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We review the quasiclassical theory of quantum dots. The starting point of the developed approximate approaches is the ob-
servation that in large (in comparison to the effective Bohr radius) quantum dots the energy of the classical Coulomb interactions
dominates over the quantum-mechanical kinetic energy. This dominance is further enhanced by application of a perpendicular
magnetic field. The classical regime is marked by the formation of structures (the Wigner crystal) and structural transitions.
The nature of these phenomena is indeed classical, and they can be successfully tackled using classical approaches which are
transparent and easy to understand. In this way heavy calculations typical of quantum-mechanical schemes are avoided and the
quantum effects are included in an perturbative manner. We discus, in particular, the application of the renormalized perturba-
tion series to the energy spectra, the structural transitions, the power law behaviour of the critical fields, the global (persistent)
and local currents in quantum dots, and dissipation in mixed systems with both quantum and classical degerees of freedom.
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1. Introduction

Quantum dots [1, 2] are man-made nanostructures
where the motion of charge carriers is confined in all
three spatial dimensions, and the confinement manifests
itself in a discrete energy level spectrum. In this respect,
quantum dots resemble atoms and, unsurprisingly, have
been nicknamed artificial atoms [2]. Quantum dots are
produced in a lab and thus – in stark contrast to the natu-
ral atoms – have tunable parameters, which make them
attractive objects for fundamental studies as well as ap-
plications [3].

As far as applications and mass-production is con-
cerned, the most convenient are the so-called self-
assembled quantum dots [4, 5]. They can be produced
in large quantities, and often come out nicely arranged
in regular arrays [4, 6] by simply growing layers of two
lattice-mismatched materials (a common pair is GaAs
and InAs) on top of each other. These quantum dots
are small objects with typical radii around 10 nm or
less. Thus, the self-assembled quantum dots are most
closely related to the natural atoms as the charge carrier
confinement length is comparable to the effective Bohr
radius of the host material, which is also approximately
10 nm for the gallium arsenide.

On the other hand, early attempts to fabricate con-
fined pools of electrons typically employed applica-
tion of electrostatic potentials to patterned gates placed
above a two-dimensional electron layer [7, 8]. Quan-
tum dots defined in this way are commonly known as
electrostatic (gated), or parabolic. The latter term re-
flects the fact that almost any potential distribution can
be reasonably well approximated by a parabola in the
vicinity of its minimum point. Thus, we use the follow-
ing form of the confinement potential:

Vconf(r) =
m∗ω2

0r
2

2
, (1)

withm∗ representing the electron effective mass and ω0

defining the confinement frequency. This frequency is
the oscillation frequency of either a single particle or the
centre-of-mass mode of a many-particle system. The
parabolic quantum dots are also significantly larger.
Here, the confinement length can exceed the effective
Bohr radius up to ten times. We define the confinement
length as the characteristic extension of the ground-
state wavefunction of a single particle

l0 =

√
h̄

m∗ω0
. (2)
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As a consequence of the size, the relative strength
of the interparticle interactions is also much larger. El-
ementary dimensional analysis shows that the kinetic
energy of a confined electron is of the order ofh̄2/m∗l20.
The typical energy of the interparticle Coulomb inter-
action is e2/ϵl0, where ϵ denotes the dielectric constant
of the medium. Thus, the relative importance of inter-
actions can be estimated as the ratio of the characteristic
energies

λ =
e2m∗l0

ϵh̄2
=

l0
a∗B

with a∗B =
ϵh̄2

m∗e2
, (3)

which is equal to the ratio of the confinement length and
the effective Bohr radius a∗B.

The length scales characterizing natural atoms are
fixed and the coupling strength λ defined in an analo-
gous fashion turns out to be of the order of unity. This
implies that interactions are not particularly strong. The
dimensions of quantum dots fabricated in a lab can be
tuned to some extent, thereby tuning also the ratio of
the defining energy scales. Even greater possibilities of
control are offered by the application of a perpendicular
magnetic field, which influences the interaction param-
eter according to

λ→ λeff ∼ λ
√
γ . (4)

Here γ is the dimensionless magnetic field strength,
defined as the ratio of the cyclotron frequency ωc =
eB/m∗c to the confinement frequency ω0:

γ =
ωc

ω0
. (5)

In general, strong interactions are known to facili-
tate the emergence of cooperative phenomena. Since
these interactions are also tunable, the parabolic quan-
tum dots have been recognized as an ideal laboratory
to study the collective effects brought about by the
strong Coulomb repulsion between the confined elec-
trons. This has been a central topic of our studies of
quantum nanostructures. Therefore, the present review
mostly focuses on the physics of parabolic – that is,
large and strongly correlated – quantum dots and col-
lective phenomena.

Early reports emphasizing the observation of discreet
electronic states in artificial semiconductor structures
started appearing more than 20 years ago. The dis-
creet nature of the electron energy spectrum was con-
vincingly demonstrated using the resonant tunnelling
[9], capacitance [10] and optical (far-infrared) spectro-
scopies [11]. Already in these pioneering studies physi-
cists were quick to recognize the advantages offered by

the ability to localize a small and controllable number of
particles as well as the strong influence of a perpendic-
ularly applied magnetic field on the many-body states.
At magnetic fields of the order of 1 T, the cyclotron
energy matches the typical energy level spacing, and
thus is sufficiently strong to control the behaviour of
the quantum dot.

The influence of the electron interactions on the en-
ergy spectrum, and in particular, on its magnetic-field
dependence was confirmed by exact diagonalization
studies performed on simplest systems of three and four
electrons [12]. A detailed exact-diagonalization study
of the interactions of two-particle system (the quantum-
dot helium) was also performed [13] specifically con-
centrating on peculiarities of the far-infrared response.
The point is that in a perfect parabolic confinement the
centre-of-mass and the relative motion of electrons de-
couple, and as a result, the effects of the electron inter-
action are absent from the far-infrared absorption spec-
trum. This effect is known as the generalized Kohn the-
orem [12, 14–16].

The aforementioned exact diagonalization approach
[17–19] involves a numerical diagonalization of the
fully interacting many-body Hamiltonian in the basis
of configurations constructed by distributing electrons
over single-particle states in all possible ways. In this
context, the word exact is used to emphasize that no ap-
proximations are used to describe the interparticle inter-
actions. However, in practical work the nominally in-
finite set of configurations has to be truncated at some
point, which naturally introduces a certain error. Prob-
lems involving a small number (let’s say, N ⩽ 6) of
particles, or restricted to extreme magnetic fields, can
be successfully tackled with this technique since present
computational facilities allow to include a sufficient
number of configurations in order to obtain convergent
results. However, the computational demands grow ex-
ponentially with the size of the system, and preclude the
use of the exact diagonalizations as a generic method.

