) exp(iksr − iωst) , (11)

where summation over index s denotes summation over
all possible wave vector and frequency configurations
ks = ±k1 ± k2 . . . and ωs = ±ω1 ± ω2 . . . . Since the
electric field is linear in polarization, we have Eq. (1)
relationship for each nonlinear component of the polar-
ization. For a single term in Eq. (11),

P (z, t) = P (n)
s (t) exp(−iωst+ iksz) , (12)
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which propagates along z direction, we look for a solu-
tion of the electric field (Eq. (1)) in one dimension in
the form of

E(z, t) = Es(z, t) exp(−iωst+ ik′sz) + c. c. , (13)

where k′s = ωs
c n(ωs). In Eq. (12) it is assumed that the

signal, generated in the ks direction, is parallel to the z
axis. Also, the rapidly oscillating part of the third-order
polarization is extracted in Eq. (12) making P (n)

s (t) a
slowly-varying envelope of the temporal third-order po-
larization dynamics. For the slowly-varying envelope
the relation ∣∣∣∣ ∂∂tP (n)

s (t)

∣∣∣∣ ≪ ∣∣ωsP
(n)
s (t)

∣∣ (14)

holds. The same approximation is valid for the electric
field envelope E(z, t) as well. Inserting these expres-
sions into Eq. (1), one would obtain

ik′s
∂

∂z
Es(z, t) = −2π

ω2
s

c2
P (n)
s (t) exp(i∆kz) , (15)

where ∆k ≡ ks − k′s. By integrating over the sample
length from z = 0 to z = l we get

Es(l, t) =

i
2πωs

n(ωs)c
l P (n)

s (t) sinc
∆kl

2
exp

(
i
∆kl

2

)
. (16)

The sinc(x) = sin(x)/x function is related to the
phase-matching condition. If the sample size is smaller
than the wavelength, l ≪ λ, the signal field is radiated
with an arbitrary wave vector since ∆kl ≪ 1 and the
sinc function is equal to 1. For macroscopic samples,
l ≫ λ, the sinc function becomes the Dirac delta func-
tion with respect to ∆k and the signal is generated only
at k′s = ks.

We have treated the experimental setup as one-
dimensional, but at this point we can make general-
izations for signals in three dimensions. For micro-
scopic samples smaller than the signal wavelength, the
signal direction is not selective to wave vector of the
polarization. This has implication, for instance, for
single-molecule spectroscopy. For macroscopic sam-
ples, much larger than the signal wavelength, the signal
contains a multiple interference from each point in the
sample. The interference is positive only at the signal
wave vector equal to the wave vector of the polarization.

As it was shown in a previous section the polarization
can be induced only with specific wave vectors, depend-
ing on the incoming field wave vectors due to multi-
wave mixing. This provides a powerful utility in the

experiment: while the total polarization may be radi-
ated in many spatial directions according to multi-wave
mixing represented by expansion (11), the detector can
be placed in a specific position so that only one spe-
cific component of the total signal field was detected.
By resolving one signal component experimentally, we
can write the relationship between measured irradiance,
electric field, and polarization. From equation (16) it is
clear that the electric field Es(l, t) detected in the ks

direction is linearly proportional to the corresponding
component of the induced polarization. The detected
intensity is then

Is ∝ |Es(t)|2 ∝ l2
∣∣P (n)

s (t)
∣∣2 . (17)

This is a very convenient result since it shows that any
spectroscopic measurement can be simulated just by
knowing the time dependence of the nonlinear polar-
ization of the system. This relationship is for the homo-
dyne detection regime where the measurement probes
the signal intensity.

In the heterodyne detection scheme the detector mea-
sures a superposition of the electric field, emitted from
the sample, and the external local oscillator (LO) pulse,
applied in the signal direction ks. Then the detected in-
tensity is

Is ∝
∣∣ELO(t) + P (n)

s (t)
∣∣2 (18)

= |ELO(t)|2 +
∣∣P (n)

s (t)
∣∣2 + 2Re

[
E∗LO(t)P

(n)
s (t)

]
.

On the rhs of this expression the first two terms can be
neglected since the polarization is very weak and the
LO pulse is well known and can be subtracted. The
measured quantity is then the integral

W (t) ≡ Re
∞∫
−∞

dt
[
E∗LO(t)P

(n)
s (t)

]
. (19)

If we treat the LO as δ-shaped, the measurement is
W (t) = ReP (n)

s (t). This result also involves the phase
difference between the polarization and the LO pulse
ϕ. If the phase difference is fixed (locked), we can also
probe the imaginary part of the induced polarization by
taking ϕ = π/2. From Eq. (19) it is then possible to
extract both real and imaginary parts of the induced po-
larization (we will define the real and imaginary con-
tributions later). In that case we define the heterodyne
signal as the complex signal, equivalent to the induced
polarization.

The above given relationships may break for certain
cases. The generated signal must be considered as very
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weak compared to the incoming laser radiation so that
the incoming field is not affected by the multi-wave
mixing. Electric field and induced polarization depen-
dence (Eq. (17)) also breaks for optically dense samples
since the absorption effects are significant: then the po-
larization induction is not a separable process from field
propagation.

2.4. Induced polarization

2.4.1. The Liouville-space and reduced density matrix
In this section we address the problem of Eqs. (2) and

(3) and describe the quantum properties of the system.
When the system constituting particles are smaller than
the optical wavelength of the incident electric field, we
can use the dipole approximation. Then the molecule–
field interaction is assumed as a dipole–field interaction.
The total Hamiltonian of the system, its environment,
and the classical electric field can be written as follows:

Ĥ = Ĥmol+ĤB+ĤSB+Ĥint = Ĥmat− µ̂E(t) . (20)

Here Ĥmol is the molecular part of the Hamiltonian,
containing all degrees of freedom, which have to be
included explicitly. The second term ĤB represents
the reservoir (bath) causing dephasing and relaxation.
It has an infinite number of degrees of freedom, they
are not directly observable and will be treated approxi-
mately. ĤSB is the interaction between the system and
the reservoir. These terms of the Hamiltonian consti-
tute the material part of the system Ĥmat, which does
not include the optical field. The last term, Ĥint, is the
dipolar system–field interaction.

The dynamics of the system governed by the Hamil-
tonian is more conveniently described using superoper-
ators. Superoperators are given by certain operation on
operators. For example, a commutator with Hamilto-
nian can be written as

L Â ≡
[
Ĥ, Â

]
= ĤÂ− ÂĤ . (21)

This particular superoperator L is denoted as a Liou-
ville (super)operator (Liouvillian). The density matrix
evolution is expressed much more conveniently in the
Liouville space, which is a direct product space of two
Hilbert spaces. The regular operator, expressed as the
N ×N matrix in the Hilbert space, is recasted as a N2

length vector in the Liouville space. An arbitrary su-
peroperator can then be written as a matrix ofN2×N2

size. The operation of a superoperator on an operator
then amounts to matrix and vector multiplication. The
detailed introduction to Liouville-space representation

of the system density matrix evolution can be found
elsewhere [29].

We introduce other superoperators in an analogous
way

LmatÂ ≡
[
Ĥmat, Â

]
, (22)

LintÂ ≡
[
µ̂, Â

]
E(t) = V ÂE(t) .

The equation of motion for the combined system and
reservoir density matrix σ̂(t) is then given by

∂

∂t
σ̂(t) = − i

h̄

[
Ĥmat − µ̂E(t), σ̂(t)

]
(23)

= − i
h̄

Lmatσ̂(t) +
i
h̄

Lintσ̂(t).

This equation is equivalent to the Schrödinger equation
except that the wave function and the Hamiltonian are
replaced by the density matrix and the Liouville super-
operator, respectively. Thus, all formalism of quantum
mechanics can be directly applied to the density matrix
in the Liouville space.

However, this equation cannot be solved exactly
since the number of degrees of freedom of the thermal
reservoir is infinite. Instead, the reduced density matrix
must be introduced. It is defined only within the system
degrees of freedom. This is accomplished by averaging
over the reservoir degrees of freedom. We thus define
the reduced density matrix as

ρ̂(t) = TrB {σ̂(t)} . (24)

Assuming that the bath is in equilibrium at all times we
write the bath density matrix as

ρ̂B = Z −1
B exp(−βĤB) , (25)

where

ZB =
∑
ν

exp(−βE(B)
ν ) (26)

is the bath partition function in terms of its eigenstates
with energies E(B)

ν ; and β = (kBT )
−1 is the inverse

thermal energy. The density matrix of the whole sys-
tem is now a direct product of the system and the bath
density matrices: σ̂ = ρ̂⊗ ρ̂B . This level of description
is known as Born approximation.

We will be interested in the dynamics of the reduced
density matrix. It is possible to derive the equation of
motion for the system density matrix using an approx-
imate perturbation theory with respect to the system–
reservoir interaction [30]. The time-local equation of
motion is obtained in the Markovian approximation,
where the system correlation time is accepted as much
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shorter than the relevant system dynamics. For the next
subsection we consider the optical properties and as-
sume that the reservoir effects on the system density
matrix can be represented by a certain time-local relax-
ation superoperator.

2.4.2. Series expansion of the density matrix
In this section we neglect the reservoir and assume

Ĥmat ≡ Ĥmol as well as σ̂(t) ≡ ρ̂(t), where Ĥmol
is time-independent. The field–system interaction is
treated perturbatively while the material (molecular)
part is the reference (see Eq. (23)). This scheme of
time-dependent perturbation theory application is typi-
cal of the most spectroscopic calculations. For this type
of description, the interaction picture in the Liouville
space is more useful than Schrödinger or Heisenberg
picture in the Hilbert space. Essentially it represents the
description of the problem in the rotating frame. Evo-
lution of the whole system can then be described as the
reference. The reference molecular evolution operator
in the Liouville space is defined as [29]

Umol(t) ≡ exp
{
− i
h̄

Lmolt

}
(27)

and any time-dependent quantity (e. g. a system density
operator) can be transformed into the interaction picture
as

ρ̂I(t) = U †
mol(t)ρ̂(t) , (28)

where U †
mol(t) denotes a hermitian conjugate operator.

The transition between the Liouville and the Hilbert-
space is accomplished by

U †
mol(t)ρ̂(t) ⇒ Û †(t) ρ̂(t) Û(t)

= exp
{

i
h̄
Ĥmolt

}
ρ̂(t) exp

{
− i
h̄
Ĥmolt

}
. (29)

Here operator Û † acts on density operator’s bra from
the left and Û on ket from the right. Having defined the
molecular evolution operator, we are able to move to
the interaction picture and calculate a time-derivative of
the system density matrix using Eq. (23) for the reduced
density operator:

∂

∂t
ρ̂I(t) =

i
h̄

Lmol U
†

mol(t) ρ̂(t) + U †
mol(t)

∂

∂t
ρ̂(t)

=
i
h̄

V (t) ρ̂I(t)E(t) . (30)

The system part (Lmol) is included into the evolution
operator and the interactional term is left in the equation

of motion. This expression can be formally integrated:

ρ̂I(t) = ρ̂I(t0) +
i
h̄

t∫
t0

dτ V (τ) ρ̂I(τ)E(τ) . (31)

Now we move back to the Schrödinger picture. Since
we treat the system density matrix as describing an
equilibrium system state at initial time t0, the molec-
ular evolution operator does not affect it:

ρ̂(t) = ρ̂eq +
i
h̄

t∫
t0

dτ Umol(t)V (τ) ρ̂(τ) E(τ) . (32)

By repeatedly inserting the rhs of Eq. (32) into the ρ̂(t)
term within the integral, one would obtain an infinite
series

ρ̂(t) = ρ̂eq +
i
h̄

t∫
t0

dτ Umol(t)V (τ) ρ̂eq E(τ)

+

(
i
h̄

)2
t∫

t0

dτ
τ∫

t0

dτ ′Umol(t)V (τ)V (τ ′) ρ̂eq E(τ)

× E(τ ′) +

(
i
h̄

)3
t∫

t0

dτ
τ∫

t0

dτ ′
τ ′∫

t0

dτ ′′Umol(t)V (τ)

× V (τ ′)V (τ ′′) ρ̂eq E(τ)E(τ ′)E(τ ′′) + . . . (33)

2.4.3. Linear response function
From Eq. (2) we write for the linear polarization

P (1)(t) =

t∫
t0

dτ S(1)(t, τ)E(τ) . (34)

Here we have defined the linear response function
S(1)(t, τ). In the Liouville space it is given by

S(1)(t, τ) =
i
h̄

Tr[µ̂Umol(t)V (τ)ρ̂eq] . (35)

By defining the variable change t1 ≡ t − τ and send-
ing the initial time (when system is unaffected by the
interactions) to t0 → −∞, one would obtain

P (1)(t) =

∞∫
0

dt1 S(1)(t1)E(t− t1) . (36)
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In the expression of the system response function
(Eq. (35)) superoperators are replaced by commutators
of the Hilbert space:

S(1)(t1) =
i

h̄
Tr{µ̂Umol(t1)V ρ̂eq}

=
i

h̄
Tr{µ̂ U(t1) [µ̂, ρ̂eq]U

†(t1)} (37)

or

S(1)(t) =
i
h̄
θ(t)[J(t)− J∗(t)] (38)

with

J(t) ≡ Tr{µ̂(t) µ̂(0) ρ̂eq} . (39)

Expressions, which can be useful for calculations, are
obtained by expanding these operator expressions in the
system eigenstate basis.

