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METASTABLE CONFIGURATIONS OF WIGNER CRYSTALS IN A
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We model the formation of ordered structures in systems consisting of up to 52 identical particles interacting by Coulomb
repulsion forces and confined within a two-dimensional parabolic trap. Our algorithm consists of a number of Metropolis steps
followed by the steepest-descent minimization of the total potential energy of the system. The role of the first (Metropolis)
stage is to create a random canonically distributed configuration, while the subsequent minimization locates the closest local
minimum starting from this random configuration. In most cases we find that more than one stable configuration may be formed,
and often the lowest-energy configuration is not the most probable one. The concept of configurational entropy is introduced
to quantify the uncertainty due to the availability of several alternative structures.
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1. Introduction

The formation of ordered structures in systems con-
sisting of a finite number of strongly interacting parti-
cles is of considerable interest for researchers working
in diverse areas of physics, in particular, low dimen-
sional nanostructures [1–3] and plasma physics [4–6].
In line with tradition, such structures are often referred
to as Wigner crystals as it was Eugene Wigner who pro-
posed, back in 1934, that a crystal lattice may be formed
by an electron gas of sufficiently low density [7].

As a matter of fact, the formation of a three-
dimensional lattice of electrons was never realized,
however, its two-dimensional analogue turns out to be
feasible in electron systems confined on the surface of
liquid helium [1, 8] as well as in semiconductor het-
erostructures [9, 10].

In recent years, investigations of ordered structures
have been gradually shifting from electronic systems
towards systems consisting of larger and heavier par-
ticles. In particular, most of recent successful ex-
periments have been performed with micrometre-sized
particles carrying electrostatic charges of around sev-
eral thousand elementary units that are formed in a
radio-frequency discharge and captured by electrostatic
traps [5, 6].

The underlying physics of these systems is the same

as envisioned by Wigner as the crystallization is still
induced by the domination of the Coulomb repulsion
energy over the kinetic energy. On the other hand, the
time and length scales are much more advantageous for
direct observation [6]. The trajectories of microparti-
cles can be recorded with the aid of ordinary CCD cam-
eras, and typical periods of their normal-mode oscilla-
tions are on the order of seconds [11]. The behaviour
of these crystals can be analysed within a completely
classical or quasiclassical approach [12].

The most basic issue pertaining to the study of static
properties of Wigner crystals is the determination of
energetically stable configurations formed by a certain
number of particles captured in a trap of a given shape
and dimensionality.

It turns out that in typical situations one finds not
one but several distinct stationary configurations, and
the number of such configurations grows very rapidly
(exponentially) with the number of particles [4]. The
stationary configuration with the lowest energy corre-
sponds to the global energy minimum and is commonly
referred to as the ground state. Other configurations
corresponding to local energy minima and character-
ized by higher energy values are known as metastable
states.

In order to give an illustration to what has just been
said, in Fig. 1 we show the two competing configu-
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Fig. 1. Ground and metastable configurations of five- and 21-particle systems. The concentric circles mark equipotential lines of the parabolic
trap.

rations present in a five-particle system and the three
competing configurations that we have found in a sys-
tem of 21 particle. The configurations are arranged in
the order of increasing energy and are marked by their
shell-structure. One can clearly see in the graphs that
due to the circular shape of the confining potential par-
ticles tend to arrange themselves into nearly circular
shells. Thus, is it handy to identify configurations by
enumerating the numbers of particles in each shell start-
ing with the innermost one. For example, the ground
state configuration of 21-particle system is (1, 7, 13),
while the arrangement of particles in two metastable
states is (2, 7, 12) and (2, 8, 11). We note, however, that
when the number of particles exceeds 30 it is not always
possible to discern the shell structure in some configu-
rations. The reason for that is the competition between
the circular confinement and the hexagonal lattice sym-
metry that appears in the interior of the trap.

Simulation studies often concentrate on the quest to
determine the global potential energy minimum. Vari-
ous algorithms, based on the simulated annealing [13]
and dissipative molecular dynamics [4, 14] are con-
structed and applied. A certain uneasiness is felt when
the optimal configuration obtained in a simulation does
not reproduce that observed experimentally.

However, recent experiments performed on three-
dimensional particle clusters [4] have shown that meta-
stable states may be formed with significantly higher
probabilities than the ground state. It has been argued
that this happens when a metastable state controls a
larger basin of attraction. Here, the meaning of the word
“basin” is best portrayed as the drainage basin of a river,
that is, the area from which a river collects its waters.