Therefore, various single-particle approaches are
routinely applied to calculate the properties of few-
electron quantum dots. In particular, standard methods
of atomic and molecular physics – such as the Hartree,
Hartree–Fock, and density functional theory – have
been extensively exploited [1, 20–23]. At high electron
densities the physics is dominated by quantum degener-
acy, and the interparticle interaction acts a rather weak
correction. Thus, in this limit the above-mentioned ap-
proaches produce accurate and, one might say, unsur-
prising results. In the opposite – dominated by strong
interactions – limit the spin- and space-unrestricted
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Hartree–Fock calculations were used to produce broken
symmetry states in quantum dots [24]. The obtained
ground states showed the incipient Wigner crystalliza-
tion, that is, the formation of charge density lumps
in spite of the fact that the confining potential used
in these calculations had a perfect circular symmetry.
Broken-symmetry solutions were also obtained from
calculations based on the density functional theory [25],
which led to some controversy and a debate [23]. In
contrast, the ground states obtained from the exact-
diagonalization approach always have the symmetry of
the Hamiltonian. The internal structure of a quantum
dot is somewhat hidden. It can be observed by con-
sidering the charge density correlation function, not the
charge density itself [17, 26].

Leaving aside the subtleties of computational proce-
dures, let us concentrate on the physical aspect: strong
correlation between the particles leads to formation
of structures. The ultimate limit of this process is,
of course, the celebrated Wigner crystal [27–30] sug-
gested as the ground state of a low-density electronic
system back in 1934 [27]. However, even before the
Wigner crystal is formed in the extreme limit of strong
correlations, its various precursors – such as charge den-
sity waves [1] and the angular momentum transitions
[17, 26] – are detected.

The physics behind the angular momentum transi-
tions is easy to explain without resorting to detailed cal-
culations. It is not surprising that the electrons confined
within a quantum dot in the strong interaction regime
tend to stay as far apart as possible. This makes them
populate orbitals characterized by high values of the an-
gular momentum. As a result, the total angular momen-
tum of the dot increases in abrupt jumps as the effective
coupling strength (set by the external magnetic field) in-
creases. The ensuing charge redistribution in a quantum
dot is significant and was successfully measured in an
experiment [31].

Let us emphasize that crystallization demonstrates
the dominance of the (classical) potential energy over
the quantum-mechanical kinetic energy. The ratio of
these two characteristic energies is given by the param-
eter λ. The reciprocal of the same parameter is the mea-
sure of the importance of quantum effects. Thus, crys-
tallization and quantum mechanics are mutually exclu-
sive. The quasiclassical regime is the one where in-
teractions and their consequences are important. The
quantum mechanical effects are weak, and can be ac-
counted for in a perturbative approach. We were suc-
cessful to build a coherent theory based on these ideas

[32, 33], and the main goal of the present review is to
discuss the quasiclassical regime.

In this review, we shall cover in detail the following
issues: (i) the enhancement of the relative strength of
the electron interactions by the magnetic field, (ii) the
Wigner crystallization, (iii) the effect of the quantum
mechanics on the structural transitions, (iv) classical
power-law behaviour in the energy spectra, (v) global
and local currents in a Wigner crystal, and (vi) the role
of dissipation in quantum phenomena.

2. Renormalized perturbation series

In the natural atoms the interaction parameter λ is of
the order of unity, and the importance of correlations
is not overwhelming. Therefore, the atomic theory is
successfully developed on the basis of effective single
particle approaches. The correlation energy – which,
by definition, includes everything that is overlooked by
the Hartree–Fock approximation – is a small correc-
tion, and can be taken into account in a perturbative
approach.

An analogous strategy is clearly unsuitable for
parabolic quantum dots. The interaction constant λ is,
in general, greater or even much greater than unity. The
electron system in a quantum dot is indeed strongly cor-
related, and a straightforward expansion in powers of λ
is not a very promising way to proceed. A direct di-
agonalization of the many-body problem, on the other
hand, is too demanding in terms of computational re-
sources. Thus, development of reliable approximate
schemes is of great interest.

We proposed to calculate the energy spectra of
strongly correlated quantum dots using the renormal-
ized perturbation series [34, 35]. The basic idea of
the series renormalization is to supplement the ordinary
few-term energy expansion in powers of λ with the in-
formation available from the consideration of the ex-
treme opposite limit (λ → ∞). The latter limit is par-
ticularly advantageous due to its classical nature. Here,
the kinetic energy is comparatively small, and a few-
electron system may be represented as a small crystal-
lite performing harmonic vibrations in the vicinity of its
lowest-energy configuration.

In both limits of small and large values of the inter-
action constant λ, we were able to construct two-term
expansions. In the limit λ → 0 the behaviour of the
energy levels is described by the usual first-order per-
turbation series

E(λ) = E0 + E1λ . (6)
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The energy E0 characterizes a noninteracting system,
and is straightforwardly calculated as the sum of single-
electron energies. The second expansion coefficient E1

is obtained by diagonalizing a matrix built from two-
particle Coulomb matrix elements.

In the limit of very strong interactions, the two-term
expansion becomes

E(λ) = c0λ
2/3 + c1 . (7)

The form of the first term follows directly from the di-
mensional considerations, which indicate that the ra-
dius of the electron system scales as R ∼ λ1/3. The
interaction energy is thus proportional to λ2/3. The sec-
ond term in the expansion (7) is obtained by considering
the vibrations of a ring of N ⩽ 5 particles. The vibra-
tional energy levels turn out to be λ-independent.

The interpolation between the two limits is facilitated
by introduction of a generalized Hamiltonian

H =
1

2

N∑
i=1

(−ξ2∇2
i + r2i ) + λ

∑
i>j

1

|ri − rj |
. (8)

Here, the parameter ξ plays the role of the inverse elec-
tron mass and the original problem is recovered by set-
ting ξ = 1. The generalized Hamiltonian, as well as
its eigenvalues, satisfies the scaling relation H(ξ, λ) =
ξH(1, λξ−3/2). This relation helps map the strongly in-
teracting regime of the original problem (λ → ∞, ξ =
1) onto a generalized problem characterized by finite
parameter values, λ = 1 and ξ → 0. A convergent
four-term series is then constructed.

The technique of renormalized perturbation series
was first applied to the simplest two-electron quantum
dot [34]. The calculated energy values coincided with
the results of numerically exact calculation to within 1%
for all values of the coupling constant λ. This success
motivated us to adapt the technique for larger parabolic
quantum dots [35]. Here, the theory has to be expanded
to include a somewhat more involved symmetry classi-
fication of the energy levels in the two limits. The ob-
tained accuracy is also very satisfactory. We attribute
the reasons of success to the softness of the parabolic
confinement since the application of the renormalized
series to hard-wall quantum dots was not as success-
ful [36, 37]. This demonstrates the importance of an-
alytic properties of the potential for the renormaliza-
tion procedure. On the other hand, the technique turned
to be insensitive to the particle statistics, and we suc-
cessfully applied the renormalized perturbation series
to parabolically confined bosonic systems [38], which

are important in the Bose-Einstein condensation stud-
ies.

3. Influence of quantization on the phase transition

Seeking to understand a complicated many-body
phenomenon, such as crystallization, it is worthwhile
to start from the simplest system of just two interact-
ing electrons. Very often consideration of a simplified
model problem produces analytical results and gives an
approximate qualitative picture reflecting the phenom-
ena that take place in the real many-electron system.
Sometimes, one is even able to extract reliable estimates
of the parameters that are responsible for the features of
the considered many-particle system.

In order to reveal the role of quantization in the
electron crystallization as an order-disorder phase tran-
sition, we calculated the quantum-mechanical spec-
trum of a two-electron artificial molecule composed of
two vertically coupled two-dimensional single-electron
quantum dots [39]. To be fully precise, in quantum dots
and other finite systems one should speak not of phase
transitions but rather of bifurcations that play the role
of phase transitions.