2.4.4. The third-order response function
From Eq. (2) we obtain

P (3)(t) =

t∫
t0

dτ
τ∫

t0

dτ ′
τ ′∫

t0

dτ ′′ S(3)(t, τ, τ ′, τ ′′)

× E(τ)E(τ ′)E(τ ′′) . (40)

Here we have defined the third-order system response
function S(3)(t, τ, τ ′, τ ′′). In the Liouville space it is
given by

S(3)(t, τ, τ ′, τ ′′)

=

(
i
h̄

)3

Tr[µ̂Umol(t)V (τ)V (τ ′)V (τ ′′) ρ̂eq] . (41)

By committing a variable change t3 ≡ t−τ , t2 ≡ τ−τ ′,
t1 ≡ τ ′ − τ ′′ and sending the initial time to t0 → −∞,
we obtain

P (3)(t) =

∞∫
0

dt3

∞∫
0

dt2

∞∫
0

dt1 S(3)(t3,t2,t1)

×E(t− t3)E(t− t3 − t2)E(t− t3 − t2 − t1) . (42)

This formula is the most useful expression of the third-
order polarization. It was obtained by applying a pertur-
bative scheme upon the equation of motion of the sys-
tem density operator. It is a convolution of the third-
order response function and a product of electric field
functions. From Eq. (42) it is evident that the third-
order polarization is a function of t, but, however, it is

also dependent on T and τ via the electric field compo-
nents representing laser pulse configuration. Now we
must find an efficient way to calculate the system re-
sponse function and express the multiplication of elec-
tric fields in a convenient form.

In the expression of the system response function
(Eq. (41)) the superoperators are replaced by commu-
tators of the Hilbert space:

S(3)(t3, t2, t1)

=

(
i
h̄

)3

Tr{µ̂Umol(t3)V µ̂Umol(t2)V Umol(t1) ρ̂eq}

=

(
i
h̄

)3

Tr{µ̂ U(t3) [µ̂, U(t2)[µ̂, U(t1)[µ̂, ρ̂eq]

× U †(t1)]U
†(t2)]U

†(t3)} . (43)

Expanding the commutators we get

S(3)(t3, t2, t1) =

(
i
h̄

)3

θ(t1) θ(t2) θ(t3)

×
4∑

α=1

[Rα(t3, t2, t1)−R⋆
α(t3, t2, t1)] , (44)

where

R1(t3, t2, t1) (45)
= Tr{µ̂(t1)µ̂(t1 + t2)µ̂(t1 + t2 + t3)µ̂(0)ρ̂eq} ,

R2(t3, t2, t1) (46)
= Tr{µ̂(0)µ̂(t1 + t2)µ̂(t1 + t2 + t3)µ̂(t1)ρ̂eq} ,

R3(t3, t2, t1) (47)
= Tr{µ̂(0)µ̂(t1)µ̂(t1 + t2 + t3)µ̂(t1 + t2)ρ̂eq} ,

R4(t3, t2, t1) (48)
= Tr{µ̂(t1 + t2 + t3)µ̂(t1 + t2)µ̂(t1)µ̂(0)ρ̂eq} .

Heaviside functions in Eq. (44) emphasize the princi-
ple of causality: as it is seen in Eq. (42), the third-order
polarization at time t depends on the electric field of
earlier times. In other words, the electric field in the
past (a cause) determines the polarization in the future,
so if any of system response function arguments is neg-
ative, the function must be zero. Also one can notice
that the total system response function is always real. It
is clear from the experiment, since the polarization is a
measurable quantity and has a corresponding hermitian
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Fig. 3. Double-sided Feynman diagrams, corresponding to the com-
ponents of nonlinear response function in Eqs. (46)–(49) for a gen-
eral multi-level system, where |a⟩–|c⟩ stand for energy states; |g⟩ is

ground state.

quantum mechanical operator, the average of which is
always real.

Because of the cyclic nature of the trace operation (it
is valid to commit a cyclic permutation of operators in-
side trace brackets), chronologically ordered dipole mo-
ment operators can act upon the density operator from
either side, i. e. they act upon a bra or ket of the den-
sity operator. These sequences for Eqs. (46)–(49) are
conveniently expressed schematically using the abstract
double-sided Feynman diagrams [7, 23, 29, 31] (Fig. 3).
Vertical arrows denote the time direction; variables t1,
t2, and t3 are the time intervals between two succes-
sive interactions of the dipole operator and the system
density operator the (electric field and the system); hor-
izontal lines show the side of the dipole operator action
upon the density operator. A ket and a bra during the
same time interval (|α⟩⟨β|) denote a state of coherence
(α ̸= β) or population (α = β) corresponding to an
element of the system density matrix being affected.

However, the whole system response depends on the
electric field (i. e. the direction and time of incident
pulses). So it is possible to express all permutations of
interaction orders and directions in the excitonic basis
by double-sided diagrams as well. It will be shown in
Sec. 4.2.

2.4.5. A non-perturbative propagation of the density
matrix
The induced polarization can also be calculated non-

perturbatively. We have the equation of motion of the
time dependent density matrix with the optical field in-
cluded explicitly as

∂

∂t
ρ̂(t) = − i

h̄
(Lmol − iD + Lint)ρ̂(t) , (49)

where evolution of the material part is decomposed
into the molecular and dissipational parts given by
Lmol... ≡ [Ĥmol, ...] and D , respectively, and the in-
teraction with the field is Lint. The interaction part de-
pends on the electric field. At point r of the space

E(t) =
1

2
E0

3∑
i=j

Ej(t− τj) eikjr−iωj(t−τj) + c. c. ,

(50)
where Ej is a temporal Gaussian envelope function of
jth laser pulse and τ1, τ2, and τ3 are the central times
of each pulse (see experimental scheme in Fig. (1)).

To select specific polarization configuration, corre-
sponding to certain signal wave vector, one needs to dis-
tinguish different density matrices with different wave
vectors. This is easily accomplished when the incoming
pulses do not overlap. For instance, consider the first
interaction. To distinguish +k1 and −k1 density matri-
ces the former must include only multiplication by the
dipole operator from the left, while the latter is obtained
by multiplying the dipole operator from the right. We
then have

∂

∂t
ρ̂
(1)
+ (t) =− i

h̄
(Lmol − iD)ρ̂

(1)
+ (t)

+
i
h̄
µ̂ ρ̂(0)(t)E1(t− τ1) e−iω1(t−τ1) (51)

and

∂

∂t
ρ̂
(1)
− (t) =− i

h̄
(Lmol − iD)ρ̂

(1)
− (t)

+
i
h̄
ρ̂(0)(t) µ̂E1(t− τ1) e+iω1(t−τ1) . (52)

Note, however, that [ρ̂(1)+ ]eg = [ρ̂
(1)
− ]∗ge, so it is enough

to solve one equation. For the second interaction we
would have four possible terms corresponding to +k1+
k2, +k1−k2, −k1+k2, and −k1−k2. Relevant equa-
tions are as follows:

∂

∂t
ρ̂
(2)
++(t) =− i

h̄
(Lmol − iD) ρ̂

(2)
++(t) (53)

+
i
h̄
µ̂ ρ̂

(1)
+ (t)E2(t− τ2) e−iω2(t−τ2) ,

∂

∂t
ρ̂
(2)
−+(t) =− i

h̄
(Lmol − iD) ρ̂

(2)
−+(t) (54)

+
i
h̄
µ̂ [ρ̂

(1)
+ (t)]† E2(t− τ2) e−iω2(t−τ2) ,
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and the other two are just complex conjugated. For the
third interaction we can choose the photon echo config-
uration −k1 + k2 + k3, where we have equation:

∂

∂t
ρ̂
(3)
−++(t) =− i

h̄
(Lmol − iD) ρ̂

(3)
−++(t) (55)

+
i
h̄
µ̂ ρ̂

(2)
−+(t)E3(t− τ3) e−iω3(t−τ3) .

Solution for these equations may be performed in an ar-
bitrary basis set, however, if the Schrödinger equation
for the system can be solved and the dissipational super-
operator can be calculated, the solution is much simpler
in the eigenstate basis. The photon echo polarization is
then given by the trace of the polarization operator with
the relevant system density matrix:

P (τ, T, t) =
∑
αβ

µαβ [ρ̂
(3)
−++]βα , (56)

here α and β represent all possible eigenstates (the
ground state, one-, and two- exciton states). Specific
resonant manifolds of states can be selected in the
eigenstate basis set by considering only resonant inter-
actions. Then, for instance, in Eq. (49) we select only
system states which have the energy splitting close to
the optical frequency. If we label the ground state as g
with energy 0, then only the following solution is nec-
essary:

∂

∂t
[ρ̂

(1)
+ ]eg =−iωeg [ρ̂

(1)
+ ]eg − Deg,e′g [ρ̂

(1)
+ ]e′g

+
i
h̄
µeg E1(t− τ1) e−iω1(t−τ1) , (57)

with ωeg ≈ ω1. Note that the zero-order ground state
density matrix [ρ̂(0)]gg ≡ 1.

The decomposition presented above is equivalent to
the third-order perturbative expansion presented in pre-
vious sections. Another type of decomposition is ca-
pable to select the desired signal. It is based on phase
cycling. Consider the optical field in Eq. (50). The kjr
term in the exponent is the phase of the field. Con-
sider that instead of one system we have a lattice of
systems along the incoming field propagation direc-
tion. Then at each site of the lattice, k, the phases
will be kjrk. Having N sites in the lattice separated
by lattice constant a we can perform a Fourier trans-
form of a quantity, which depends on k and have a set
of wave vectors k′ associated to the lattice. The max-
imum lattice wave vector is k′N = 2π/a and the step
between these wave vectors is ∆k′ = 2π/(Na). If
a = 2π/(Nkj), we would get ∆k′ = kj . If we then

have a quantity as a function of the lattice site, its dis-
crete Fourier transform is given as a function of kj , 2kj ,
3kj ,... The symmetries of Fourier transform imply that
the amplitude at (N − 1)kj is equivalent to −kj and
at (N − 2)kj to (N − 2)kj ≡ −2kj . Calculating the
quantity at N lattice sites thus allows to decompose it
into components corresponding to phases exp(−inkr)
with n = −N/2,−N/2+1, ...0...+N/2−1 for even
N (odd N can be incorporated similarly).

Such decomposition can be performed for all three
incoming fields as a three-dimensional lattice, and the
induced polarization can be calculated for any combina-
tion of the incoming field wave vectors. For instance,
for configuration ks = −k1 + k2 + k3 it is sufficient to
take N = 4 and this configuration can be extracted by
a discrete Fourier transform of the calculated signal at
various lattice sites. Different lattice sites correspond to
different phases of the incoming fields, thus, this proce-
dure is called phase cycling (originally without invok-
ing the lattice concept). The convenience of this spa-
tial Fourier transform is as follows: for a specific N
the calculated signal exactly extracts a particular signal
wave vector up to N th order in the field. Higher or-
ders in the field are mixed. Thus, by taking largeN this
procedure allows us to calculate the signal to a speci-
fied order in the field. For instance, the third order in
ks = −k1 + k2 + k3 signal direction is the lowest or-
der which contributes. 5th, 7th, etc. order in the field
can therefore be calculated by the phase cycling. In the
perturbative scheme this would require calculation of
higher order perturbation series expressions which un-
fortunately scale very unfavorably with the order in the
field. Non-perturbative approach [25] has been used to
account for higher than third-order effects in the non-
linear signals.

2.5. Overlapping electric fields in perturbative
expansion

Let us consider the product of the total incoming field
(from Eq. (42))

E(r, t−t3−t2−t1)E(r, t−t3−t2)E(r, t−t3) . (58)
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For convenience we can separate a spatial phase factor
Φj = kjr from the time-dependent factors and identify
the interaction sequence:

Ej(r, t− t3 − t2 − t1)≡E
[1]
j eiΦj + Ē

[1]
j e−iΦj ,

Ej(r, t− t3 − t2)≡E
[2]
j eiΦj + Ē

[2]
j e−iΦj ,

Ej(r, t− t3)≡E
[3]
j eiΦj + Ē

[3]
j e−iΦj , (59)

where now E
[1]
j denotes a forward-propagating pulse

which interacts first with the system, E[2]
j stands for the

second-interacting pulse, andE[3]
j for the third. Ē[m]

j =

E
[m]∗
j indicates the backward propagation (conjugate

part); here both j, m = 1, 2, 3. The expressions for
E

[m]
j are as follows:

E
[1]
j ≡ Ej(t− t3 − t2 − t1 − τj)

× e−iωj(t−t3−t2−t1−τj)eiϕj ,

E
[2]
j ≡ Ej(t− t3 − t2 − τj)e−iωj(t−t3−t2−τj)eiϕj ,

E
[3]
j ≡ Ej(t− t3 − τj)e−iωj(t−t3−τj)eiϕj . (60)

Since we are considering a response in the direction
−k1+k2+k3, we can neglect terms which have spatial
phase factors different from −Φ1 +Φ2 +Φ3 after sub-
stituting Eqs. (59) into Eq. (42). Assuming all electric
field pulses being of the same frequency (ω0 ≡ ω1 =
ω2 = ω3) and phase not tuned (ϕ1 = ϕ2 = ϕ3 = 0),
the product of the total incoming field (Eq. (58)) is

[Ē
[1]
1 E

[2]
2 E

[3]
3 + Ē

[1]
1 E

[2]
3 E

[3]
2 ) eiω0(t3−t1)

× (E
[1]
2 Ē

[2]
1 E

[3]
3 + E

[1]
3 Ē

[2]
1 E

[3]
2 ) eiω0(t3+t1)

× (E
[1]
2 E

[2]
3 Ē

[3]
1 + E

[1]
3 E

[2]
2 Ē

[3]
1 ) eiω0(t3+2t2+t1)]

× e−iω0(t−τ) . (61)

Terms in this product lie in three groups according to
their phase factors. They are eiω0(t3−t1), eiω0(t3+t1),
and eiω0(t3+2t2+t1). As it will be shown later, sys-
tem response function can be decomposed into compo-
nents having opposite phase factors. In a multiplica-
tion of the system response function and electric field
product some of these phase factors will cancel making
that term slowly-varying, others will be modulated by
the sum frequencies. Integration over time (Eq. (42))
makes the latter ones negligible compared to integrals

of slowly-varying terms. This elimination is known as
the rotating-wave approximation (RWA).