In order to illustrate this concept we present Fig. 2.
This figure shows a simple one-dimensional sketch of a
certain function intended to represent the potential en-
ergy. This function has a global minimum (marked by
GM on the graph) which is situated at the bottom of
a rather narrow valley and is thus characterized by a
small basin of attraction. In contrast, the local mini-

GM

LM

Fig. 2. One-dimensional function with two minima. The global
minimum (GM) controls a smaller basin of attraction than the local
minimum (LM). Vertical dotted lines delimit the different basins.

mum (LM) is much more shallow, and its basin of at-
traction is much larger. The basins of attraction are de-
limited by vertical lines. It is clear that a particle placed
at a random point and allowed to roll down towards the
nearest stationary point would most likely end up in a
metastable state.

The phase space defined by all possible configura-
tions of N two-dimensional particles is 2N -dimension-
al and, undoubtedly, the distribution of its minima and
separating barriers is rather complicated. However, it is
still possible to analyse the phase space by locating the
energy minima and partitioning the phase space into a
set of basins of attraction adjacent to these minima. The
definition of the basin of attraction in many dimensions
is as simple as in one dimension: a given point P be-
longs to the basin of attraction of a stable configuration
C if a straightforward downhill minimization algorithm
starting from the point P converges to the minimum C.

The goal of the present work is to perform a numer-
ical study in order to determine all (both ground and
metastable) stationary states in a system of up to 52
charged particles in a two-dimensional parabolic trap,
and thus gain insight into the occurrence probabilities
of various minima. We propose a quantitative measure
for the probabilities, and introduce a useful concept of
configurational entropy.
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2. Model and computational approach

Let us consider a system consisting of a given num-
ber N ⩽ 52 of identical two-dimensional particles of
mass m and electrostatic charge q. The in-plane mo-
tion of particles is confined by the trap potential which
shall be assumed to be isotropic and of a parabolic shape
with the characteristic confining frequency denoted by
ω. Thus the classical Hamilton function of the system
may be written as

H =

N∑
i=1

p2
i

2m
+

N∑
i=1

mω2r2i
2

+

N∑
i>j

q2

4πϵ0|ri − rj |
. (1)

Here, the two-dimensional vectors ri and pi stand, re-
spectively, for the radius-vector and the momentum of
the ith particle. The last term of the Hamilton func-
tion (1) represents the pairwise Coulomb interactions
between the particles.

Looking for stationary equilibrium configurations,
the kinetic energy term is discarded and one is con-
cerned with the minimization of the total potential en-
ergy which is given by the second and the third term of
Eq. (1). Obviously, these two terms are in competition:
the Coulomb repulsion tends to spread the particles as
far apart as possible while the confinement tries to hold
them together.

Convenient scaling properties of the potential are
easy to spot and exploit. It may be shown that by us-
ing proper units for the coordinates and the energies the
problem is reformulated as the minimization of the di-
mensionless interaction energy

E =
1

2

N∑
i=1

r2i +
N∑
i>j

1

|ri − rj |
, (2)

which will be our main concern hereafter.
It is interesting to observe that our model closely

resembles the so-called Thomson problem which con-
siders the equilibrium distribution of a number N of
equal charges on a sphere. This problem stems from
the Thomson model of the atom proposed in 1904 and
is of more academic nature. Nevertheless, the Thom-
son problem recently attracted considerable attention.
Ground state configurations have been studied [15, 16]
mostly concentrating on their energies and symmetry
properties.

2.1. Algorithm

The algorithm employed to determine the stable
states and estimate their occurrence probabilities (as a

measure of the adjacent basin of attraction) is a combi-
nation of a sequence of standard Metropolis steps [17,
18] followed by the steepest-descent [19] energy min-
imization. A similar approach was used before in a
three-dimensional set-up [4].

Let us briefly remind the reader that a Metropolis
step is a possibility for the simulated system to perform
a change of its current configuration. A small random
modification of the coordinates of one of the particles is
proposed (by a Mersenne twister [20] random number
generator) and either accepted or rejected. The proba-
bility of acceptance may be written as

p = min(1, e−∆E/kT ) . (3)

Here, ∆E is the change in the total potential energy of
the system due to the proposed move, and the function
min(a, b) selects the smaller value of its two arguments.
In simple terms this means that the changes that lower
the energy are accepted always, while the steps upwards
in the energy scale are accepted with an exponentially
decaying probability.

The quantity kT is the “temperature” of the simula-
tion. When this temperature is high the simulated sys-
tem is more likely to perform moves that increase its
energy. Note, that normally temperatures and energies
are measured in different units and the Boltzmann con-
stant k is used as a factor of unit conversion. In our case,
since we work in dimensionless units we treat kT as an
indivisible symbol and simply call it the temperature.