A classical study of the above artificial molecule was
carried out in Ref. [40]. The centre-of-mass motion
of the two-electron system contributes only an energy
shift, which is not important for our purposes. The rel-
ative motion is then described by the potential

U(r) =
1

4
m∗ω2

0r
2 +

e2

ϵ

√
r2 + d2 , (9)

dependent on the relative coordinate r = r1−r2. Here
we use the standard notation whereby m∗ is the effec-
tive electron mass, ϵ is the dielectric constant of the
medium, and ω0 is the frequency of the radial electron
confinement.

In this context, it is convenient to introduce nonstan-
dard dimensionless variables expressing the distances
in the units of (e2/ϵα)1/3, and energies in the units
ε0 = (e2/ϵα2)2/3. Here α = mω2

0/2, and the sym-
bol d stands for the vertical distance between the two
dots. In this way, the potential reduces to

U(r) =
1

2
r2 +

1√
r2 + d2

, (10)

and after minimization leads to the equilibrium radius
for the ground-state configuration: r0(d) =

√
1− d2

for d < 1 and r0(d) = 0 for d > 1. We see that the
calculated equilibrium radius plays the role of an order
parameter. As long as the separation between the dots
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is larger than the critical value d = 1, the two electrons
are located on the axis of the molecule. The bifurcation,
which occurs at d = 1, breaks the symmetry and moves
the electrons into their new equilibrium positions off the
symmetry axis. Inserting the values of the radius r0(d)
into the potential (10) we also calculate the equilibrium
energy and (aiming to determine the nature of transi-
tion) the derivatives of the energy with respect to the
distance d. The results read:

E = (3− d2)/2, E′ = −d, E′′ = −1, d < 1 ,
E = 1/d, E′ = −1/d2, E′′ = 2/d3, d > 1 .

(11)

Fig. 1. The first and second energy derivatives as a function of the
distance d. The classical result: the first (second) derivative is plot-
ted by the blue online dash-dotted (red online dotted) curve. The
quantum-mechanical result: the first (second) derivative is shown

by the blue online dashed (red online solid) line.

The behaviour of the energy derivatives (11) is
shown in Fig. 1. The (blue online) dash-dotted curve
corresponds to the first derivative, and the (red online)
dotted curve corresponds to the second derivative. We
see that at the point d = 1 the first derivative is contin-
uous, but has a kink, while the second derivative is dis-
continuous. This behaviour resembles the phase transi-
tion of the second kind in the Ehrenfest classification.

Proceeding to the quantum-mechanical description,
we construct the Hamiltonian and solve the eigenvalue
problem. In the dimensionless variables, the Hamilto-
nian equals the sum of the classical potential (10) and
the operator

T = −κ2∇2 , (12)

which represents the kinetic energy of the relative mo-
tion. The dimensionless parameter κ = h̄ω0/ε0 is the
ratio of the characteristic quantum-mechanical and clas-
sical energies at the transition point, and serves as the
measure of the importance of quantization. The deriva-
tives of the ground-state energy are plotted next to the

classical results on the same Fig. 1. We see that quanti-
zation ruins the sharp phase transition. The kink (jump)
in the first (second) energy derivative are eliminated.
Nevertheless, in the case of relatively small κ ≲ 0.1
values, the imprint of phase transition is still distinct.

Fig. 2. The quantum-mechanical (solid red online curves) and clas-
sical frequencies (dashed blue online curves).

The excitation frequencies are also calculated, and
the result is shown in Fig. 2. The classical vibration
frequencies are plotted in (blue online) dashed curves
and the corresponding quantum mechanical transitions
between the excited states are shown by the (red online)
solid curves. It is generally known that the presence of
a soft mode is an inherent property of the second or-
der phase transition. Indeed, in the classical descrip-
tion of the structural transition in our molecule one of
the vibration frequencies goes to zero when the distance
d value approaches the critical point. The correspond-
ing quantum-mechanical frequency, however, does not
reach the zero value. This is yet another indication that
quantization destroys phase transitions.

4. Wigner crystallization

In this section, our goal is to define the criteria that
could be used to judge about the formation of internal
structure in a quantum dot, and to relate this structure to
the involved energy scales and to the interparticle cou-
pling strength. With this in mind, we solve a simplified
model discussing the spectrum and the charge density
of a two-electron quantum dot [41].

As already mentioned in the previous section, in the
case of parabolic confinement the centre-of-mass and
the relative motion can be separated. The separation is
achieved by introducing the radius-vector of the centre
of mass R = (r1+r2)/2 and the relative radius vector
r = r1 − r2. As a result, the original problem splits
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into two independent single-particle problems. In ad-
dition, the circular symmetry enables one to write the
total wavefunction as a radial part times the angular part
exp{i(mφ +MΦ)}. Here, the uppercase symbols M
and Φ denote, respectively, the angular momentum and
the rotation angle of the centre-of-mass motion. Like-
wise, the corresponding lowercase symbols have the
same meaning for the internal motion.

The radial wavefunction is, in its own turn, a product
of two components describing the centre-of-mass and
the relative motion. These components satisfy the re-
spective one-dimensional radial Schrödinger equations
with the following dimensionless Hamiltonians:

HR =− 1

4R

d
dR

R
d

dR
+

1

4

(
M

R
− γR

)2

+R2 , (13a)

Hr =−1

r

r

dr
r
r

dr
+
(m
r

− γr

4

)2
+

1

4
r2 +

λ

r
. (13b)

Here, all energies are measured in the units h̄ω0, and
we use the standard definitions for the confinement fre-
quency ω0, the coupling strength λ, and the dimension-
less magnetic field γ.

Fig. 3. The potential for the relative motion when γ = 0 (red on-
line solid curve), the approximate potential (14) (dashed blue online
curve), and the vibration and rotation terms indicated by the hori-

zontal lines.

Let us separately consider two variants of the formu-
lated problem: with and without the magnetic field.

It is evident that in the absence of the magnetic field
(γ = 0), the ground state of the centre-of-mass motion
corresponds to zero angular momentum (M = 0) and
gives some constant energy shift which we eliminate by
adjusting the origin of the energy axis. Meanwhile, the
relative motion can be interpreted as the motion of some
fictitious particle in a one-dimensional potential well

V (r, λ) =
1

4
r2 +

λ

r
+
m2

r2
, (14)

shown in Fig. 3 by the (red online) solid curve.

Restricting the consideration to the interesting limit
of strong interactions (λ→ ∞) the potential (14) can be
simplified further. Disregarding the last rotational term
in Eq. (14), we find that the potential has its minimum
at the point r0 = (2λ)1/3. The Taylor expansion of the
potential in vicinity of the minimum point reads

V (r, λ) ≈ 3

4
(2λ)2/3 +

3

4
(r − r0)

2 +
m2

(2λ)2/3
. (15)

We see that there are three energy scales involved. The
largest one appears in the first term (which is of the or-
der of λ2/3), and includes the interaction plus the con-
finement. This classical potential is responsible for the
electron structure in the quantum dot. (The minimum
of the potential can serve as a means for the Wigner
crystal definition.) The second part defines the interme-
diate energy scale. This potential term, together with
the kinetic energy operator in the Hamiltonian (13b),
leads to the quantum-mechanical problem of the crys-
tal vibrations. As this contribution does not depend on
λ, the separation of the vibrational levels is of the or-
der of unity. This result justifies the proposed scheme
of calculation based on the potential expansion in pow-
ers of λ−2/3. It consists of the classical calculation of
the electron system structure followed by the quantum-
mechanical treatment of its vibrations in the harmonic
approximation. The remaining term in Eq. (15) con-
tributes the fine rotational structure to the obtained vi-
bration terms. All these energy scales are shown in
Fig. 3 by corresponding horizontal lines.