2.6. Two-dimensional photon echo signal

The third-order polarization is the main quantity un-
der consideration in theory of nonlinear response of
bulk isotropic samples. One of the most advanced ex-
perimental set-ups is presented in the scheme in Fig. 1:
here the polarization is induced by three incoming laser
fields. According to the scheme we can consider the set
of signal wave vectors representing all permutations of
incoming field wave vectors ks = ±k1 ± k2 ± k3 and,
correspondingly, frequencies ωs = ±ω1 ± ω2 ± ω3. In
this scheme the signal may be defined as the function of
the delay times between the laser pulses, W (τ, T, t) ≡
P (3)(τ, T, t).

A two-dimensional photon echo spectrum is ob-
tained by applying 2D Fourier transform of polarization
P (3)(τ, T, t), detected in −k1+k2+k3 direction, over
time variables τ and t. As it was mentioned in the intro-
duction, separation of the total signal to the rephasing
and non-rephasing signals is possible according to the
range of delay time τ . For the rephasing signal (τ > 0),

WR(ωτ , T, ωt)

=

∞∫
0

dτ e−iωτ τ

∞∫
0

dt e−iωtt P
(3)
−k1+k2+k3

(τ, T, t) . (62)

In the scheme of the non-rephasing signal generation,
first two pulses are exchanged, but the detection takes
place in−k1+k2+k3 direction. The same signal would
be detected in +k1 − k2 + k3 experimental direction
if τ was positive. Just its spectral elements would lie
in the opposite plane of ωτ with respect to rephasing
spectrum:

WNR(−ωτ , T, ωt)

=

∞∫
0

dτ eiωτ τ

∞∫
0

dt e−iωttP
(3)
+k1−k2+k3

(τ, T, t) . (63)

The integration over t is carried out only in the positive
axis since the third-order response is not created before
the third laser pulse.

3. Response of basic quantum systems

Here we present the least sophisticated systems that
can be analysed using methods of 2D spectroscopy.
Purely for the demonstrational purposes some features
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of this technique can be highlighted in an elegant way
and analytic expressions of 2D and absorption spectra
can be obtained for some basic quantum systems.

This section is organized as follows. In Section 3.1
an isolated two-level system is considered. The phonon
bath is taken into account as the dephasing of the sys-
tem response. In Section 3.2 the dephasing is expressed
using an energy-gap correlation function and the line-
shape function for a two-level system is introduced. De-
pending on the model of a phonon-bath motion, various
approximations are presented. In Section 3.3 a model
of the two-level system is appended by a third overtone
state which is a basis of an anharmonic oscillator sys-
tem. Analytic expressions of system response are pre-
sented using system–bath interaction description as for
a two-level atom. And, finally, in Section 3.4, the re-
sponse of a general multi-level system is derived assum-
ing the second-order cumulant expansion of system–
bath interaction.

3.1. Two-level atom

In this part we consider an ideal quantum system of
two energy levels: the ground state |g⟩ and the excited
state |e⟩ . This model effectively represents an isolated
resonant transition of an atom. The total Hamiltonian
in the system eigenstate basis consists of the material
part and the coupling with electric field

Ĥ = εg|g⟩⟨g|+ εe|e⟩⟨e| − µ̂ E(t) . (64)

The evolution superoperator, corresponding to the ma-
terial part of the Hamiltonian, acting upon the dipole
moment operator µ̂ = µge|g⟩⟨e| + µeg|e⟩⟨g| also
possesses the phenomenologically included dephasing
term γ.

U †
mol(t1) µ̂ = θ(t1) exp{iωegt1 − γt1}|e⟩⟨g|+ h. c.

(65)
Inserting this into the definition of the linear response
function (Eq. (37)) together with ρ̂eq = |g⟩⟨g| results in

S(1)(t1) = −2

h̄
θ(t1) |µge|2 e−γt1 sin(ωegt1) . (66)

The Fourier-transformed linear response function is

S(1)(ω1) =
i
h̄
|µeg|2

×
[

1

γ + i(ω1 − ωeg)
− 1

γ + i(ω1 + ωeg)

]
. (67)

For an isolated two-level system it is a Lorentzian-
shaped function, centred at ωeg.

In the third-order photon echo response function we
have only two contributions, ground state bleaching and
stimulated emission:

SGSB(t3, t2, t1)≡R2(t3, t2, t1)

= µ4 eiωeg(t1−t3)−γ(t1+t3) , (68)

SSE(t3, t2, t1)≡R3(t3, t2, t1)

= µ4 eiωeg(t1−t3)−γ(t1+t3) , (69)

while R1(t3, t2, t1) and R4(t3, t2, t1) contributions are
zero. To obtain an analytic expression of the 2D spec-
trum of the two-level atom, we consider δ-shaped laser
pulses. In this regime (impulsive limit), 2D spectrum is
a Fourier image of the system response function (third
order polarization equals the system response function):

W (ωτ , T, ωt) =

∞∫
−∞

dt3 e−iωτ τ

∞∫
−∞

dt1 e−iωtt

× S(3)(t ≡ t3, T ≡ t2, τ ≡ t1) (70)

and

S(3)(t3, t2, t1) =

(
i

h̄

)3

θ(t1) θ(t2) θ(t3)µ
4 (71)

× [R2(t3, t2, t1) +R3(t3, t2, t1)]

= 2

(
i

h̄

)3

θ(t1) θ(t2) θ(t3)µ
4 eiωeg(t1−t3)−γ(t1+t3) .

By applying Fourier transform and separating rephasing
(τ > 0) and non-rephasing (τ < 0) parts, we obtain

WR(ωτ , ωt) (72)

= 2

(
i

h̄

)3

µ4
1

γ − i(ωt − ωeg)
· 1

γ + i(ωτ − ωeg)
,

WNR(ωτ , ωt) (73)

= 2

(
i

h̄

)3

µ4
1

γ − i(ωt − ωeg)
· 1

γ − i(ωτ − ωeg)
.

The calculated 2D spectra of the two-level system are
depicted in Fig. 4. Note that non-rephasing 2D spec-
tra of the real and imaginary parts are just mirrored
images of the rephasing spectra with respect to ωτ

axis. In the absence of the inhomogeneous broadening
both real part rephasing and non-rephasing spectra are
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Fig. 4. Calculated rephasing, non-rephasing, and sum spectra for
the real (absorptive signal) and imaginary (dispersive signal) parts
and signal amplitude of a single two-level system (isolated two-level

atom).
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Fig. 5. (a) Scheme of the two-level molecule under consideration
with elements of molecular Hamiltonian indicated; (b) lineshapes
of absorption peaks of two-level molecule in homogeneous and in-

homogeneous limits.

Lorentzian-shaped along the main diagonal with 2γ for
the FWHM (Fig. 5b).

3.2. Two-level molecule

The two-level molecule is described as the system
of the ground state |g⟩ and electronically excited state
|e⟩ as for the two-level atom. However, this system is
additionally coupled to vibrational degrees of freedom.
This coupling to these is expressed through the general-
ized bath coordinates (nuclear degrees of freedom) Q.
These coordinates introduce additional degrees of free-
dom (e. g. solvent or lattice kinetics, etc.). In the adia-
batic regime the material Hamiltonian is

Ĥmat = |g⟩Hg⟨g|+ |e⟩He⟨e| . (74)

Here Born–Oppenheimer approximation was used as
well as ansatz of the absence of pathway of excited state
relaxation to |g⟩. On the other hand, full energy of the
state is a sum of the electronically excited state level en-
ergy ε, the kinetic energy of nuclear vibrations T (Q),
and the vibrational potential energy (adiabatic poten-
tial) V (Q) (Fig. 5)

Ĥmat = [εg + T (Q) + Vg (Q)] |g⟩⟨g|

+ [εe + T (Q) + Ve (Q)] |e⟩⟨e| . (75)

The Hamiltonian can be written in another form by sep-
arating the electronic and bath parts:

Ĥmat = ĤB + ĤS + ĤSB . (76)

Here ĤB is a purely vibrational part that depends solely
on bath degrees of freedom, ĤS is a purely electronic
part (system), and ĤSB is the electron–phonon coupling
of system–bath interaction as defined in Sec. 2.4.1.
These parts of molecular Hamiltonian can be written
as

ĤB = [T (Q) + Vg (Q)] (|g⟩⟨g|+ |e⟩⟨e|) , (77)

ĤS = εg|g⟩⟨g|+ [εe + ⟨Ve − Vg⟩] |e⟩⟨e| , (78)

ĤSB = [Ve (Q)− Vg (Q)− ⟨Ve − Vg⟩] |e⟩⟨e| . (79)

The average energy gap term ⟨Ve − Vg⟩ was added to
the electronic part and subtracted from the interactional
part (making zero contribution in the material Hamilto-
nian) assuming that the interaction part must be zero in
the thermodynamical equilibrium. Thus the interaction
part is an operator of energy gap fluctuations with re-
spect to the ground state. The molecular Hamiltonian
in the matrix notation for a two-level system then is very
simple:

Ĥmat = HB

(
1 0
0 1

)
+

(
εg 0
0 ε̄e

)
+∆V

(
0 0
0 1

)
. (80)

The dipole moment operator of a two-level system is
written assuming Franck–Condon approximation, i. e.
the polarization operator in the dipole limit is equivalent
to the dipole operator, which does not depend on the
vibrational coordinates:

µ̂ = deg |e⟩⟨g|+ d∗eg |g⟩⟨e| . (81)

The energy of the electronic transition is usually in
UV or visible region and energy gap is greater than
kBT , therefore we can assume that initially (at time
t → −∞) the system is in the equilibrium state, de-
fined by equilibrium ground state density operator. So
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the dipole moment operator acting upon the equilibrium
density matrix is

µ̂ ρ(eq) = deg ρ
(eq) |e⟩⟨g| . (82)

Linear response. Linear response function of the sys-
tem is given by Eq. (67). In the following we include
vibrational degrees of freedom. Now the response func-
tion depends on coordinates Q.

J(t) =TrB{U †(t) µ̂ U(t) µ̂ ρ(eq)} (83)

= |deg|2 TrB{e
i
h̄
Hgt e−

i
h̄
Het ρ(eq)}

= |deg|2 e−iωegt TrB{e−
i
h̄
∆V (Q,t)t ρ(eq)} .

Here we extracted the energy gap ωeg and in the expo-
nential of the evolution operators only the vibrational
part is left. Within the trace operation in the exponential
we have a perturbative part of the excited state Hamilto-
nian, therefore, it is the excited state evolution operator
in the interaction picture. It is known from the time-
dependent perturbation theory that it can be written as
a positive time ordered exponential [29]

Ũ I
e(Q, t) = exp+

[
− i
h̄

t∫
0

dτ ∆V (Q, τ)
]
. (84)

By inserting this into J(t) expression (Eq. (83)) we ob-
tain

J(t) = |d|2 e−iωegt

× TrB

{
exp+

[
− i
h̄

t∫
0

dτ ∆V (Q, τ)
]
ρeq

}
. (85)

Expanding Eq. (85) to the second order,

J(t) = |d|2 eiωegt

{
1− i

h̄

t∫
0

dτ TrB{∆V (Q, τ)} (86)

+

(
i
h̄

)2
t∫

0

dτ
τ∫

0

dτ ′ TrB{∆V (Q, τ)∆V (Q, τ ′)
}
,

we find that the second term in Eq. (86) is zero in the
thermodynamical equilibrium. After performing a cu-
mulant expansion (see Appendix (7) for details) of this
expression, we obtain

J(t) = |d|2 eiωegt−g(t) , (87)

where

g(t)≡
(

1
h̄

)2
t∫

0

dτ
τ∫

0

dτ ′

× TrB{∆V (Q, τ)∆V (Q, τ ′) ρeq} . (88)

The function g(t) defined here is called the lineshape
function. It is a double integral of the energy gap cor-
relation function:

C(τ ′) =
1

h̄2
TrB{∆V (Q, τ ′)∆V (Q, 0) ρeq} , (89)

g(t) =

t∫
0

dτ
τ∫

0

dτ ′C(τ ′) . (90)

Having the linear response function derived we are
now able to obtain full expression of the absorption
spectra of the two-level system. To make it even more
simpler, a fast modulation limit approximation will be
used. It is based on the assumption that the bath fluctu-
ations are much more intensive than those of the system
vibrations. Then the system–bath coupling is “fast” and
the energy gap correlation function is assumed to be of
shape of the Dirac delta function:

C(t) ≡ γ δ(t) . (91)

Here γ is the coupling strength. This type of correla-
tion is denoted as Markovian since the memory of sys-
tem initial state is lost extremely fast. That is the case
used for calculating expressions for the two-level atom
in Section 3.1.

We can, in advance, notice that in this regime the
Stokes shift will be absent since due to the ultra-fast
bath kinetics the electric field always interacts with an
averaged ensemble of two-level systems [29]. By ap-
plying a double integration of the δ-shaped correlation
function, we get a linear expression of the g(t) function:

g(t) = γ t . (92)

An analytic expression of the absorption coefficient is
then obtained by applying Fourier transform to the lin-
ear response function

κα(ω)∝ω|d|2 Re
∞∫
0

dt ei(ω−ωeg)t−Γt (93)

= |d|2 ω Re
1

ω − ωeg + iγ
.
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The resulting lineshape is Lorentzian (Fig. 5) centreed
at ωeg with 2γ for the Full Width at Half Maximum
(FWHM) as a signature of homogeneous broadening in
the absorption spectrum. Therefore the fast modulation
limit is also known as the homogeneous limit.

In contrast to the homogeneous limit, the inhomoge-
neous limit can also be described. If the system does
not lose memory of its preceding states, the correlation
function is constant, C(t) ≡ C0. The resulting line-
shape function is g(t) = 1

2C0t
2. The spectral lineshape

is Gaussian with 2
√
2 ln 2C−10 for the FWHM.