When a sufficiently large number of Metropolis steps
have been performed (we typically use 103 to 104 steps
in our work) the canonical distribution is established.
Then the current configuration of the system is, in
essence, randomly drawn from all possible configura-
tions with the probability proportional to the Boltzmann
factor e−E/kT .

The next stage of the algorithm is to make the sys-
tem to roll down to the nearest energy minimum, ei-
ther global or local. This is achieved by employing the
steepest descent minimum search supplemented by the
parabolic extrapolation [22].

The above cycle of two stages – thermalization and
sudden cooling – is repeated a number (typically 104 to
105) of times and statistics of the minima found is col-
lected. In this way we are able to calculate the prob-
abilities that the configuration of our system will be
within the basin of attraction of a given minimum. Also,
having repeated the described numerical experiment a
large number of times at different temperatures we are
confident that the complicated multidimensional phase
space of configurations is explored reasonably well and
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Fig. 3. Typical temperature dependences of the probabilities. The
case of 21 particles in a trap is shown. Note that the ground state

(1, 7, 13) is not the most probable at high temperatures.

all stable states that have realization probabilities higher
than 10−5 have been determined.

Let us study a typical result. Figure 3 shows the case
of N = 21 electrons in a trap. As we mentioned be-
fore, three stable configurations are possible and can be
labeled by their shell structure.

When the temperature of simulation is low, the sys-
tem can oscillate randomly only in the vicinity of the
global minimum. Thus, Fig. 3 shows that as long
as kT ≲ 3·10−3 the global-minimum configuration
(1, 7, 13) is found with probability close to unity, and
the remaining two stable configurations remain un-
reachable.

As the temperature of the simulation increases it be-
comes possible to explore larger areas of the configu-
rational phase space and the system may cross the po-
tential barriers into the basins of attraction of the other
minima. Evidently, the metastable state (2, 7, 12) is at
the bottom of a substantially larger basin of attraction,
therefore, its probability becomes the largest.

Note that at high temperatures the temperature de-
pendences of the probabilities pertaining to various
minima level off. That means that the temperature has
become significantly higher than the differences be-
tween the minima and separating barrier heights. Thus,
the high-temperature limit of the studied probability is
a well defined and temperature-independent measure of
the phase-space volume surrounding different minima.

3. Results

With this preparatory material in our background let
us turn to the obtained results.
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Fig. 4. Number of stable configurations of a N -particle system in a
trap.
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Fig. 5. Energy bandwidth in a N -particle system.

Figure 4 shows the dependence of the number of sta-
ble configurations on the number of particles in a cir-
cular two-dimensional trap. We see that only systems
consisting of N = 2, 3, 4, 7, 8, 11, and 13 particles have
uniquely defined configurations. As long as the num-
ber of particles does not exceed N = 29 one has up to
three stable configurations, and afterwards the number
of configurations takes off. One sees that in general the
number of configurations grows rather rapidly, and this
growth is quite erratic.

On the other hand, in Fig. 5 we show the width of the
energy band. This width is defined as the difference of
the highest and the lowest possible energies among all
stable configurations. In other words, it is the range of
available energies. We see that this dependence is also
rather erratic, however, there is no visible widening of
the band. Thus, as the number of particles in the trap
increases, various stationary states become closer and
closer in energy and eventually become impossible to
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Fig. 6. Typical temperature dependences of the probability.

separate. As a consequence, for larger systems, when
the number of distinct stable states reaches several tens
or more, it makes little sense to study individual con-
figurations and the useful concept that survives is the
energy band.

Another very important point to note is that the re-
alization probabilities of metastable states may be very
different. Let us take a look at Fig. 6 where we show
three typical behavioural patterns of the temperature de-
pendence of probabilities to end up in a given stable
state. The three panels correspond to traps containing
14, 29, and 36 particles. Figure 3 that we considered
earlier as an illustration of the algorithm may also be
regarded as a supplement of this figure.

A 14-particle system has only two stable configura-
tions, which in terms of their shell structure are labeled
(4, 10) for the ground state and (5, 9) for the metastable
state. Naturally, at low temperatures kT ≲ 0.01 only
the ground state is available while at higher tempera-
tures both states may be realized with comparable prob-
abilities.

A system of 29 particles has three stable configu-
rations which are, in the order of increasing energy:
(4, 10, 15), (5, 10, 14), and (4, 11, 14). As one can see
from the corresponding graph, in the high-temperature
limit the probabilities of all three states are of compara-
ble magnitude. The ground state has the highest prob-
ability, followed by the first excited state, and then fol-
lowed by the second excited state that has the highest
energy.