Fig. 4. Schematic view of (a) the electron density and (b) the cor-
relation function (b) in the quasi-classical limit when λ → ∞.

In the simple case of two electrons we obtain an
explicit expression for the wavefunction in the ground
state

Ψ(r1, r2) ∼ exp(−R2) exp{−a(r − r0)
2} , (16)

where a =
√
3/4. Integrating the squared absolute

value of the wavefunction (16) over the coordinates of
one electron, we obtain the electron density in the dot,
which is shown schematically in Fig. 4(a). Due to the
circular symmetry of the dot, the crystal structure is not
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seen, however, the concentration of the electron density
on a ring indicates that such structure might be present.
The Wigner crystal can be directly seen in the correla-
tion function that is equal to the squared absolute value
of the same wavefunction (16) considered as a function
of the coordinates of one of the electron. The position
of the other electron is fixed at a certain point r′ chosen,
e. g., on the circle of radius r0/2, as shown in Fig. 4(b).
We see that in this case the density of the free electron
is concentrated around the antipodal point on the same
circle.

Fig. 5. Energy spectrum in the case of strong magnetic field. The
energy is given inh̄ωc units. Electron density in the inset.

In the case with a strong magnetic field, a similar
analysis can also be carried out, although it is more la-
borious. Its main result is summarized in Fig. 5. The
approach is based on minimization of two expressions:
the term that appears in the parentheses in Eq. (13b),
and the sum of the last two terms in the same equa-
tion. This procedure leads to the equilibrium radius
r0 = (2λ)2/3 and the ground-state angular momentum
m0 = γr20/4. The expansion of the potential in the
vicinity of these values leads to(m

r
− γr

4

)2
≈ γ2

4
(r − r0)

2 +
(m−m0)

2

(2λ)2/3
. (17)

The first (largest) term together with the kinetic en-
ergy operator in the Hamiltonian (13b) gives the largest
contribution to the energy. Actually it produces the
Landau levels. So, in contrast to the situation with-
out the magnetic field, now the main contribution to
the energy spectrum is quantum-mechanical. It leads
to the following dimensions of the radial wave func-
tion ∆r ∼ B−1/2. Fortunately, in the limit of a strong
magnetic field and low temperature, the electrons are
frozen in the lowest Landau level, and the Wigner crys-
tallization follows from the same minimum of the con-
finement and the interaction potential. Comparing (15)

and (17) we see that the Landau levels play the role of
the Wigner crystal vibrations and – as we explained
above – are frozen. The crystal dynamics contains only
the rotational modes whose energies are of the same or-
der of magnitude as in the previous case without the
magnetic field.

The electron density is shown in the inset of Fig. 5. It
looks like the previous ring of the same radius, but the
thickness of this ring is significantly smaller. That is
why we may to conclude that the strong magnetic field
favours crystallization.

5. Angular momentum transitions

Formation of structures and structural transitions in
quantum dots – as well as in any other many-particle
system – are among the most complex and demand-
ing physical problems. The key factor involved in these
phenomena is the strong interaction between the parti-
cles which makes the problem inseparable. We were
fortunate to formulate several simple models, treated
in Sections 3 and 4, that are solvable analytically and
demonstrate structural transitions in few-electron quan-
tum dots. When confronted with more complicated
models, however, we had to resort to numerical ap-
proaches which define the subject of the present section.

As already mentioned in the Introduction, a rather
special role is played by the method of exact diagonal-
izations [17–19]. In this approach, one first solves the
simple problem of a single electron moving in a quan-
tum dot, and obtains a complete set of single-particle
eigenfunctions and the corresponding energies. The
starting basis for problems involvingN electrons is then
constructed in a combinatorial fashion, i. e., by dis-
tributing the electrons over the available orbitals in all
legitimate ways. This task is greatly simplified by the
presence of a circular symmetry, as many particle states
of different total angular momenta L are not coupled by
the Hamiltonian and can be treated separately.

In this manner, the Hamiltonian operator is repre-
sented as a set of matrices – one for each angular mo-
mentum of interest – which can be diagonalized numer-
ically. The matrix is, in principle, infinite dimensional
and has to be truncated by restricting the basis of many-
particle states according to some criteria. In our work,
we typically choose to include all many-body states for
which the sum of N single-particle energies does not
exceed a given threshold energy. The accuracy of the
results depends essentially on our ability to use a suffi-
ciently large threshold. To give a specific example, in
calculations performed on four-electron quantum dots,
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we needed (sparse) matrices of around 20 000 rows and
columns, and were able to obtain energies accurate to
four significant digits [17]. We extended our calcu-
lations to quantum dots containing five and six parti-
cles [26]. The computational effort grows exponentially
with the system size, and calculations for even larger
systems turned out to be beyond reach.

We should note that due to its ability to provide accu-
rate results, the exact-diagonalization approach proved
to be very useful as a reference against which the reli-
ability and accuracy of various approximation schemes
could be tested and gauged. In particular, this method
played the role of a benchmark numerical experiment
when developing the multicentre-basis Hartree–Fock
approach [20] as well as the quasiclassical theory fur-
ther discussed in Section 8.

Fig. 6. Ground-state angular momentum transitions in a six-
electron quantum dot.

Figure 6 shows a typical result obtained by means of
an exact-diagonalization study: the ground-state phase
diagram of a six-electron parabolic quantum dot placed
into a perpendicular magnetic field. Phase diagrams
of this type were obtained also for quantum dots con-
taining a smaller number of electrons [17, 26]. They
succinctly summarize the transformation of the ground
state as a function of the effective coupling strength λ
and the dimensionless magnetic field strength γ.

The solid lines in Fig. 6 signify the phase boundaries.
They partition the two-parameter phase space into ar-
eas corresponding to the different ground states of the
quantum dot. The ground states are labeled by the pairs
of numbers in parentheses (L, S). The quantum num-
ber L is the total angular momentum of the state and
S = 0, 1, 2, 3 is the total spin. While the interaction
strength λ is difficult to modify, the magnetic field γ

can be easily varied in a broad range of values. We see
that with increasing magnetic field, states of ever higher
angular momenta are competing to become the ground
state. This results in a sequence of angular momentum
(and spin) transitions and an ensuing redistribution of
electron charge in a quantum dot [31].

The ground-state phase diagram in Fig. 6 shows that,
in general, a large number of ground states are realized
at different values of the coupling strength and the mag-
netic field. However, one notes that some of ground
states are significantly more stable than the others: they
control relatively large portions of the phase space. The
most conspicuous are the so-called maximum density
droplet (MDD) states characterized by a peculiar dis-
tribution of electrons over the single-particle orbitals
[17, 21]. In these states, correlation arranges electrons
in such a way that their single-particle angular momenta
form an arithmetic progression with difference equal to
unity.