Third-order response and 2D spectrum. Spectra of in-
homogeneous system are shown in Fig. 6. For the real
part of the rephasing spectrum the diagonal peak line-
shape is Gaussian (c. f. Lorentzian lineshapes of Fig. 4)
and elongated with respect to the main diagonal. It
is an illustration of the fact that the inhomogeneously
broadened spectrum can be assumed as the superposi-
tion of spectra of two-level systems with different top-
level energies that are Gaussian-distributed. If the inho-
mogeneity is included, a decay of non-rephasing signal
is also evident. This is caused by destructive addition
of positive and negative diagonal values of the signal.
Thus the rephasing signal gives more information about
the system since the homogeneous and inhomogeneous
contributions are well separated.

The angle of nodal line (separating positive and neg-
ative off-diagonal peaks) of the imaginary part of the
sum spectrum also characterizes the system under con-
sideration. In this case it is the ratio of inhomoge-
neous and homogeneous contributions. This type of
counter-clockwise nodal line rotation is observed when
the energy-gap correlation function is of type of slow
exponential decay (static inhomogeneous broadening)
[21] or as a result of losing of memory of the initial ex-
citation of the system [18].

3.3. Anharmonic oscillator (three-level system)

Here we describe the linear and third-order response
of a weakly anharmonic oscillator. In this case the
molecular Hamiltonian is

Ĥmol = ω0 â
† â+

∆

2
â† â† â â ,

where â and â† are bosonic annihilation and creation
operators, ω0 is known as the fundamental frequency,
and ∆ ≪ ω0 is the anharmonicity. Three lowest states
of this system are the ground state |g⟩ with energy 0,
the one-quantum state |e⟩ with the energy ω0, and the
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Fig. 6. Calculated rephasing, non-rephasing, and sum spectra for
the real (absorptive signal) and imaginary (dispersive signal) parts
and signal amplitude of a single two-level system at fast modulation

limit with Gaussian disorder of 4γ for the FWHM.

double-quantum state |f⟩ with energy 2ω0 + ∆. The
dipole operator is

ĤSF = µ (â† + â) .

This gives the fundamental transition amplitude µge =
µ and the transition from the one-quantum state to the
double-quantum state equal to µef =

√
2µ.

The connection with the oscillator can be easily es-
tablished by introducing the dimensionless coordinate
q̂ and momentum p̂:

q̂=
1√
2
(â† + â) ,

p̂=
i√
2
(â† − â) .

The linear response function has the same form as the
two-level system since the overtone state is not involved
(Eq. (67)).

In the photon echo rephasing response function we
now have three contributions. Due to the presence of
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the double-quantum state |f⟩, the negative induced ab-
sorption contribution adds up,

SIA(t3, t2, t1) =R1(t3, t2, t1) (94)

=−2µ4 eiω0(t1−t3)−i∆t3−γ(t1+t3) ,

SGSB(t3, t2, t1) =R2(t3, t2, t1) (95)

= µ4 eiω0(t1−t3)−γ(t1+t3) ,

SSE(t3, t2, t1) =R3(t3, t2, t1) (96)

= µ4 eiω0(t1−t3)−γ(t1+t3) .

After Fourier transformations we have

WR(ωτ , T, ωt) = 2

(
i

h̄

)3

θ(T )
µ4

γ − i(ωτ − ω0)

×
[

1

γ + i(ωt − ω0)
− 1

γ + i(ωt − ω0 −∆)

]
. (97)

Similarly, for the non-rephasing contribution we would
obtain

WNR(ωτ , T, ωt) = 2

(
i

h̄

)3

θ(T )
µ4

γ − i(ωτ − ω0)

×
[

1

γ − i(ωt − ω0)
− 1

γ − i(ωt − ω0 −∆)

]
. (98)

The total spectrum

W (ωτ , T, ωt) = 4

(
i
h̄

)3

θ(T )
γ2 + iγ(ωτ − ω0)

γ2 + (ωτ − ω0)2

×
[

1

γ2 + (ωt − ω0)2
− 1

γ2 + (ωt − ω0 −∆)2

]
. (99)

It is seen that in case of no anharmonicity (∆ = 0),
IA contribution cancels SE and GSB pathways com-
pletely. If anharmonicity is large compared to the de-
phasing constant (∆ > γ), negative and positive peaks
are well resolved in 2D spectrum (Fig. 7). In the other
case, positive and negative peaks overlap and the nodal
line can be drawn.
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Fig. 7. Real part of the total W (ωτ , T, ωt) two-dimensional spec-
tra of a three-level system (anharmonic oscillator). ∆ denotes
an anharmonicity, σD is the standard deviation of the Gaussian-

distributed diagonal disorder, γ is pure dephasing rate.

3.4. Multi-level system in contact with the bath:
cumulant expansion of the third-order response
function

We assume that the system is given by a set of energy
states: the ground state |g⟩ and |1⟩, |2⟩ . . . |N⟩ states.
The molecular Hamiltonian is thus

Ĥmol =

N∑
a=1

εa |a⟩⟨a| .

Here and later roman symbols a, b, and c run over all
the energy states in summations. Again the bath is de-
scribed by the set {α} of harmonic oscillators. The
system–bath interaction is given by

ĤSB =
√
2
∑
abα

d
(α)
ab Qα |a⟩⟨b|≡

∑
abα

d
(α)
ab (b̂†α + b̂α)|a⟩⟨b| .

We first neglect off-diagonal fluctuations. In that
case the system dynamics is adiabatic, i. e. the system
eigenstates are not affected by the fluctuations. Sys-
tem response functions R1(t3, t2, t1), ... R4(t3, t2, t1)

(Eqs. (46)–(49)) can then be written as four-point
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correlation functions of the system and dipole moment
operator interaction times

R1(t3, t2, t1) =F (t1, t1 + t2, t1 + t2 + t3, 0) , (100)

R2(t3, t2, t1) =F (0, t1 + t2, t1 + t2 + t3, t1) , (101)

R3(t3, t2, t1) =F (0, t1, t1 + t2 + t3, t1 + t2) , (102)

R4(t3, t2, t1) =F (t1 + t2 + t3, t1 + t2, t1, 0) , (103)

where

F (τ4, τ3, τ2, τ1) = TrB{µ̂(τ4) µ̂(τ3) µ̂(τ2) µ̂(τ1) ρeq}
(104)

and µ̂(τ) = U (τ)µ̂; µ̂ is defined in Eq. (130). The evo-
lution superoperator (as in Sec. 3.2) can be expressed
as a product of a normal and time-ordered exponen-
tial (representing system and bath fluctuations, respec-
tively)

Uab(τ) = exp(−iωabτ) exp+

[
− i

τ∫
0

dτ ′∆Vab(τ)
]
.

(105)
Applying the four-point correlation function to a gen-
eral scheme of system–dipole moment operator inter-
actions (Fig. 3), one can obtain

F (τ4, τ3, τ2, τ1)

=
∑
cba

µgc µcb µba µag F
(C)
cba (τ4, τ3, τ2, τ1) . (106)

Index C denotes the coherent limit – population transfer
is not included. The four-point correlation function is
then

F
(C)
cba (τ4, τ3, τ2, τ1) = exp[−i(εcτ43 + εbτ32 + εaτ21)

+ f
(C)
cba (τ4, τ3, τ2, τ1)] , (107)

where

f
(C)
cba (τ4, τ3, τ2, τ1)

= TrB

{
e−i

∫ τ1
0 dτ ∆Vgc(τ)

+ e−i
∫ τ2
0 dτ ∆Vcb(τ)

+

e−i
∫ τ3
0 dτ ∆Vba(τ)

+ e−i
∫ τ4
0 dτ ∆Vag(τ)

+

}
. (108)

The second-order cumulant expansion of this expres-
sion (for details see Appendix 7) results in

f
(C)
cba (τ4, τ3, τ2, τ1)

= exp[−gcc(τ43)− gbb(τ32)− gaa(τ21)

− gcb(τ42) + gcb(τ43) + gcb(τ32)

− gca(τ41) + gca(τ42) + gca(τ31)− gca(τ32)

− gba(τ31) + gba(τ32) + gba(τ21)] . (109)

The lineshape function gab(t) is given by the correlation
function Caa,bb(t) integral [29]:

gab(t) =

t∫
0

dτ
τ∫

0

dτ ′Caa,bb(τ − τ ′) . (110)

Consider now additional off-diagonal fluctuations.
Now the system dynamics includes population trans-
port and the system cannot be described using evolu-
tion operators of the wave function. Using the secu-
lar approximation for the system dynamics it can sep-
arated into two types: the coherence evolution and
the population transport. During the coherence evolu-
tion, the diagonal fluctuations modulate the oscillation
frequency, off-diagonal fluctuations, and the lifetime-
induced dephasing. During the population evolution,
the off-diagonal fluctuations induce population trans-
port and the effect of the diagonal fluctuations is in-
cluded in the transport rate. For Feynman diagrams,
where population transfer is involved, diagrams with in-
coherent transport are used [32]. The addition to the
system response function (Eq. (44)) is

T (t3, t2, t1) = −(i)3
∑
cbe′e

µcb µνν′ µ
2
eg Ge′e(t2)

× F
(I)
cbe′e(t3, t2, t1) , (111)

where indices c and b denote states in coherence |b⟩⟨c|
during t3 in population transfer diagrams; νν ′ has to
be changed to e′b when the signal is generated on the
left side of the diagram, and to ce′ when it is gener-
ated on the right. Ge′e(t2) is Green’s function that is a
probability of population state |e⟩⟨e| to be transferred
to |e′⟩⟨e′| in time t2 (or population survival probability
when e′ = e).

F
(I)
cbe′e(t3, t2, t1) = exp[iωcbt3 − iωegt1 − (γc + γb)t3

− γet1 + f
(I)
cbe(t3, t2, t1)] , (112)
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where

f
(I)
cbe(t3, t2, t1) = exp[−gee(t1)− gbb(t3)− g∗cc(t3)

− gbe(t1 + t2 + t3) + gbe(t1 + t2) + gbe(t2 + t3)

+ gce(t1 + t2 + t3)− gce(t1 + t2)− gce(t2 + t3)

+ gcb(t3) + g∗bc(t3) + gce(t2)− gbe(t2)] . (113)

γν is the dephasing constant, that is a sum of a state
lifetime and pure dephasing

γν = |Kνν |/2 + γ̃ν . (114)

The population Green’s function is a solution of the
Pauli master equation

Ġe′e(t) =
∑
j ̸=e′

Ke′j Gje −
(∑

j ̸=e′

Kje′

)
Ge′e , (115)

whereKij are the population transport rates. This equa-
tion can be represented in a matrix form

∂

∂t
Ĝ(t) = − ˆ̃K Ĝ(t) , (116)

where the population transport rate matrix is con-
structed as K̃ab = −Kab + δab

∑
j Kjb. By apply-

ing unitary transformation upon the explicit solution of
Eq. (116)) we obtain

Ĝ(t) = Q̂ exp(−Q̂−1 ˆ̃K Q̂t) Q̂−1 (117)

and

Ge′e(t) =
∑
j

Qe′j Q
−1
je e−λjt . (118)

Here Q̂ is eigenvector matrix of ˆ̃K, Q̂−1 is its inverse,
and λj are the eigenvalues. Population transport rates
can be calculated using traditional Redfield theory [27,
33]:

Kab = ReC ′′ab,ab(ωab) [coth(βh̄ωab/2)− 1] , (119)

where ωab = εa − εb, β = (kBT )
−1, T is the tempera-

ture, kB is Boltzmann constant, and

C ′′ab,cd(ω) =
1− exp(−βh̄ω)

2

∞∫
−∞

dt eiωtCab,cd(t) .

(120)

4. Coupled multi-chromophore system

4.1. Frenkel exciton model

We consider a general multi-chromophore system
consisting ofN electronically interacting two-level sub-
systems. Nonlinear optical properties of such com-
plexes of coupled chromophores (e. g. molecular ag-
gregates, proteins etc.) are described using a Frenkel
exciton model [34, 35]. The Frenkel exciton Hamilto-
nian is

Ĥ =

N∑
m=1

ϵm |m⟩⟨m|+
N∑
m

N∑
n̸=m

Jnm |n⟩⟨m|+ Ĥint ,

(121)
where ϵm and Jmn are site energy of the mth chro-
mophore and the resonant coupling between nth and
mth chromophores, respectively. Ĥint denotes inter-
action to the field and the environment and is treated
as a weak perturbation. In the exciton representation a
multi-level system is considered. It contains the ground
state |g⟩ and one- and two-exciton bands (manifolds).
Each state of the one-exciton manifold is denoted as
|ej⟩ (j = 1 . . . N ) with corresponding optical tran-
sition to the ground state ωejg. The number of two-
exciton states is N(N − 1)/2 and they are denoted
as |fk⟩ with optical transitions to the one-exciton band
ωfkej ; transition to the ground state is forbidden. The
one-exciton Hamiltonian matrix ĥ(1) is simply the refer-
ence Hamiltonian of Eq. (121): h(1)jk = δjkϵj + ζjkJjk,
where ζjk = 1− δjk. Two-exciton Hamiltonian h(2) is
h
(2)
(kl),(mn) ≡ (ϵk+ϵl)δkmδln+Jkmδlnζkm+Jlnδkmζln.