However, such a clear-cut arrangement is not always
realized. The last panel pertaining to the 36-particle
system illustrates the point. Here one finds in total
five stable configurations. At high temperatures the
most probable is not the ground state (1, 6, 12, 17) but
the second one (1, 7, 12, 16). The third lowest state
is (1, 6, 13, 16) and at high temperatures also becomes
more probable than the ground state. The remaining
two configurations – (1, 7, 13, 15) and (1, 7, 11, 17) –

have rather low probabilities. The probability of the
highest-energy configuration does not exceed 0.005.

In general, as the number of particles in the trap and
the number of stable configurations grow, only a few
most important states are dominant while the basins of
attraction of the remaining ones account for a very small
fraction of the phase-space volume. This observation
permits one to conclude that the number of states is not
such a useful concept. Simple counting of the number
of found stationary configurations is misleading in two
ways. First of all, since the number of performed sim-
ulation runs is always finite, some of the less probable
configurations may be overlooked or discovered by ac-
cident. Thus, the total number of configurations is usu-
ally not known with confidence. Moreover, straightfor-
ward counting of configurations disregards their wildly
different probabilities and importance.

Therefore, we propose to rely on the concept of con-
figurational entropy. Conforming to the definitions ac-
cepted in information theory [21] we define the config-
urational entropy as

S = −
∑
j

pj log2 pj . (4)

Here, the sum is taken over all states enumerated by the
index j and the symbols pj denote the probabilities of
these states. We find it convenient to take the logarithm
to the base 2 in Eq. (4).

The proposed configurational entropy is the measure
of uncertainty of the particle configurations. We note,
that if there is only one available configuration, the en-
tropy equals zero. This reflects the fact that we know
the configuration that will be found in any experiment
and consequently there in no uncertainty. Further, the
entropy (4) is stable with respect to an unexpected dis-
covery of an additional state of low probability.

Temperature dependences of the configurational en-
tropy are shown in Fig. 7(a) for several values of the
number of particles in the trap. Since the entropy is a
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Fig. 7. Configurational entropy of a Wigner crystal in a circular trap. Panel (a) shows the temperature dependence of the configurational
entropy for several values of the number of particles. Panel (b) displays the dependence of the high-temperature limit of the entropy on the

number of particles.

function of the probabilities, these dependences repeat
the general shape of the probability dependences. At
low temperatures the entropy equals zero, and the de-
pendences level off at high temperatures when the prob-
abilities of all configurations become temperature inde-
pendent. Thus, the high-temperature limit of the en-
tropy is a useful measure of the configurational uncer-
tainty. The right panel, Fig. 7(b), displays the depen-
dence of the configurational entropy on the number of
particles in a trap. The growth of the entropy is erratic.
The dotted line shows the optimal linear fit, however,
we see that the available data is insufficient to tell for
sure whether this growth is linear on the average or not.
We find this question interesting and hope to further in-
vestigate it in our forthcoming work.
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METASTABILIOS VIGNERIO KRISTALŲ KONFIGŪRACIJOS APSKRITOJE GAUDYKLĖJE

E. Anisimovas, O. Rancova, T. Varanavičius

Vilniaus universitetas, Vilnius, Lietuva

Santrauka
Tiriamas tvarkingų darinių formavimasis sistemose, sudary-

tose iš N ⩽ 52 identiškų dalelių, esančių apskritoje dvimatėje
gaudyklėje ir tarpusavyje sąveikaujančių Kulono stūmos jėgomis.
Skaitmeniniam modeliavimui pasitelkiami Metropolio algoritmas
ir greičiausio nusileidimo metodas. Metropolio algoritmo paskir-
tis yra sugeneruoti atsitiktinę (kanoninio pasiskirstymo) dalelių pa-
dėčių konfigūraciją. Tuo tarpu greičiausio nusileidimo metodas

leidžia aptikti artimiausią sąveikos energijos minimumą atitinkan-
čią stabilią konfigūraciją. Daugeliu atvejų tokių konfigūracijų ran-
dame keletą ir žemiausios energijos konfigūracija (pagrindinė sis-
temos būsena) dažnai nėra labiausiai tikėtina. Siekiant kiekybiškai
įvertinti sistemos struktūros neapibrėžtumą, atsirandantį dėl keleto
konkuruojančių konfigūracijų buvimo, įvedama konfigūracinės en-
tropijos sąvoka.
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