The first MDD state is the spin-unpolarized state
(6, 0) seen in Fig. 6. Here, the electrons occupy orbitals
with the angular momenta l = 0, 1, and 2. Each orbital
accommodates two electrons of opposite spin. It is not
difficult to see that the single-particle angular momenta
add to six, and the total spin is zero. The second MDD
state is the spin-polarized state (15, 3). Here, the mag-
netic field is sufficiently strong to force all spins to be
aligned, and the electrons occupy six consecutive or-
bitals with the single-particle angular momenta l = 0,
1, 2, 3, 4, and 5 so that the total angular momentum
adds up to L = 15.

The exact-diagonalization method also provides the
complete information about the many-particle wave-
function. This wavefunction depends on the coordi-
nates of all electrons and is hard to analyse. There-
fore, reduced quantities must be constructed. An ob-
vious first choice is the single-particle charge density.
However, the charge density fails to fully demonstrate
the crystallization of electrons in a quantum dot as this
quantity retains the circular symmetry of the Hamilto-
nian. As a result, the charge density reveals only the
formation of the ring structure and not the azimuthal
correlations.

In order to fully uncover the internal structure of a
few-electron system trapped by a circular confinement,
one has to go one step further and consider the density-
density correlation function. The physical meaning of
the correlation function can be (somewhat loosely) in-
terpreted as the conditional density. It shows the condi-
tional probability to find an electron at a given point r
provided that another electron is pinned at a fixed posi-
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Fig. 7. Wigner crystallization in a six-electron quantum dot.

tion r′. This result can be plotted on a two-dimensional
graph and visualizes the formation of a Wigner crystal.

An illustrative example is given in Fig. 7. Here we
show how the crystal structure in a six-electron quan-
tum dot gradually sets in as the magnetic field is in-
creased. The four panels of Fig. 7 are labeled by the
values of the ground-state angular momentum which
changes from L = 25 to 40. One of the electrons is
pinned in the position marked by the black dot at the in-
tersection of the maximum-density ring and the x axis.
The remaining five electrons tend to localize close to
their classical lowest-energy positions, and the localiza-
tion conspicuously improves with increasing magnetic
field.

6. Power law

In this section we will draw closer attention to the
quantitative characteristics of the structural transitions
in strongly correlated quantum dots. As we learned
in the preceding section, the ground-state angular mo-
mentum transitions play the role of a distinctive phe-
nomenon which reflects the formation of structures in-
side a quantum dot. In a nutshell, these transitions occur
when the external magnetic field strength reaches cer-
tain characteristic values, and the angular momentum
quantum number in the ground state suddenly jumps to
a higher value.

We performed a numerical investigation in order to
determine how the critical values of the magnetic field
depend on the interaction strengthλ. It turns out that the
obtained dependences closely follow a power law [42]

γL = aLλ
b . (18)

Here, γL is the critical value of the dimensionless mag-
netic field. As the magnetic field crosses this value, the
ground state of a quantum dot switches from the one
characterized by the angular momentum L to the fol-
lowing in order, typically with the angular momentum
L+1. The quantity aL is the proportionality factor de-
pendent on both the angular momentumL and the num-
ber of electrons in the dot. Figure 8 presents the most

Fig. 8. Critical magnetic fields plotted as a function of the coupling
strength in a two-electron quantum dot.

clear-cut illustration of the mentioned power-law be-
haviour of the critical magnetic fields. This figure per-
tains to the simplest two-electron quantum dot. Similar
figures have been obtained for three- and four-electron
quantum dots as well [42].

The dependence (18) is very simple indeed; its va-
lidity made us realize that the considered phenomenon
of structure formation must be essentially classical. In-
cidentally, let us mention that power laws also describe
the internal structure of the many-particle correlation
functions [43].

Naturally, having obtained such a simple relation
(18) from a numerical calculation, we felt obliged to
seek a more thorough understanding. Thus we at-
tempted, and succeeded, to derive the power law ana-
lytically [42].

The analytical treatment starts from the basic fact
that in the limit of strong interactions (in fact, strong
magnetic fields) a parabolic quantum dot containing not
more than five electrons is transformed to a polygo-
nal electron ring. That is, all N electrons are arranged
equidistantly on a ring surrounding the centre of the
confinement. As the first step of our analytical solu-
tion we are able to exclude the magnetic field. Thus
the energies of the original problem E(λ, γ, L) can be
expressed in terms of solutions of the modified model
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E0(λ0, L) with no magnetic field but with a scaled
value of the coupling constant

λ0 = λ

[
1 +

1

4
γ2
]−1/4

. (19)

The relation between the two energies reads

E(λ, γ, L) = E0(λ0, L)

[
1 +

1

4
γ2
]1/2

− 1

2
γL , (20)

and the dimensionless state energies obtained from the
zero-field model are

E0(λ0, L) = L+ λ0

√
N

L
fN . (21)

Here fN is a geometric structure factor whose values
are f2 = 1

2 , f3 =
√
3, and f4 = 1 + 2

√
2. The criti-

cal γ values can now be easily found from the defining
equation E(λ, γL, L) = E(λ, γL, L + 1). The results
show that the critical magnetic fields indeed obey the
power law

γL =
2

(Nf2N )1/3

(
L+

1

2

)
λ−2/3 . (22)

We would like to make two interesting observations.
First, note that the power law exponent has a univer-
sal value b = −2

3 which is the same for any number of
electrons in the quantum dot and any state. Second, it
is generally not so surprising that the obtained power
law is valid in the classical limit of large values of the
angular momentum quantum numbers L. However, it
turns out to be working perfectly also in the quantum-
mechanical regime for the angular momenta L ⩽ 10.

This result convinced us that the classical approaches
are very robust even in the traditionally quantum-
mechanical realm where discreetness of quantum num-
bers is significant. Therefore, it is worthwhile to fur-
ther develop approximate calculation schemes based on
classical notions and valid in more general situations
that were considered now. The main virtue of the clas-
sical (or more precisely, quasiclassical) approaches lies
in their relative simplicity and ability to provide results
that are accurate and easy to comprehend without re-
sorting to heavy computations.

7. Local currents

Further development of the quasiclassical theory of
quantum dots leads naturally to the question of currents
that are induced in a quantum dot when a strong perpen-
dicular magnetic field is applied. This problem arises

from the representation of the Wigner crystal as a rotat-
ing electron molecule [44]. One of the main issues here
is the near compensation between a strong magnetic
field on the one hand, and the high angular momentum
value of the ground state on the other hand. The mag-
netic field strength can have an arbitrary value whereas
the angular momentum is necessarily quantized. This
conflict leads to the appearance of the so-called per-
sistent currents [45] recently observed in experiments
on nanoscopic ring-shaped conductors [46]. Persistent
currents are dissipationless electric currents induced by
a static magnetic field. They do not require an exter-
nal power source, however, the survival of the electron
phase coherence along the path is crucial. These issues
led us to consider the rotation of a few-electron quan-
tum dot – to be more precise, a single electron ring – in
a strong magnetic field [33, 47, 48].