Transition from site representation to the exciton ba-
sis as well as eigen-energies are obtained using unitary
transformations

U−1 ĥ(1) U = Ω , (122)

V −1 ĥ(2) V =W . (123)

Ĥint = ĤSF + ĤSB determines the system interac-
tions with external perturbations: the optical field (de-
noted as SF, “system–field”) and the phonon bath (SB,
“system–bath”). The former is given by

ĤSF =
∑
m

dm(|m⟩+ ⟨m|) , (124)
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Fig. 8. Double-sided Feynman diagrams, illustrating Liouville space pathways (LSPs) in the system, induced by a repetitive dipole moment
interaction with both sides of the system density operator.

where d is a molecular transition dipole. Applying the
unitary transformation the dipoles of intra-band transi-
tions (eigen-dipoles) are obtained:

µgej =
∑
m

U−1jm dm ,

µejfk =

N−1∑
m=1

N∑
n=m+1

ν(k)mn (U
−1
jn dm + U−1jm dn) . (125)

Here ν(k)nm denotes the element of V −1 of the kth row
and the column, corresponding to a diagonal element
ϵn + ϵm of the two-exciton Hamiltonian matrix. The
explicit relation is ν(k)mn = V −1kγ , where γ = 1

2(2N −
m)(m− 1) + n−m, n, m = 1, 2 . . . N . We next as-
sume that ĤSB term induces fluctuations of the molec-
ular transition energies:

ĤSB =
∑
m

qm(Q, t) |m⟩⟨m| , (126)

where Q are the collective phonon bath coordinates.
We assume that each molecule has its own indepen-
dent set of fluctuating coordinates uncorrelated with the
other molecules. Fluctuations of different molecules
are statistically independent, i. e. the correlation func-
tion matrix is diagonal, ⟨qm(t)qn(0)⟩ = δmnC(t). It

is convenient to use the spectral density, which is given
by [27]:

C ′′(ω) =
1

2

∞∫
0

dt exp(iωt) ⟨[qm(t), qm(0)]⟩ . (127)

In the exciton basis, we obtain fluctuating transition en-
ergies and couplings between the eigenstates. These
fluctuations are characterized by spectral densities

C ′′e1e2,e3e4(ω)

=

[∑
m

U−1me1 U
−1
me2 U

−1
me3 U

−1
me4

]
C ′′(ω) ,

C ′′e1e2,f3f4(ω)

=

[∑
m

U−1me1 U
−1
me2

k ̸=m∑
k

ν
(f3)
mk ν

(f4)
mk

]
C ′′(ω) ,

C ′′f1f2,e3e4(ω) = Ce3e4,f1f2(ω) ,

C ′′f1f2,f3f4(ω) (128)

=

[∑
m

(

k ̸=m∑
k

ν
(f1)
mk ν

(f2)
mk )(

l ̸=m∑
l

ν
(f3)
ml ν

(f4)
ml )

]
C ′′(ω) .

(129)
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Here we have extended the double-exciton eigenvector
matrix by taking ν(f)mn ≡ ν

(f)
nm, which lets us simplify the

expressions considerably.

4.2. System response function of three-manifold system

The dipole moment operator for an excitonic multi-
level system described above is

µ̂ =
∑
e

µe |e⟩⟨g|+
∑
e,f

|f⟩⟨e|+ h. c. (130)

In this definition, dipole moments of transitions be-
tween excitonic states are not operators due to Franck–
Condon approximation (dipole moments are excitation-
independent). The system also does not have a per-
manent dipole moment (⟨g|µ̂|g⟩ = 0). By inserting
Eq. (130) into expressions of elements of the response
function (Eqs. (46)–(49)) we obtain oscillating terms
of the evolution operator in frequency ω̄ of transitions
between excitonic manifolds and ground state (approx.
the same frequency for all inter-band transitions). Sep-
arating the phase of resulting expressions one can see
that there are two types of phase factors, −iω̄(t1 + t3)
and −iω̄(t1−t3). The opposite phase factors of electro-
magnetic field oscillations of frequency ω0 are in elec-
tromagnetic field expression Eq. (61). In the experi-
ment ω0 ≈ ω̄ is set. Multiplication of the system re-
sponse function and the electric field part under inte-
gration in Eq. (42) then results in terms of sum phase
factors. In case of constructive (destructive) interfer-
ence of phase factors rapidly (slowly) oscillating terms
are obtained. Integrals of rapidly-varying functions are
much smaller and can be neglected (RWA). The third-
order polarization then is

P (3)(τ, T, t) = e−iω0(t−τ)
∞∫
0

∞∫
0

∞∫
0

dt3 dt2 dt1 (131)

×
{
S
(3)
I ×

[
Ē

[1]
1 E

[2]
2 E

[3]
3 +Ē

[1]
1 E

[2]
3 E

[3]
2

]
eiω0(t3−t1)

+ S
(3)
II ×

[
E

[1]
2 Ē

[2]
1 E

[3]
3 +E

[1]
3 Ē

[2]
1 E

[3]
2

]
eiω0(t3+t1)

+ S
(3)
III ×

[
E

[1]
2 E

[2]
3 Ē

[3]
1 +E

[1]
3 E

[2]
2 Ē

[3]
1

]
eiω0(t3+2t2+t1)

}
,

where S(3)
I = S

(3)
I (t3, t2, t1) = −R∗1 + R2 + R3,

S
(3)
II = S

(3)
II (t3, t2, t1) = −R∗2 +R1 +R4, and S(3)

III =

S
(3)
III (t3, t2, t1) = −R∗3 + R4 are the system response

functions for kI, kII, and kIII interaction sequences, re-
spectively. These interaction sequences of the evolu-
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|e2〉

φ

R12

d1 d2

ǫ1 ǫ2

J
εe1

εe2

εf

Abs.

Fig. 9. Site representation and formation of molecular excitations
(molecular excitons) of a general hetero-dimer system and illustra-
tion of absorption spectrum with peaks corresponding to optical

transitions from the ground state to single-exciton states.

tion operator and the dipole moment operator can be
expressed by double-sided Feynman diagrams (Fig. 8).
They correspond to different physical processes – in-
duced absorption (−R∗1 and −R∗2), stimulated emission
(R2 and R1), ground state bleaching (R3 and R4), or
double-coherence pathways (−R∗3 and R4). In further
discussion we will use notation of these diagrams in-
stead of R functions. Complete expressions for SI and
respective diagrams are presented in Appendix 7.

5. Spectroscopy of dimers

5.1. Dimer of two-level chromophores

An excitonically coupled dimer is an archetypical
molecular system to be analysed by methods of opti-
cal 2D spectroscopy. The general scheme of a hetero-
dimer as well as the exciton band structure are pre-
sented in Fig. 9. The dimer consists of two coupled
chromophores, represented by two dipoles d1 and d2

with interdipole distance vector R12 and angle ϕ. In the
Frenkel exciton Hamiltonian the chromophore energies
are denoted as ϵ1 and ϵ2 and the the coupling constant
J ,

Ĥmol = ϵ1 â
†
1 â1+ϵ2 â

†
2 â2+J (â†1 â2+ â

†
2 â1) . (132)

The Hamiltonian is diagonalized and the eigenenergies
for the single-exciton states are

εe1 = ϵ1 cos2 θ + ϵ2 sin2 θ − 2J cos θ sin θ , (133)

εe2 = ϵ1 sin2 θ + ϵ2 cos2 θ + 2J cos θ sin θ , (134)

and

εf = εe1 + εe2 (135)
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for the double-exciton state, where θ = 1
2 arctan J

ϵ2−ϵ1
[7, 8]. The transformation to the eigenstate representa-
tion matrix is

U−1 =

(
− sin θ cos θ

cos θ sin θ

)
. (136)

The transition dipoles between the eigenstates and
transition dipoles in the real space are related via
one-excitonic and two-excitonic eigenvector matrices
(Eqs. (125))(

µe1g
µe2g

)
=

(
cos θ − sin θ
sin θ cos θ

)(
d1

d2

)
(137)

and (
µfe1
µfe2

)
=

(
− sin θ cos θ

cos θ sin θ

)(
d1

d2

)
(138)

and squares of the transition dipoles between the eigen-
states (oscillator strengths) are∣∣µe1g

∣∣2 = |µfe1 |
2 = 1 +

J cosϕ√
(ϵ2 − ϵ1)2 + J2

, (139)

∣∣µe2g
∣∣2 = |µfe2 |

2 = 1− J cosϕ√
(ϵ2 − ϵ1)2 + J2

. (140)

5.2. Excitonically coupled dimer: signatures of
different evolution scenarios and pulse-overlap
effects in 2D spectra

Parameters used in calculations are ϵ1 = 11800 cm−1
ϵ2 = 12200 cm−1, J = 100 cm−1, ϕ = π

6 . The en-
vironment is represented by two overdamped Brown-
ian oscillator coordinates, fast and slow, with relaxation
rates ΛF and ΛS, respectively. Both coordinates in-
duce uncorrelated site-energy fluctuations as described
above. We use the overdamped Brownian oscillator
model where the spectral density of local chromophore
energy fluctuations is [32]

C ′′(ω) = 2
∑
l=S,F

λl
ωΛl

ω2 + Λ2
l

. (141)

The corresponding lineshape function obtained by a
direct double-time integral of Eq. (110) in the high-
temperature limit [27, 29] is

g(t) =
∑
l=S,F

λl
2kBT−iΛl

Λ2
l

(e−Λlt + Λlt− 1) . (142)

All system, bath, and coupling characterizing quanti-
ties are chosen typical of pigment molecules in photo-
synthetic proteins [34, 36]. Bath-induced fluctuations
are described by overdamped BO parameters λF =

Fig. 10. 2D photon echo broad-bandwidth pulse signal at three de-
lay times: T = 0, 2, and 9 ps. Left column is a broad-bandwidth
ideal signal, right column is full signal reconstructed using the set of
narrow-bandwidth simulations of a homo-dimer. See text for simu-

lation parameters.

30 cm−1, λS = 60 cm−1, Λ−1F = 50 fs, Λ−1S = 105 ps.
The slow bath is used to model the static disorder,
thus its fluctuation timescale Λ−1S → ∞. The calcu-
lated population transfer rates (Eq. (119)) for the eigen-
states are: (downward) K1←2/J = 2.69 and (upward)
K2←1/J = 2.54 · 10−3 . The response function was
then calculated as described in Sec. 3.4.

5.2.1. Broad-bandwidth pulse simulations
As a reference we first present the ideal impulsive 2D

photon echo rephasing signal corresponding to the case
of the short laser pulses when their spectral bandwidth
is much larger than the width of the spectral region un-
der consideration. In this regime the pulse overlap ef-
fect can be neglected and we obtain:

W (ωτ , T, ωt) ≈ SkI(ωτ , T, ωt) , (143)

i. e. the signal probes the response function itself. We
show such spectrum at two delay times in the left col-
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IA IA′ SE SE′ GSB

Fig. 11. The contributions of different LSPs to the real (absorptive) part of rephasing 2D spectra of excitonically coupled dimer at the
impulsive limit; population transfer contributions IA′ and SE’ are merged with IA and SE; spectra are calculated at T = 0, 200 fs (T <
K−1

1←2), and 9 ps (T2 ≫ K−1
1←2). All graphs are normalized to the maximum of the most intensive contribution, contour lines are plotted

using arcsinh scale.

umn of Fig. 10. The dissection of the spectra to com-
ponents corresponding to different LSPs is presented
in Fig. 11 for the real part of the rephasing signal, in
Fig. 12 for the non-rephasing signal. The population
transport diagrams are merged together with the coher-
ent (no transport) diagrams in these figures. The spec-
tra contain both diagonal and off-diagonal elements.
Across the diagonal the peaks are broadened due to
the homogeneous broadening caused by the fast term
of bath oscillations. The lineshapes are extensively
elongated along the diagonal due to the slow term of
bath oscillations. The restriction T2 ≪ Λ−1S ensures
that the diagonal elongation remains for all delay times.
Such approach is very efficient to model the inhomo-
geneous broadening, and represents the static disorder
effect. Across the diagonal the peaks are broadened due
to the homogeneous broadening caused by the fast term
of bath oscillations.

At the short delay times (T = 0) the population
transport is negligible and the diagonal peaks consist
solely of the SE and GSB contributions. These two di-
agonal peaks represent two single-exciton eigenstates
and are created when e = e′, while the off-diagonal

peaks correspond to e ̸= e′. At zero delay, the cross-
peaks are created by the superposition of negative IA
and positive GSB and SE contributions. At longer de-
lay time we see the rise of the lower-energy peaks at
ωt = ωτ = εe1 demonstrating the down-hill population
transfer in the excitonic system. Only IA and SE con-
tributions change over population time T . GSB is con-
served since there is no dynamics in the ground state
contrary to the IA and SE diagrams, where the popula-
tion dynamics during time delay T is described by the
T -dependent Green functions (population transfer) as
well as coherence dephasing terms (Eqs. (112)–(114)).
At long T the diagonal IA and off-diagonal SE peaks
come from population transport. The signal can be eas-
ily correlated with the Feynman diagrams.

Due to population transfer it is evident for T = 9 ps
that IA contribution refers to transition from the pop-
ulation first single-exciton state |e1⟩⟨e1| to the double-
excited state |f1⟩⟨e1| solely. This is clearly indicated
by a single off-diagonal element ωτ = εe1 , ωt =
εf1 − εe1 ≈ εe2 for T = 9 fs, while the off-diagonal
peak for |e2⟩⟨e2| → |f1⟩⟨e2| transition is dominant for
T = 0 fs and T = 200 fs. The similar explanation
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IA IA′ SE SE′ GSB

Fig. 12. The contributions of different LSPs to the real (absorptive) part of non-rephasing 2D spectra of excitonically coupled dimer in the
impulsive limit. All parameters are analogous to Fig. 11.

holds for the population transfer-related off-diagonal
peak that appears in SE diagram for T = 9 ps. How-
ever, the double-exciton states are not included in SE di-
agram and the corresponding cross-peak is at ωτ = εe2 ,
ωt = εe1 .

5.2.2. Gaussian narrow-bandwidth simulations
The finite-bandwidth Gaussian pulses Ej(t), j =

1 . . . 3, (Eqs. (59)-(60)) have two additional parame-
ters: the carrier frequencies ωj and pulse lengths [σt]j .
Changing the length of all pulses tunes the spectral
bandwidths σ−1ω = [σt]j . Pulses with the increased
length simulate the experiment more realistically, while
the impulsive limit simulations are better for a purely
phenomenological understanding of 2D spectra. Addi-
tionally, effects of pulse overlap arise [12]. Narrow-
bandwidth pulses also act as band-pass filters of 2D
spectrograms [8]. The wavelenghts of laser pulses can
be tuned independently to select certain resonances in
the exciton system. By comparing the pulse bandwidths
to the linewidth of a single peak in the spectra, we can
obtain certain detection regimes. We assume that the
pulse width is narrower than the whole exciton band-

γe

σω

−k1

ωe1g

+k3

ωe2g

+k2

ωe1g

∆e

E
n
er

g
y

εe2

εe1

σω

[ε1, ε1, ε2]

Fig. 13. Laser pulse wavelength tuning scheme for the FWM exper-
iment. The wavelenghts of laser pulses are tuned independently to
select certain resonances in the exciton system. In this example,
first (−k1) and second (+k2) pulses have wavelengths, resonant
to ωe1g = ωfe2 transition, while the third pulse (+k3) is tuned to
ωe2g = ωfe1 . We use notation [ε1, ε1, ε2] for such configuration of

laser frequencies.

width (σω < ∆e), but broader than the width of a single
peak (σω > γe) by setting σω = 1.2γe ≈ 0.16∆e.

The model dimer has two single-exciton states with
energies εe1 and εe2 ; the double-exciton state energy
is εf = εe1 + εe2 (Eqs. (133)–(135)). The transi-
tion energies are ωfe1 = εe2 and ωfe2 = εe1 . There-
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[ε1, ε1, ε1] [ε1, ε1, ε2]

[ε2, ε2, ε1] [ε2, ε2, ε2]

Fig. 14. Four most intensive narrow-bandwidth signals leading to resonant selection of Feynman diagrams in the signal at delay time
T = 10 ps. The signals were simulated by varying central pulse frequencies while keeping the pulse bandwidths unchanged. Utilization
of other possible laser pulse configurations gives negligible signals at T ≫ K−1

1←2. All graphs are normalized to the global maximum
([ε2, ε2, ε2] contribution).

fore, only two resonant pulse frequencies have to be
considered. By considering all possible configurations
of the carrier frequencies of incoming three pulses,
and assuming that the fourth pulse (heterodyne) is
broad (δ-shaped), we obtain 23 = 8 possible permu-
tations of the pulse frequencies, e. g. [ω1, ω2, ω3] =

[ε1, ε1, ε1], [ε1, ε1, ε2]... etc. This laser pulse wave-
length tuning scheme is sketched in Fig. 13. However,
once we select the resonant contributions, we find only

six resonant configurations, four most significant of
them are presented in Fig. 14 (by selecting the resonant
pathways we have also considered population transport
at non-zero delays T ).

Appearance of specific spectral elements in manipu-
lated spectra is controlled by laser pulse frequencies.
The first laser pulse “controls” selection of spectral
elements at ωτ . For instance, in configurations with
ω1 = εe1 , only spectral elements for ωτ = ωe1g do not
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vanish. The second pulse determines the state, which
further evolves in range of T . The third pulse selects
LSPs according to the resonant transitions during T .

It is remarkable that pulses select the distinct LSPs
with high resolution. Various diagonal peaks and
the crosspeaks now can be separately characterized
including their shape and amplitude. Their time evolu-
tion follows the density matrix dynamics at correspond-
ing LSPs. Some pulse frequency configurations are re-
lated to pure coherence pathways, which do not involve
exciton populations ([ε1, ε2, ε1] and [ε2, ε1, ε2] con-
figurations, not shown). Other pathways filter out den-
sity matrix coherences and are initiated by the popu-
lation and its transfer. The density matrix coherence-
contributions show beating dynamics along T (not
shown), which follows the Schrödinger equation. The
population contributions show monotonical dynamics
due to classical dynamics according to the master equa-
tion.

The spectra on the right column of Fig. 10, recon-
structed by summing up all the signals of different laser
pulse configurations, resemble the broad-bandwidth
signals (the left column of Fig. 10) very closely. By
comparing the spectra it is noticeable that peaks of re-
constructed broad-bandwidth spectra are slightly nar-
rower due to the finite bandwidth of the pulses.

The pulse overlap effect in all simulations is small.
That effect may be expected when one of the delay times
τ or t is smaller than the pulse duration σt. Then ad-
ditional contributions follow: i) when pulse 1 is iso-
lated but pulses 2 and 3 overlap and, thus, the term
proportional to E[1]∗

1 E
[2]
3 E

[3]
2 contributes (this is an ad-

ditional SkI contribution), (ii) when pulse 3 is isolated
and pulses 1 and 2 overlap providing withE[2]∗

1 E
[1]
2 E

[3]
3

contribution to the signal defined by the SkII term, and
(iii) when all three pulses overlap, then all six terms in
the integral contribute simultaneously. Fourier trans-
formation, used in 2D signal construction, involves the
integrations over delay times and the overlapping con-
tributions are mixed with the non-overlapping contri-
butions. If the response function is strong in pulse non-
overlapping regimes (usually longer delay times, which
extend to infinity), then the non-overlapping contribu-
tions add up and dominate.

The overlap effect can be quantitatively character-
ized as follows. The response function of a dimer is
characterized by two parameters: the splitting of the
single-exciton states∆e and the characteristic linewidth
of each single-exciton resonance γ. The time-domain
response functions then experience splitting-related os-
cillations with frequency∆e and the decay with timescale

γ−1e . In our case ∆e > γe and we observe well-
separated exciton resonances. The ideal impulsive con-
ditions are fulfilled when σω ≫ ∆e and σω ≫ γe.
This corresponds to the impulsive regime of ultrashort
pulses, when their overlaps can be neglected. For real-
istic finite-bandwidth Gaussian pulses we need to con-
sider pulse durations, σ−1ω . In two dimensions of time
(τ, t), the whole area, where the response function is
not zero, is γ−2e . The area, where pulses overlap, is
σ−2ω . The ratio η = σ−2ω /γ−2e , thus, characterizes the
relative pulse-overlap magnitude. Our finite-bandwidth
simulations are in the regime γe < σω < ∆e. We have
η < 1 and the pulses can thus specifically select reso-
nant peaks, the response function decays slowly com-
pared to the pulse duration, and, therefore, the pulse-
overlaps make a very small contribution. We call this
regime quasi-impulsive. That is the ideal regime to be
used for selection of specific pathways of the system
with well-separated peaks. The ideal impulsive exper-
iment can then be reconstructed from a set of narrow-
bandwidth measurements.

5.3. Dimer of three-level chromophores

Let us consider a homo-dimer of three-level chro-
mophores, that is, two coupled anharmonic oscillators,
described in Sec. 3.3. Molecular Hamiltonian of the
system is

Ĥmol =ω0

2∑
m=1

â†m âm + J

2∑
m ̸=n

â†m ân

+
∆

2

2∑
m=1

â†m â
†
m âm âm . (144)

The one-exciton block is identical to a homo-dimer of
two-level systems

ĥ(1) =

(
ω0 J
J ω0

)
(145)

and corresponding exciton energies and eigen-vectors
are described by Eqs. (133)-(136). In site representation
the two-exciton block is built by adding states â†1â

†
1|0⟩

and â†2â
†
2|0⟩ with energies 2ω0 +∆ due to the overtone

states of single chromophores. The coupling constant
between the overtone states and multi-exciton state with
energy 2ω0 is therefore equal to

√
2J :

ĥ(2) =

2ω0 +∆
√
2J 0√

2J 2ω0

√
2J

0
√
2J 2ω0 +∆

 . (146)
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Diagonalization of one- and two-exciton blocks
(Eqs. (122)–(123)) allows us to move to the exciton ba-
sis

|ej⟩=
N∑

m=1

U−1jm â
†
m|0⟩ , (147)

|fk⟩=
N∑

m=1

N∑
n=m

ν(k)mn

(
ζmn +

δmn√
2

)
â†mâ

†
n|0⟩ , (148)

where ν(k)mn denotes the element of V −1 of the kth row
and the column, corresponding to the diagonal element
of â†mâ†n|0⟩ state and N = 2. The one-exciton eigen-
vector matrix is identical to Eq. (136). The two-exciton
eigenvector matrix is

V −1 =
1√
2


sinϑ

2 cos ϑ
2

− cosϑ−1√
2 cos ϑ

2

sinϑ
2 cos ϑ

2

1 0 −1

sinϑ
2 sin ϑ

2

− cosϑ+1√
2 sin ϑ

2

sinϑ
2 sin ϑ

2

 , (149)

where ϑ = arctan
(
4J
∆

)
. The eigen-energies of one- and

two-exciton states are

εe1 =ω0 + J , (150)

εe2 =ω0 − J , (151)

and

εf1 =2ω0 + 2J
cosϑ− 1

sinϑ
, (152)

εf2 =2ω0 +∆ , (153)

εf3 =2ω0 + 2J
cosϑ+ 1

sinϑ
. (154)

Dipole moments for the ground to one- and two-
exciton states are(

µge1
µge2

)
=

1√
2

(
−1 1
1 1

)(
d1

d2

)
(155)

and

µe1f1
µe1f2
µe1f3

=
1√
2


− sinϑ+cosϑ+1

2 cos ϑ
2

sinϑ+cosϑ+1
2 cos ϑ

2

−1 −1

− sinϑ+cosϑ−1
2 sin ϑ

2

sinϑ+cosϑ−1
2 sin ϑ

2

(
d1

d2

)
(156)
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Fig. 15. The real part of total 2D spectra of the dimer of three-level
system with dephasing constant γ = J (left column) and γ = 5J

(right column). J = 50 cm−1 and ∆ = 15 cm−1 in both cases.

andµe2f1
µe2f2
µe2f3

=
1√
2


sinϑ−cosϑ−1

2 cos ϑ
2

sinϑ−cosϑ−1
2 cos ϑ

2

1 −1

sinϑ−cosϑ+1
2 sin ϑ

2

sinϑ−cosϑ+1
2 sin ϑ

2

(
d1

d2

)
.

(157)
Having transition dipole moments defined one would
be able to construct analytic expressions of the total 2D
signal from individual Feynman diagrams. In Fig. 15
the spectra of the dimer of the three-level system us-
ing different dephasing rates are presented. For a dimer
of two-level systems, coupling of the eigenstates is rep-
resented by off-diagonal elements. Coherent induced
absorption diagrams produce spectral elements on the
diagonal and gives oscillations of corresponding diag-
onal peaks, that is perceptible in 2D spectra at the limit
of γ = J . However, if the dephasing rate is γ ≫ J ,
the inter-state coherence dynamics cannot be separated
from diagonal elements and the whole spectra resemble
a single anharmonic oscillator.



294 V. Butkus et al. / Lithuanian J. Phys. 50, 267–303 (2010)

6. Applications to multi-chromophore complexes

6.1. One-dimensional J-aggregates of
pseudoisocyanine

Molecular aggregates (J-aggregates) are macroscop-
ic clusters of molecules with intermolecular spacing
intermediate between the crystal lattice and isolated
molecules. The scientific interest in spectroscopic fea-
tures of such structures remains high even since 1936
when Jelley [37] and Scheibe [38] independently dis-
covered a significant narrowing of the absorption band,
red shifted relative to a monomer band, due to an in-
crease of the concentration of the dye pseudoisocyanine
(PIC) in water solution. This narrowing effect upon an
aggregation is known as the superradiance.

The J-band in the streaming solution is polarized
along the streaming direction (see, for instance, [39])
and thus the transition dipole moments of the con-
stituent molecules of the linear one-dimensional J-
aggregate must have a small angle with respect to the
aggregate axis. In this case the optical transition to
the lowest exciton states dominates in the absorption
spectrum, while the narrowing of its lineshape is ad-
dressed to the motional narrowing [40, 41]. Linear
one-dimensional J-aggregates are formed by parallel
molecules with an angle of transition dipoles less than
arccos

√
1/3 ≈ 54.7◦ with respect to the aggregate

axis. In the other case an H-aggregate is formed with
the superradiant fluorescence feature at the highest en-
ergy.

Spectral properties of J-aggregates are usually un-
derstood in terms of the Frenkel exciton theory [42].
The exciton energy spectrum and the corresponding
wave functions are defined from diagonalization of the
exciton Hamiltonian of a linear chain of N identical
molecules

Ĥmol =
N∑

m=1

(ϵ+ δϵm)|m⟩⟨m|+
N∑

m=1

N∑
n̸=m

Jnm|n⟩⟨m| ,

(158)
where ϵ is the excitation energy of a constituent molecule
and δϵm is the random (inhomogeneous) Gaussian-
distributed energy offset of the mth molecule, |n⟩ de-
notes the state when the nth molecule in the aggregate
is excited and ⟨n| is its Hermitian conjugate. Matrix el-
ements Jnm denote the energies of the resonance inter-
action between the nth and mth molecules, which can
be calculated from the structural data. In the absence
of the diagonal disorder (when δϵm ≡ 0) and in the
case of the nearest-neighbour coupling approximation
(assuming that Jmn = −J0δ|n−m|,1 with J0 ≥ 0), the

exciton Hamiltonian defined by Eq. (158) can be diag-
onalized analytically resulting, thus, for the eigenener-
gies [34, 42] in

εj = ε− 2J0 cos
πj

N + 1
(159)

and eigenfunctions |ej⟩ =
∑

n ψjn|n⟩, where

ψjn =

√
2

N + 1
sin

πjn

N + 1
. (160)

Quantum numbers j = 1 . . . N enumerate the exciton
states. The transition dipole moments corresponding to
each exciton state are defined giving the dipole strength
for a particular exciton state as follows:

(µj)
2 =

2µ20
N + 1

cot2
πj

2(N + 1)
(161)

for odd j and

(µj)
2 = 0 (162)

for even j, where µ0 denominates the transition dipole
moment of a constituent molecule from the aggregate.
Thus, the dipole strength of the lowest energy state
(j = 1), which is red-shifted in comparison with the
molecular transition in accord with Eq. (159), is signif-
icantly higher than that of the others and contains more
than 80% of the total oscillator strength.