When dealing with the rotation of the system as a
whole, it is helpful to switch to the rotating frame of ref-
erence. The straightforward formulation of the Hamil-
tonian of the problem is, however, not easy since the
definitions of the canonical coordinates and momenta
in a rotating frame may be tricky. Thus, following the
suggestion of earlier authors [49] we: (i) start with the
Lagrangian, (ii) perform the change of coordinates in
order to switch to the rotating frame, (iii) define the
canonical variables, and (iv) arrive at the Hamiltonian
using the standard procedure.

The system of N two-dimensional electrons pos-
sesses 2N degrees of freedom. One of the modes is spe-
cial – it corresponds, as expected, to the rotation of the
system as a whole. The remaining 2N−1 modes corre-
spond to various vibrations. We were able to present the
total ground-state wavefunction in a remarkably simple
form [47]

Ψ = eiMχe−γK/4 . (23)

The first exponent describes the rotation with χ being
the collective rotation angle. The second factor is a
multidimensional Gaussian which represents the vibra-
tional ground state. Here,

K =
N∑
i=1

(
x2n + y2n

)
+

1

N

(
N∑
i=1

xn

)2

− 1

N

(
N∑
i=1

yn

)2

,

(24)
and xn (yn) represent the local deviations of the nth
electron from the equidistant positions on a ring in the
angular (radial) directions.

The knowledge of the complete ground-state wave-
function enables us to calculate the charge and cur-
rent distribution in the quantum dot which are shown in
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Fig. 9. Distribution of the charge and current density in a quantum
dot.

Fig. 10. Persistent currents in a four-electron quantum dot.

Fig. 9. Due to the circular symmetry of the confinement
these distributions are also circularly symmetric, and
the current density has only the azimuthal component
jφ. Thus it suffices to plot only the radial dependences
of the charge density ρ and jφ. Figure 9 corresponds
to a three-electron quantum dot with the coupling con-
stant set to λ = 4, and the dimensionless magnetic field
is such (γ = 6.8) that the ground state has the angular
momentum L = 18. The radial dependence of the cur-
rent density is nearly antisymmetric with respect to the
classical dot radius. Thus the current has two compo-
nents flowing in the opposite directions in the interior
and the exterior of the electron ring. The two compo-
nents nearly cancel each other, however, the cancella-
tion is not complete, and there is a finite net azimuthal
current given by

I =

∫ ∞

0
dr jφ(r) . (25)

The current (25) is precisely the quantum-dot ver-
sion of the persistent currents in metal rings. The mag-
netic field dependence of the persistent current is plot-

Fig. 11. Vorticity of the local current in a four-electron quantum
dot.

ted in Fig. 10. The shown dependence clearly dis-
plays a sawtooth-like behaviour, and the sudden drops
of the net current correspond to the abrupt changes of
the ground state. The angular momenta of the involved
ground states are indicated by numbers.

The persistent currents reflect the global rotation of
the electron system in a quantum dot. Besides this
global motion, the local currents corresponding to the
Larmor circulation of individual electrons in the vicin-
ity of their classical positions can also be calculated.
Due to the anisotropy of the local confinement felt by
an electron these currents are not circular but rather el-
liptic – elongated in the azimuthal direction. Figure 11
shows the vorticity of the local currents (the curl of the
current density field). In order to rid of the global rota-
tion and be able to concentrate on the local circulation
we pin one of the electrons at the position marked by
the black dot on the classical ring. The remaining three
electrons are localized close to their classical positions.
Dark (light) areas correspond to the areas of positive
(negative) current vorticity. These areas are delimited
by the line of zero vorticity marked by a solid black line.
It is interesting to note that local currents were also ob-
served in density-functional calculations that produce
broken internal symmetry states [25]. In this approach
the currents are available directly from the Kohn-Sham
orbitals and one does not need to consider correlation
functions.

8. Quasiclassical theory

Our early work devoted to the quasiclassical treat-
ment of quantum dots was restricted to the simplest
case – when the lowest energy configuration is a sin-
gle polygonal ring accommodating all electrons. This
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simple picture is valid only as long as the number of
electrons in a parabolic confinement does not exceed
five. When the number of electrons is six or more, one
typically observes a system of concentric rings. Thus,
for example, the ground state of a 19-electron quantum
dot features a single electron located at the centre of the
quantum dot which is surrounded by an inner ring of
six electrons plus an outer ring of twelve electrons. In
order to be applicable to quantum dots with an arbitrary
number of electrons, the quasiclassical approach of the
previous sections has to be generalized.

The essential idea of the quasiclassical theory [32,
33] is to employ a perturbative approach based on the
expansion in the inverse powers of the dimensionless
magnetic field. As mentioned before, the physics of
quantum dots is determined by the strength of the inter-
particle interactions which are set by the magnetic field.
These observations suggest the choice of the magnetic
field strength as the control parameter.

The zeroth-order term in the expansion corresponds
to the limit of an infinitely strong magnetic field. In
this limit, the electron spectrum is transformed into a
ladder of Landau levels separated by very large (pro-
portional to the magnetic field) gaps. The electrons be-
come confined to the lowest Landau level and their mo-
tion is thus frozen out. The absence of dynamics en-
ables us to significantly simplify the problem at hand
by disregarding the kinetic energy term. Note that this
in turn implies disregarding the quantum mechanics, as
the Planck’s constant is present only in the kinetic en-
ergy term. Therefore, in this limit we are left with a
purely classical problem.

The task of the classical limit is the determination
of the stable configurations defined as the minima of
the total potential energy of N interacting particles in a
parabolic confinement

V =
1

2

N∑
i=1

r2i +
N∑
i=1

N∑
j>i

1

|ri − rj |
. (26)

Note that since the kinetic energy is absent from the
problem, we define the scaled variables by balancing
the confinement and coupling terms. Thus, the coupling
constant λ is included in the definition of the length unit
r0 = (λ/m∗ω2)1/3, which is used in this section, and
does not appear in the potential (26).

The problem posed by Eq. (26) is not a trivial one.
The energy to be minimized is a complicated func-
tion of 2N arguments, and typically, besides the global
energy minimum, one finds a number of local energy
minima – the so-called metastable configurations. The

number of metastable configurations is known to grow
as the exponent of the number of particles, and reaches
hundreds already for systems containing just a few
dozen particles [50].

The minimization of the potential energy in the mul-
tidimensional configuration space can be successfully
tackled by means of: (i) direct minimization techniques,
such as the steepest descent, conjugate gradient or the
Newton optimization [51], (ii) various thermodynamic
approaches, most importantly the Simulated annealing
algorithm and Molecular dynamics [51, 52], and (iii)
evolutionary approaches such as the genetic algorithm
[53]. The first systematic study of the ground-state con-
figurations of classical artificial atoms was presented
in Ref. [54]. Using the simulated annealing and di-
rect minimizations, we are able to reliably determine the
ground state as well as all metastable states of systems
containing up to 40 particles. Some of the ground-state
configurations are depicted in Fig. 12.

Fig. 12. Some ground-state configurations of classical systems in a
parabolic confinement.

In a strong (but not infinitely strong) magnetic field
one has to pay attention to the dynamics of electrons
in the quantum dot. The dynamics primarily involves
small collective oscillations in the vicinity of the ground
state configuration. However, due to the circular sym-
metry of the Hamiltonian there is, in addition, a rota-
tional mode. In spite of its relation to the symmetry,
in practical matters this mode is a complication, and
one has to switch to the rotating frame of reference
in order to decouple the rotational and vibrational mo-
tion [32, 47–49].