The absorption spectrum of pseudoisocyanine (PIC)
J-aggregates features not only the J-band (at 576.5 nm)
but two weak bands at 536 and 499 nm as well. While
the origin of the J-band is clear, this cannot be said
about the other two bands. Conflicting theories have
been put forward but there is no consensus yet. On the
basis of detailed analysis of the absorption and fluo-
rescence excitation spectra, the one-dimensional model
containing four molecules per unit cell was proposed
[43]. According to this model the unit cell of the
aggregate consists of four PIC molecules and, within
the dipole approximation, the transition dipoles in the
unit cell are of the following orientation: (µx, µy, µz),
(−µx,−µy, µz), (µx, − µy, µz), and (−µx, µy, µz),
where µ = (µx, µy, µz) = (0.581, 0.338, 0.738)
(Fig. 16). These transition dipole moments cause
the average value of the coupling constant between
the nearest neighbours J0 being equal to −1.43 in
units of |µ|2/(r12)3, where r12 is the translation vec-
tor norm. An experimentally observed exciton band-
width is achieved by setting |µ|2/(r12)3 to reach J0 =
600 cm−1.

To showcase the narrowing of the J-band, we present
simulations of absorption and 2D total (rephasing +
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Fig. 16. The spatial structure of a single unit cell consisting of four
PIC molecules of a J-aggregate used in the calculations. The transi-
tion dipole moment vector is denoted as µ and their corresponding
projections to x0z and y0z planes are depicted. The dihedral angle
φ and tilt angleα are known from spectroscopic measurements [43].
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Fig. 17. Absorption spectra and the real part of total 2D spectra of
PIC J-aggregate with different number of chromophores N .

non-rephasing) spectra of J-aggregates consisting of
different number of molecules (Fig. 17). Absorp-
tion spectra simulations of aggregates of more than 64
molecules did not contain any noticeable differences.
All 2D spectra are presented at population time T =
0 fs. To simulate inhomogeneous broadening we first
use random Gaussian off-set terms δϵm in Eq. (158) and
average over 1000 distributions to get the absorption
spectra. We set diagonal disorder to σD = 60 cm−1 that
is 0.1 of the coupling constant J0. Then we fit the pa-
rameters of „slow“ mode of spectral density (Eq. (141))
to match the aforementioned absorption spectra. The
simulation of inhomogeneous broadening in 2D spec-
tra is then accomplished using the “slow” mode thus
allowing us to avoid computationally expensive numer-
ical diagonalization of multiple instances of the Frenkel
exciton Hamiltonian.

Let us first consider the absorption spectrum of a sin-
gle unit cell consisting of four molecules. Four bands
are visible in the absorption spectrum (even though the
transition to the second excitonic state is very weak, the
corresponding peak is still visible). The J-band is at the
bottom of the single exciton manifold. The peaks repre-
senting the fourth and third excitonic states are visible
as well.

The 2D spectra of the unit cell contain more informa-
tion. The J-band is clearly dominant here as well. How-
ever, the second excitonic state is not visible, which is
due to the fact that peak intensities are proportional to
the fourth order of transition dipole moments in the 2D
spectrum and to the second order in the absorption spec-
trum. As expected, the peaks corresponding to the third
and fourth excitonic states are also visible on the diag-
onal. The positive crosspeaks represent coherences and
correlations between excitonic states. The negative el-
ements, that are due to induced absorption, contain in-
formation about two-exciton states.

Now let us consider the effects of aggregation by
analysing the difference in absorption and 2D spectra
of J-aggregates consisting of an increasing number of
molecules. Firstly, we can see the considerable narrow-
ing of the J-band. Obviously, with the increasing num-
ber of molecules, the oscillator strength correspond-
ing to the J-band increases. This effect is more easily
seen in 2D spectra, where the spectral elements become
so narrow that it is basically impossible to analyse the
2D spectra of J-aggregates consisting of 64 or even 32
molecules when it is plotted on the same scale as the 2D
spectra of the unit cell. Moreover, the presence of the
negative IA contribution distorts the appearance of the
J-band in the 2D spectra in case of 32 or 64 molecules
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in the aggregate. Secondly, it can be clearly seen from
both absorption and 2D spectra that the width of the ex-
citonic manifold increases with the aggregate size. The
increase is not linear, however, as the width increase
slows quickly with increasing aggregate size. Finally, it
can be seen that the J-band in the absorption spectrum
becomes slightly assymetric when the aggregate con-
sists of 64 molecules. To highlight this we show two in-
sets in Fig. 17. In case of the 32-molecule aggregate, the
J-band is still symmetric but in case of the 64-molecule
aggregate it becomes assymetric due to the fact that the
third excited state has some oscillator strength and its
peak blends with the main J-band peak corresponding
to the first excited state. As can be clearly seen from
the insets, the J-band is elongated along the ωτ axis.
This elongation is due to the crosspeak representing the
|e1⟩⟨e3| coherence. This elongation, however, is clearly
smaller in case of the 64-molecule aggregate. There-
fore, from analysing the 2D spectra we can conclude
that the third excited state is getting nearer to the first
one and it should be noticeable in the absorption spec-
tra.

6.2. Excitation transfer pathways in
Fenna–Matthews–Olson photosynthetic complex

The Fenna–Matthews–Olson (FMO) protein is a
photosynthetic light harvesting complex found in some
bacterias. In the process of photosynthesis, it has a
role in energy transfer between the light-absorbing an-
tennae (chlorosomes) and the reaction centre [34, 36].
The FMO complex has three identical subunits, each
of them containing 7 bacteriochlorophyll-a molecules
(Fig. 18). This complex was the first bacteriochloro-
phyll containing protein to have its structure determined
with a very high resolution (2.2 Å) by means of X-ray
spectroscopy [44]. It was extracted from the green pho-
tosynthetic bacteria Chlorobium tepidum.

A highly-effective energy transfer was observed ex-
perimentally in this complex. It is assumed that it is re-
lated to the long-lived electronic coherences (> 600 fs),
that were observed by means of 2D electronic spec-
troscopy [14]. The energy is believed to be transferred
in a wave-like manner by two dominant pathways. The
energy transfer through electronic coherences should
ensure high efficiency [11, 15, 45]. However, tradi-
tional quantum relaxation theories often fail in describ-
ing such a slow coherence decay in electronic systems
of strong excitonic coupling [46–48].

Intensive researches of the FMO complex are under-
going since its structure is the simplest of all known

1
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5

6

7

e5, e6

e3, e7

e1
e2, e4

Fig. 18. The structure of Fenna–Matthews–Olson complex. Chro-
mophore numbers as well as exciton states are identified. Arrows
illustrate excitation transfer pathways within the system (revealed

in further discussion).

photosynthetic proteins. A single subunit has the same
optical properties as the whole complex. The absorp-
tion band is narrow and linear absorption simulation
using the Frenkel exciton theory provides very good re-
sults.

In this paper, simulations of 2D spectra of the FMO
photosynthetic complex are presented. Dipole mo-
ments were calculated from the structural data of the
complex [49]. Molecular Hamiltonian and relaxation
rates are the same as in Ref. [3]. System–bath inter-
action is represented by the fast and slow modes of
overdamped Brownian oscillator, as in Sec. 5.2: λF =
30 cm−1, λS = 60 cm−1, Λ−1F = 100 fs, Λ−1S =
105 ps., similar to refs. [12, 50]. Temperature is 77 K.

6.2.1. Spatial delocalization of molecular excitons
In Eqs. (128) three different correlation functions

were obtained, involving either single-exciton states,
double-exciton states, or single- and double-exciton
states. The wave function overlap terms have differ-
ent physical meanings, representing either degree of de-
localization, or spatial overlaps of molecular excitons
within the complex.

First, let us consider the C ′′ejejejej (ω) term. The
wave function overlap contribution represents the mean
square of the single-exciton state fluctuations ⟨δΩ2

j ⟩,∑
m

U4
mj = N−1j , (163)

where Nj is so-called inverse participation ratio (IPR).
Value of the IPR shows, how many molecules are in-
volved in the jth exciton, so it is the measure of the ex-
citon delocalization. If the exciton state is completely
localized, Nj = 1. At the other limit, when the jth
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Table 1. Squares of matrix elements of eigen-vector matrix U ,
inverse participation ratios (IPR), and transition dipole moment

squares
∣∣µgej

∣∣2. The most significant values are in bold.

Single-exciton state
e1 e2 e3 e4 e5 e6 e7

BChl 1 0.00 0.00 0.78 0.00 0.00 0.00 0.22
BChl 2 0.00 0.00 0.22 0.00 0.00 0.00 0.78
BChl 3 0.88 0.11 0.00 0.01 0.00 0.00 0.00
BChl 4 0.11 0.60 0.00 0.10 0.13 0.06 0.00
BChl 5 0.01 0.11 0.00 0.11 0.45 0.32 0.00
BChl 6 0.00 0.01 0.00 0.03 0.42 0.54 0.00
BChl 7 0.00 0.17 0.00 0.76 0.00 0.07 0.00

IPR 1.28 2.45 1.53 1.67 2.54 2.47 1.53∣∣µgej

∣∣2 14.8 26.4 22.2 7.9 27.8 6.3 11.2

exciton is completely delocalized in a N -chromophore
system, Umj = N−1/2, that is, the mean square of the
single-exciton state fluctuations becomes very small,
⟨δΩ2

j ⟩ ∝ N−1, this exchange-narrowing effect is typ-
ical of molecular J-aggregates. Squares of matrix ele-
ments of U represent localizations of excitons in each
molecule. For the FMO complex, calculated matrix el-
ements and IPRs, as well as corresponding transition
dipole moment squares, are presented in Table 1.

For other correlation functions in Eqs. (128),
C ′′ejejekek(ω) represents the spatial overlap of proba-
bility density functions of jth and kth excitonic state
(squares of eigen-functions in excitonic basis). Correla-
tion functions involving double-excites states have sim-
ilar physical meaning [3].

In Table 1 we present calculated square values of the
eigenvector matrix, square values of transition dipole
moments, and inverse participation ratios. It is notable
that IPR values are small. This shows that the molecu-
lar excitations are not extensively delocalized. The first
excitonic state e1 is mostly localized in the third chro-
mophore. e2 and e4 excitons are commonly localized
in 4 and 7 chromophores, e3 and e7 in 1 and 2 chro-
mophores, e5 and e6 in 5 and 6 chromophores. The
largest square values of transition dipole moments are
|µge2 |2 and |µge5 |2, the corresponding absorption peaks
dominate both in absorption and 2D spectra.

6.2.2. Energy transfer pathways
By analysing the evolution of 2D spectra and know-

ing how the excitons are localized spatially in the com-
plex, we are able to describe the excitation transfer path-
ways within the system.

In the calculations, δ-shaped laser pulses were used.
It means that all transitions between excitonic levels can
be induced. Simulated spectra of FMO complex for
various population times T are presented in Fig. 19. It

Fig. 19. Real (absorptive) part of rephasing 2D spectra of photo-
synthetic FMO complex.

is remarkable that the results fit the experimental data
well [3, 13, 25, 31]. While increasing the population
time T , some features of 2D spectra change: diagonal
elements decay except for the 1–3 and 5 exciton states.
The corresponding off-diagonal elements denote the en-
ergy transfer from the higher energy molecular excita-
tions downwards, e4, e5 → e1 and e2 → e1. So, the
excitation, induced in some region of the complex, will
be transferred to chromophores 4 and 7, and then to
chromophore 1. Therefore, two pathways of excitation
transfer can be distinguished: e3, e7 → e2, e4 → e3
and e5, e6 → e2. They are demonstrated in Fig. 18 by
the left and right (green and red online) curved arrows,
respectively.

The total signal can be decomposed to pathways,
indicated by the double-sided Feynman diagrams, as
it was shown for the excitonically coupled dimer in
Sec. 5.2.1. The corresponding spectra are presented in
Fig. 20.
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Fig. 20. Components of 2D spectra of the FMO complex at T = 0
and 2 ps: IA (first row), SE (second row), GSB (third row).

7. Concluding remarks

The basic concepts of two-dimensional optical spec-
troscopy are presented in this study. By performing
the four-wave mixing experiment, the detected photon-
echo signal fully represents the third-order polariza-
tion dynamics induced within the system and separa-
tion of quantum coherence and population dynamics,
homogeneous and inhomogeneous broadening is possi-
ble. Such sophisticated experimental method adds up
one more dimension to the time-resolved spectroscopic
measurement with respect to the other nonlinear spec-
troscopic techniques. Therefore, it allows us to directly
observe ultra-fast quantum phenomena such as exci-
tonic energy transfer and quantum coherence dynamics
in time-resolved two-dimensional spectrograms. Uti-
lization of so-called two-colour two-dimensional opti-
cal spectroscopy also provides means of implementing
quantum coherence control of the relevant system as
well as specific excitation pathway induction.

To illustrate the main features of the two-dimensional
optical spectroscopy a number of examples are con-
sidered in this study. The examples are presented

consistently from the simpliest quantum two- and three-
level systems to the molecular excitonic aggregates.

For the basic quantum systems the total third-order
response signal can be expressed analytically by as-
suming simple models of the solvent dynamics. The
simulated two-dimensional spectra of a two-level atom
(Lorentzian spectral lineshape) and a two-level molecule
(Gaussian spectral lineshape) are presented and various
representations are discussed. For an anharmonic os-
cillator (three-level system) evidences of anharmonicity
are considered.

Two coupled chromophores constitute a more so-
phisticated system of a dimer, in the spectra of which
the quantum coherence dynamics is observed. Two
types of the dimer description are presented: the con-
stituting chromophores are considered as two-level or
three-level subsystems. In the case of the two-level
chromophore hetero-dimer, extraction of individual spec-
tral elements by means of two-colour two-dimensional
spectroscopy is demonstrated. It is possible to char-
acterize the dipole moment configuration and reso-
nant coupling constant value by performing such mea-
surements. For the homo-dimer of three-level chro-
mophores, complete expressions for the transition to the
excitonic eigenstate basis are derived and time-resolved
two-dimensional spectra are presented. In case of low
dephasing rate, spectra demonstrate typical spectral fea-
tures of anharmonic nature, while in the limit of the de-
phasing rate being much higher than the intrinsic sys-
tem dynamics the total spectra are not clearly separable
from the spectra of a single three-level system.