Moreover, it turns out that rotation is not the only
special mode. One of the vibrational modes is also
rather peculiar, and is known as the breathing mode
[55]. In this mode, all electrons perform strictly radial
oscillations to and from the centre, and the amplitude
deviations and velocities of all the electrons are propor-
tional to their respective radial distances from the centre
of the quantum dot. In this sense, the breathing mode
is indeed very similar to the rotational mode. Note that
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when the quantum dot rotates as a whole, the veloci-
ties of individual electrons are also proportional to their
radial coordinates, however, their directions point per-
pendicularly to their radius-vectors.

Having successfully singled out the two special
modes we are left with an ordinary vibrational problem
in a magnetic field. The vibrational Hamiltonian can be
presented in a particularly elegant manner [32]. To this
end we collect all the generalized electron coordinates
in a column vector

w = (w1, w2, . . . , w2N−2)
T , (27)

with the superscript T denoting the transpose. The total
number of degrees of freedom is (2N−2) as two modes
have been separated, and thus the coordinates wi are
orthogonal to the breathing and rotational modes. The
firstN−1 of these are linear combinations of the radial
displacements of the individual electrons, while the re-
maining half are formed by identical combinations of
the angular displacements. The canonical momenta are
introduced in a similar fashion

W = (∂/∂w1, ∂/∂w2, . . . , ∂/∂w2N−2)
T . (28)

The vibrational Hamiltonian is then cast into the form
of a multidimensional harmonic oscillator:

Hvib =
1

2

(
W − iγ

2
Gw
)2

+
1

2
wTV (2)w . (29)

The last term of (29) is a quadratic form written in a
matrix notation, which represents the second order ex-
pansion of the potential around its minimum point, and
the symbol G represents an auxiliary rotation matrix.

The ground state of (29) is a Gaussian function in
2N − 2 dimensions

Ψvib = exp
(
−γ
4
wTXw

)
, (30)

where the matrix of coefficients X must be obtained by
solving the quadratic matrix equation

X 2 + GX − XG = I +
4

γ2
V (2) , (31)

known as the matrix Riccati equation. We solve the
quadratic matrix equation by mapping it onto the ordi-
nary spectral problem of an extended (4N−4)×(4N−
4) matrix [47]. The vibrational energy is proportional
to the trace of the matrix X

E =
γ

4
TrX . (32)

The knowledge of the many-body wavefunction paves
the way for the investigation of the internal structure of
the correlated system of electrons. As explained before,

this structure is not directly manifest in the distribution
of the (charge) density – which retains the circular sym-
metry of the Hamiltonian – and thus only the density-
density correlation function is suitable for that matter.

Besides clearly demonstrating the crystal formation,
our calculation leads to a classification of the emerging
structures. Thus when the structural stability is consid-
ered, quantum dots may be categorized as either solid
of liquid-like. A structure is liquid-like when easily ex-
citable low-frequency modes are present.

Fig. 13. Solid and liquid-like quantum dots.

Often the presence of a low-frequency mode is con-
nected to the commensurability of the numbers of elec-
trons belonging to neighbouring shells [33]. An excel-
lent illustration of this phenomenon is given by com-
parison of eleven- and twelve-electron quantum dots in
Fig. 13. The system of eleven electrons in a parabolic
trap serves as an example of a liquid-like structure.
The lowest-energy configuration of the eleven-electron
quantum dot consists of two rings: the inner one holds
three electrons, and the outer one holds eight. The num-
bers 3 and 8 are incommensurate, that is, they have
no common divisors. As a consequence, the two elec-
tronic shells have a nearly circular shape, and the inter-
shell rotation is easily excitable thus introducing a low-
frequency mode. In Fig. 13 the smooth rotation of the
two rings is reflected by the elongated ellipses of the
inner shell.

In contrast, the twelve-electron quantum dot is solid
and has a rigid structure. The ground-state configura-
tion is again composed of two rings, containing three
and nine particles, respectively. This distribution of
electrons leads to the emergence of a triangular distor-
tion of the shells, and as a consequence, the inter-shell
rotation costs too much energy.

Low-frequency modes of a different nature are also
possible [56]. In general, they relate to the presence
of two competing minima, that is, minima of compara-
ble depth connected by a transition trajectory that runs
through a saddle point of a rather low energy. Typi-
cal examples are: (i) the migration of an electron from
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one ring into another and (ii) the inter-shell electron ex-
change.

9. Dissipation in Schrödinger equation formalism

Dissipation is inherently present in any physical sys-
tem, and dissipative processes play an important role in
most experimental measurements since the influx of the
probing energy into a system must be counterbalanced
by its eventual loss. In many circumstances, one may
disregard the details of energy removal processes or ac-
count for them in some simple way. However, this is
usually not the case when one has to deal with ultrafast
processes on the nanometric scale [57].

Fig. 14. The layout of the model system.

Traditionally, open quantum systems are treated in
terms of the density-matrix formalism [58]. However,
the density-matrix formalism has a double set of vari-
ables which results in increased computational com-
plexity. We proposed [59–61] to embrace dissipation
in a formalism based on the Schrödinger equation, and
presented the simplest illustrations, namely, the decay
of an excited state of a 1D harmonic oscillator and the
nonlinear power absorption.

The considered compound system – consisting of a
small quantum system plus a classical heat bath – is
shown in Fig. 14. The quantum system is modelled as
a harmonic oscillator of mass m and spring constant k,
depicted by the large red ball and described in terms of
the quantum-mechanical position and momentum oper-
ators, x̂ and p̂. The role of the heat bath is assigned to
a semi-infinite chain of identical balls (shown as small
blue circles) of mass M interconnected by springs of
equilibrium length a and spring constant K. The two
subsystems are linked by a weak spring (spring con-
stant κ) connecting the quantum oscillator to the left-
most – the ‘zeroth’ – ball of the classical chain. The
corresponding Hamiltonian reads

H =
1

2m
p̂2 +

k

2
x̂2 +

κ

2
(x̂− x0)

2

+
∞∑
n=0

[
1

2M
p2n +

K

2
(xn − xn+1)

2

]
,

(33)

with xn denoting the coordinate of the nth ball mea-
sured with respect to its equilibrium position, and pn –
the corresponding momentum.

We assume that the quantum oscillator is described
by its own wavefunction Ψ(x, t) that solves the Schrö-
dinger equation

ih̄
∂

∂t
Ψ(x, t) = HΨ(x, t) , (34)

with the above Hamiltonian (33), while the dynami-
cal variables of the balls in the chain obey the classical
Newton equations

ẋn =
∂

∂pn
⟨H⟩, ṗn = − ∂

∂xn
⟨H⟩ , (35)

with the Hamiltonian operator replaced by its quantum-
mechanical average over the state of the quantum oscil-
lator

⟨H⟩ =
∫ ∞

−∞
dxΨ∗(x, t)HΨ(x, t) . (36)

In this way, quantum variables and operators do not en-
ter the equations for the classical degrees of freedom,
and one obtains a consistent description. This averag-
ing constitutes the main assumption of the quasiclassi-
cal approximation, and was used earlier to treat the cou-
pling of classical and quantum degrees of freedom [62].