Finally, in the analysis of complex molecular aggre-
gates all the powerful capabilities of this spectroscopic
tool can be demonstrated. For the two-dimensional
spectra of linear one-dimensional J-aggregates the spec-
trally narrowed peak due to motional-narrowing, the
J-band, demonstrates a great complexity of the spec-
tral behaviour due to different excitation pathways pro-
ducing spectral elements of different time-resolved dy-
namics in the vicinity of the J-band. Analysis of
this spectral region helps to distinguish the mecha-
nisms of excitation transfer and nuclear-motion in-
duced motional-narrowing and consider the timescales
of these processes within the aggregate. The forma-
tion of the J-band with respect to the aggregate size
is presented and analysed in this paper. The excitation
transfer dynamics in the photosynthetic light-harvesting
Fenna–Matthews–Olson complex is comprehensively
described in this study. The systematic separation of
the spectral elements with respect to the corresponding
physical mechanisms is carried out and the dominant
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highly-efficient excitation transfer pathways within the
system are identified.
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Appendices

A. The cumulant expansion

The cumulant expansion technique is widely used to
simplify expressions of perturbational series in time.
Assume that we have a perturbational series of some
quantity A

A(t) = 1 + λA1(t) + λ2A2(t) + . . . (A1)

and want to recast it into the exponential form

A(t) ≡ exp[λF1(t) + λ2F2(t) + . . .] . (A2)

If the Taylor expansion of exponential is carried out and
terms of the same λ order are collected, the relation be-
tween Fi and Aj terms is obtained:

A(t) =

(
1 + λF1 +

1

2
λ2F 2

1 +
1

6
λ3F 3

1 + . . .

)
(A3)

× (1 + λ2F2 + . . .)(1 + λ3F3 + . . .)

= 1 + λF1 + λ2
(
1

2
F 2
1 + F2

)

+ λ3
(
1

6
F 3
1 + F1F2 + F1F3

)
+ . . .

For the cumulant expansion to the second order we have

A(t) = exp
{
λA1(t) + λ2

[
A2(t)−

1

2
A1(t)

]
+ . . .

}
.

(A4)
The cumulant expansion is also a way to represent
a truncation of perturbation series. If we truncate
Eq. (A1) to the values of a certain order, we still have an
infinite series in exponential of Eq. (A4). On the other
hand, we can sketch that we have Eq. (A1) calculated
to the terms of infinite order and truncate the cumulant

expansion to the certain length, containing only terms
of the lowest order.

For the second-order cumulant expansion of time-
ordered exponentials of energy-gap correlation func-
tions, i. e.

A(t) = exp+

[
− i

t∫
t0

dτ∆V (τ)

]
(A5)

= 1− i
t∫

t0

dτ ∆V (τ) + i2
t∫

t0

dτ
τ∫

t0

dτ ′∆V (τ)∆V (τ ′) ,

for the expectation value of A(t) we obtain

⟨A(t)⟩ = exp
{
−

t∫
t0

dτ
τ∫

t0

dτ ′⟨∆V (τ)∆V (τ ′)⟩
}
.

(A6)

B. Response function of an open excitonic system
with diagonal and off-diagonal fluctuations

Here we present the third-order response function
expression written out in terms of Feynman diagrams,
shown in Fig. 8. We are considering the kI experimen-
tal technique, where the spatial configuration of inci-
dent pulse wave vectors is −k1 + k2 + k3 [21]. The
pulses are generally not δ-shaped, therefore the pulse-
overlap effects are present, that mix the kI signal with
the signals of other experimental techniques.

kI = −kα + kβ + kγ diagrams

SIAc = −
∑
e′ ̸=e

∑
f

〈
µe′µe′fµefµe

〉
(B1)

× exp
{

iωegt1 − iωe′et2 − iωfet3

+conj
[
− g∗e′e′(t2)− g∗ff (t3)− gee(t1 + t2 + t3)

−g∗e′f (t2 + t3) + g∗e′f (t2) + g∗e′f (t3)

−ge′e(t1) + g∗e′e(t2 + t3) + ge′e(t1 + t2)− g∗e′e(t3)

−gef (t1 + t2) + g∗ef (t3) + gef (t1 + t2 + t3)
]}
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SIAp = −
∑
e′=e

∑
f

Ge′e(t2)
〈
|µe′ |2|µe′f |2

〉
(B2)

× exp
{

iωegt1 − iωfet3

+conj
[
− g∗e′e′(t2)− g∗ff (t3)− gee(t1 + t2 + t3)

−g∗e′f (t2 + t3) + g∗e′f (t2) + g∗e′f (t3)

−ge′e(t1) + g∗e′e(t2 + t3) + ge′e(t1 + t2)− g∗e′e(t3)

−gef (t1 + t2) + g∗ef (t3) + gef (t1 + t2 + t3)
]}

SSEc =
∑
e ̸=e′

〈
|µe|2|µe′ |2

〉
(B3)

× exp
{

iωegt1 + iωee′t2 − iωe′t3

−g∗ee(t1 + t2)− ge′e′(t2 + t3)

−g∗ee′(t1) + g∗ee′(t1+t2+t3) + gee′(t2)− g∗ee′(t3)
}

SSEp =
∑
e=e′

Ge′e(t2)
〈
|µe|2|µe′ |2

〉
(B4)

× exp
{

iωegt1 − iωe′gt3

−g∗ee(t1 + t2)− ge′e′(t2 + t3)

−g∗ee′(t1) + g∗ee′(t1+t2+t3) + gee′(t2)− g∗ee′(t3)
}

SSE′ =
∑
e̸=e′

Ge′e(t2)⟨|µe|2|µe′ |2⟩ (B5)

× exp
{
− iωegt1 + iωe′gt3 − γe′t3 − γet1

−gee(t1)− g∗e′e′(t3) + ge′e(t1 + t2 + t3)

−ge′e(t1 + t2)− ge′e(t2 + t3) + ge′e(t2)
}

SGSB =
∑
ee′

〈
|µe|2|µe′ |2

〉
exp

{
iωegt1 − iωe′gt3 (B6)

−g∗ee(t1)− ge′e′(t3)− g∗ee′(t1 + t2)

+g∗ee′(t1 + t2 + t3) + g∗ee′(t2)− g∗ee′(t2 + t3)
}

kII = +kα − kβ + kγ diagrams

SIAp = −
∑
e′=e

∑
f

Ge′e(t2)
〈
|µe′f |2|µe|2

〉
(B7)

× exp
{
− iωe′gt1 + iωef t3

+conj
[
− g∗e′e′(t1 + t2)− g∗ff (t3)− gee(t2 + t3)

−g∗e′f (t1 + t2 + t3) + g∗e′f (t1 + t2) + g∗e′f (t3)

−g∗e′e(t1) + g∗e′e(t1 + t2 + t3) + ge′e(t2)− g∗e′e(t3)

−gfe(t2) + g∗fe(t3) + gfe(t2 + t3)
]}

SIA′ = −
∑
e′ ̸=e

∑
f

Ge′e(t2)
〈
|µe′f |2|µe|2

〉
(B8)

× exp
{

iωegt1 − iωe′f t3 − γe′t3 − γet1

+conj
[
− gee(t1)− gff (t3)− g∗e′e′(t3)

−gfe(t1 + t2 + t3) + gfe(t1 + t2) + gfe(t2 + t3)

+ge′e(t1 + t2 + t3)− ge′e(t1 + t2)− ge′e(t2 + t3)

+ge′f (t3) + g∗fe′(t3) + ge′e(t2)− gfe(t2)
]}

SIAc = −
∑
e′ ̸=e

∑
f

〈
µe′µe′fµfeµe

〉
(B9)

× exp
{
− iωe′gt1 + iωee′t2 + iωef t3

+conj
[
− g∗e′e′(t1 + t2)− g∗ff (t3)− gee(t2 + t3)

−g∗e′f (t1 + t2 + t3) + g∗e′f (t1 + t2) + g∗e′f (t3)

−g∗e′e(t1) + g∗e′e(t1 + t2 + t3) + ge′e(t2)− g∗e′e(t3)

−gfe(t2) + g∗fe(t3) + gfe(t2 + t3)
]}
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SSEp =
∑
e′=e

Ge′e(t2)
〈
|µe|2|µe′ |2

〉
(B10)

× exp
{
−iωegt1 − iεe′gt3

−g∗ee(t2)− ge′e′(t1 + t2 + t3)− gee′(t1)

+g∗ee′(t2 + t3) + gee′(t1 + t2)− g∗ee′(t3)
}

SSE′ =
∑
e′ ̸=e

Ge′e(t2)
〈
|µe|2|µe′ |2

〉
(B11)

× exp
{
− iωegt1 − iωe′gt3 − γe′t3 − γet1

−gee(t1)− ge′e′(t3)− ge′e(t1 + t2 + t3)

+ge′e(t1 + t2) + ge′e(t2 + t3)− ge′e(t2)
}

SSEc =
∑
e′ ̸=e

〈
|µe|2|µe′ |2

〉
(B12)

× exp
{
− iωe′gt1 + iωee′t2 − iωe′gt3

−g∗ee(t2)− ge′e′(t1 + t2 + t3)− gee′(t1)

+g∗ee′(t2 + t3) + gee′(t1 + t2)− g∗ee′(t3)
}

SGSB =
∑
ee′

〈
|µe|2|µe′ |2

〉
(B13)

× exp
{
− iωe′gt1 − iωegt3

−gee(t3)− ge′e′(t1)− gee′(t1 + t2 + t3)

+gee′(t2 + t3) + gee′(t1 + t2)− gee′(t2)
}

kIII = +kα + kβ − kγ diagrams

S2Q1 =
∑
e′e

∑
f

〈
µe′µe′fµfeµe

〉
(B14)

× exp
{
− iωegt1 − iωfgt2 − iωe′gt3

−ge′e′(t3)− gff (t2)− gee(t1)− ge′f (t2 + t3)

+ge′f (t3) + ge′f (t2)− ge′e(t1 + t2 + t3)

+ge′e(t2 + t3) + ge′e(t1 + t2)− ge′e(t2)

−gfe(t1 + t2) + gfe(t2) + gfe(t1)
}

S2Q2 = −
∑
e′e

∑
f

〈
µeµefµfe′µe′

〉
(B15)

× exp
{
− iωegt1 − iωfgt2 + iωe′f t3

+conj
[
− g∗ee(t1)− g∗ff (t2 + t3)− g∗ef (t1 + t2 + t3)

+g∗ef (t1) + g∗ef (t2 + t3)− g∗ee′(t1 + t2)− ge′e′(t3)

+g∗ee′(t1 + t2 + t3) + g∗ee′(t2)− g∗ee′(t2 + t3)

−g∗fe′(t2) + g∗fe′(t2 + t3) + gfe′(t3)
]}
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Santrauka
Dvimatė elektroninė spektroskopija yra vienas naujausių bei pa-

žangiausių daugiaimpulsinės spektroskopijos metodų, šiuo metu in-
tensyviai naudojamas analizuojant vyksmus itin sudėtinguose foto-
sintetiniuose dariniuose. Šis metodas leidžia geriau suprasti kohe-
rentiškumo gesimo ir užpildų pernašos vyksmus, stebimus sudėtin-
gose daugiachromoforinėse eksitoninio ryšio sistemose.

Pagrindiniai šio spektroskopijos metodo privalumai yra puiki
laikinė skiriamoji geba (stebimi femtosekundžių trukmės vyksmai)
bei koherentinės ir nekoherentinės prigimties sąveikaujančių sis-
temų evoliucijų atskyrimas. Dėl pastarosios savybės galima stebėti
sužadinimo pernašą sistemos viduje, itin efektyvų energijos perda-
vimą lemiančias koherentiškumo osciliacijas bei dar geriau išskirti
nevienalytiškai išplitusias spektro linijas.

Iš (bakterio)chlorofilų sudarytuose bakterijų ir augalų fotosin-
tezės reakciniuose centruose, šviesos energijos surinkimo bei per-
davimo kompleksuose chromoforų skaičius yra didelis, tad iki šiol
naudota supaprastinta netiesinio atsako teorija, išvystyta daug ma-
žesnėms struktūroms, pavyzdžiui, dimui, aprašyti, nėra tiesiogiai
taikytina. Tokių kompleksų modeliavimas tampa sudėtingas, todėl
taikomos įvairios aproksimacijos, naudojamas eksitoninis vaizda-
vimas.

Šiame darbe yra pristatoma bendra keturių bangų maišymo eks-
perimento modeliavimo schema bei išvestos trečios eilės atsako
funkcijos išraiškos daugelio lygmenų eksitoninei sistemai, trumpai
aptartos alternatyvios teorijos, paremtos neperturbaciniu kinetinės
tankio matricos lygties sprendimu. Pateikiami sumodeliuoti ele-
mentarių kvantinių sistemų dvimačiai spektrai bei analizinės tre-
čios eilės atsako išraiškos. Atskirai aptariami dimerų spektrai, kai
juos sudarančios chromoforos aproksimuojamos kaip dviejų arba
trijų lygmenų sistemos. Dviejų lygmenų chromoforų dimero atveju
demonstruojamos galimybės pritaikyti dvispalvę dvimatę spektro-
skopiją siekiant išskirti spektrinius elementus bei indukuoti skirtin-
gus fizikinius vyksmus sistemoje. Tokių matavimų rezultatai suda-
rytų prielaidas įvertinti makroskopinius nagrinėjamos sitemos pa-
rametrus – rezonansinę sąveiką, dipolinius momentus. Dvimatės
spektroskopijos pritaikymui molekuliniams agregatams pateikiami
vienmačio tiesinio J agregato bei fotosintetinio Fenna–Matthews–
Olson (FMO) komplekso sugerties ir dvimačiai spektrai. Iš sumo-
deliuotų FMO komplekso spektrų galima daryti išvadas apie suža-
dinimo perdavimo tarp chromoforų scenarijus sistemoje bei kohe-
rentiškumo fliuktuacijas, kurios, manoma, lemia itin efektyvų ener-
gijos perdavimą sistemoje.
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