The linear equations of the chain motion can be eas-
ily solved, and the coordinates xn of all balls are thus
expressed in terms of the zeroth ball coordinatex0. This
enables us to obtain the set of dimensionless equations

i
∂

∂t
Ψ(x, t) = HΨ ≡

[
1

2

(
p̂2+x̂2

)
−λx̂x0

]
Ψ , (37a)

d
dt
x0 + λ(l0/l)x0 = λ⟨x⟩ , (37b)

where the classical coordinate is measured in units l0
(l20 = h̄/MΩ, Ω2 = K/M ) and the quantum coordi-
nate in units l (l2 = h̄/mω, ω2 = k/m). The cou-
pling constant λ = (κ/k)

√
ω0m/ΩM is small in the

adiabatic case (m ≪ M ), which justifies the proposed
quasiclassical approach.

When considering the problem of the nonlinear reso-
nance, we extend the Hamiltonian by adding a periodic
external force and a nonlinear term:

∆H = −2
√
2x̂F cos(ωt) + αx̂4 . (38)

The oscillator wavefunction is expanded into the series
of the harmonic oscillator eigenfunctions

Ψ(x, t) =
∞∑
n=0

an(t)ψn(x) , (39)
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where En = n + 1/2, and the functions ψn can be
expressed in the standard way in terms of the Hermite
polynomials. Inserting (39) into Eq. (37) and assuming
slow variation in time of the coefficients an (the rotating
wave approximation), we arrive at the set of equations

iȧn = −
{
ηEn − α⟨n|x2|n⟩

}
an

−
√
n(F+iγa∗)an−1 −

√
n+1(F−iγa)an+1 , (40a)

a =

∞∑
n=0

ana
∗
n+1

√
n+ 1, γ = λ2/2 , (40b)

where η = ω − 1 is the detuning.

Fig. 15. Decay of a quasistationary state: the probability of the
excited state |a1|2 is shown by the thick solid curve, the probability
of the ground state |a0|2 by the dashed curve, polarization a = a0a

∗
1

by the dotted curve, and the classical chain excitation x0 by the thin
solid curve.

The proposed method is illustrated by considering
the decay of a quasistationary state in the two-level ap-
proximation. The result is presented in Fig. 15. We note
the characteristic time scale of the order of 1/γ during
which the system relaxes from the excited to the ground
state. It is remarkable that during this transition an ex-
citation pulse is generated in the classical chain. The
pulse carries energy towards infinity which can be re-
garded as dissipation (energy loss) from the point of
view of the quantum subsystem. The energy of this
pulse coincides with the difference of the energy levels
E1 − E0 which enables us to conclude that the quan-
tum subsystem causes some quantization in the classi-
cal one.

The second example is the resonant nonlinear power
absorption which we calculate in the three-level approx-
imation. The typical resonance curves for various de-
grees of nonlinearity are shown in Fig. 16. We see
that in the linear-oscillator case (α = 0) the absorp-
tion demonstrates the expected Lorentzian behaviour.

Fig. 16. Power absorption in the three level approximation.

When nonlinearity increases, the resonant peak moves
to the right and becomes asymmetric. Saturation man-
ifests itself as a widening absorption gap close to the
shifted resonance frequency. This is in contrast to the
classical nonlinear resonance where the power absorp-
tion peak is tilted and a hysteresis takes place. The kinks
of the resonance curve in the absorption gap are related
to various synchronization types between the driving
force and the system response. This type of behaviour
of the quantum system behaviour is due to the infinite
number of degrees of freedom, and reminds the scenar-
ios of appearance of the dynamical chaos in classical
systems.

We shall end the presentation of the quasiclassical
methods briefly mentioning one more approach – the
hydrodynamic method that was applied by Zaremba and
co-workers [63] to the quantum dots with a large num-
ber of electrons. We applied the hydrodynamic method
to the investigation of magnetoplasma excitations in
two vertically aligned quantum dots [64]. Two nontriv-
ial results were found in the case when the parabolic
confinement of the two dots is not the same. First, the
violation of the Kohn’s theorem leads to the appear-
ance of modes other than the centre-of-mass ones in the
power absorption. Also, the so-called edge modes with
small but nonzero oscillator strengths are excited.

The hydrodynamic approach was extended to verti-
cally coupled electron and hole quantum dots [65]. The
most conspicuous feature observed in the far-infrared
absorption spectra is the anticrossing of two centre-of-
mass modes which takes places when the external mag-
netic field aligns their frequencies. A number of weak
edge modes are also present.
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10. Conclusions

The following conclusions can be drawn from the
discussed issues:

1. In large quantum dots the coupling between elec-
trons is the most important term, and accordingly,
the kinetic energy and quantum mechanics play a
secondary role.

2. The strong perpendicular magnetic field freezes out
the kinetic energy of the electrons, which also con-
tributes to the enhancement of the relative impor-
tance of the interparticle interactions.

3. Strongly interacting electron systems in quantum
dots and quantum-dot molecules demonstrate
formation of structures and structural transitions.
Quantum-mechanical effects tend to smear out the
otherwise sharp features of these transitions.

4. There exists a well defined quasiclassical regime.
In this regime, a rather simple but still potent de-
scription based on the classical concepts can be
developed. The quantum-mechanical features are
successfully included in an perturbative manner.

5. Quantum-mechanical systems are described by
fields – the solutions of the Schrödinger equation.
In this sense, quantum-mechanical systems have
more freedom, and consequently, their behaviour
is less stable (more chaotic) than that of their clas-
sical counterparts.
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Santrauka
Kvantiniai taškai yra dariniai, kuriuose elektrono judėjimas yra

apribotas visomis trimis erdvės kryptimis, o energijos spektras di-
skretus. Taigi, kvantiniai taškai yra dirbtiniai atomai: valdomų pa-
rametrų natūralių atomų analogai. Didelių matmenų (lyginant su
efektiniu Boro spinduliu) kvantiniuose taškuose klasikinė kuloni-
nės stūmos energija žymiai viršija kvantinę kinetinę energiją. Elekt-
rostatinės sąveikos santykinę svarbą dar labiau išryškina stiprus
taško plokštumai statmenas magnetinis laukas. Todėl, viena ver-
tus, šiuose kvantiniuose taškuose yra stebimi kolektyviniai reiški-
niai (Vignerio kristalizacija), antra vertus, jų fizika yra iš esmės kla-

sikinė. Straipsnyje apžvelgiama kvaziklasikinė kvantinių taškų teo-
rija, išplėtota pasinaudojus šiais pastebėjimais. Taikomi klasikiniai
metodai leidžia išvengti sudėtingų ir nevaizdžių kvantinių mechani-
nių skaičiavimų. Klasikiniais metodais gauti rezultatai yra lengvai
suprantami ir interpretuojami, o į kvantines pataisas atsižvelgiama
kaip į mažus trikdžius. Aptariamas renormalizuotos trikdžių eilu-
tės taikymas energijų spektrams skaičiuoti, struktūrų susidarymas ir
virsmai kvantiniuose taškuose, laipsniniai dėsniai, nusakantys kri-
tinių parametrų elgesį, ir disipacija mišriose sistemose, pasižymin-
čiose klasikinių ir kvantinių laisvės laipsnių sąveika.
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