[PDF]    http://dx.doi.org/10.3952/lithjphys.50411

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 50, 419–426 (2010)

J. Reklaitis, D. Baltrūnas, V. Remeikis, and K. Mažeika
State Research Institute Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: dalis@ar.fi.lt

Received 8 October 2010; revised 23 November 2010; accepted 15 December 2010

The method of the Rayleigh scattering of Mössbauer radiation (RSMR) for the study of dynamics of atoms in polystyrene demonstrating advantages of the application of the semiconductor Si-PIN detector (Amptek Inc.) was used for recording scattered radiation. It has been shown that for recording the RSMR spectra the semiconductor detector can be much more suitable than other types of detection because of the increased quality of spectra under the same collimating conditions. The dependence of probability of the Rayleigh elastic scattering fR on the scattering angle was obtained. By means of the RSMR method the scattering was studied within the angle range at the main Bragg maximum of a polystyrene sample which corresponds to the distance d = 4.44 \AA approximately equal to the distance between the polymer chains.
Keywords: Mössbauer spectroscopy, Rayleigh scattering, detector, dynamics of atoms
PACS: 76.80.+y; 29.40.-n

J. Reklaitis, D. Baltrūnas, V. Remeikis, K. Mažeika
Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Mesbauerio spinduliuotės Relėjaus sklaidos metodas pritaikytas atomų dinamikos polistirene tyrimui, išsklaidytos spinduliuotės registracijai, pasirenkant puslaidininkinį Si-PIN detektorių. Puslaidininkinis detektorius, palyginus su dažniausiai naudojamu proporcingu detektoriumi, pasižymi daug geresne energine skiriamąja geba ir juo galima gauti geresnės kokybės Mesbauerio spinduliuotės Relėjaus sklaidos spektrus esant toms pačioms kolimavimo sąlygoms. Gauta Relėjaus elastinės sklaidos polistirene tikimybės fR priklausomybė nuo sklaidos kampo. Mesbauerio spinduliuotės Relėjaus sklaidos metodas taikytas esant sklaidos kampams intensyvumo maksimume, kuris atitinka vidutinį tarpplokštuminį atstumą d = 4,44 \AA\AA ir gali būti siejamas su atstumu tarp polimero grandinių polistirene.

References / Nuorodos

[1] F.G. Parak, Physical aspects of protein dynamics, Rep. Prog. Phys. 66, 103 (2003),
[2] J.W. Taraska, M.C. Puljung, N.B. Olivier, G.E. Flynn, and W.N. Zagotta, Mapping the structure and conformational movements of proteins with transition metal ion FRET, Nature Methods 6, 532 (2009),
[3] L. Valkunas, J. Janusonis, D. Rutkauskas, and R. van Grondelle, Protein dynamics revealed in the excitonic spectra of single LH2 complexes, J. Luminesc. 127, 269–275 (2007),
[4] Yu.F. Krupyanskii, V.I. Goldanskii, G.U. Nienhaus, and F.G. Parak, Dynamics of protein-water systems revealed by Rayleigh scattering of Moessbauer radiation. Hyperfine Interact. 53, 59–74 (1990),
[5] D.C. Champeney, The scattering of Mössbauer radiation by condensed matter, Rep. Prog. Phys. 42, 1017–1053 (1979),
[6] C.N.W. Darlington and D.A. O’Connor, On the crystal dynamics of BaTiO3 near Tc, Phys. Status Solidi A 96, 509 (1986),
[7] V.I. Goldanskii and Yu.F. Krupyanskii, Protein and protein-bound water dynamics studied by RSMR, Quart. Rev. Biophys. 22, 39–92 (1989),
[8] Yu.F. Krupyanskii and V.I. Goldanskii, RSMR comparison of dynamic properties of various proteins, in: Protein Folding, Evolution and Design, Proceedings of the International School of Physics “Enrico Fermi” Course CXLV, eds. R.A. Broglia and I. Shakhnovich (IOS Press, Amsterdam, 2001) pp. 25–37,
[9] G. Albanese and A. Deriu, Influance of low frequency excitations of the Rayleigh scattering of Mössbauer radiation, Phys. Status Solidi B 107, K115 (1981),
[10] G. Albanese, M.G. Bridelli, and A. Deriu, Structural dynamics of melanin investigated by Rayleigh scattering of Mössbauer radiation, Biopolymers 23, 1481 (1984),
[11] C. Tzara and R. Barloutaud, Recoiless Rayleigh scattering in solids, Phys. Rev. Lett. 4, 405 (1960),
[12] A. Jagminas, R. Ragalevičius, K. Mažeika, J. Reklaitis, V. Jasulaitienė, A. Selskis, and D. Baltrūnas, A new strategy for fabrication Fe2O3/SiO2 composite coatings on the Ti substrate, J. Solid State Electrochem. 14, 271 (2010),
[13] A. Jagminas, K. Mažeika, E. Juška, J. Reklaitis, and D. Baltrūnas, Electrochemical fabrication and characterization of lepidocrocite (γ\gamma-FeOOH) nanowire arrays, Appl. Surf. Sci. 256, 3993–3996 (2010),
[14] A. Jagminas, K. Mažeika, J. Reklaitis, M. Kurtinaitiene, and D. Baltrunas, Template synthesis, characterization and transformations of iron nanowires while aging, Mater. Chem. Phys. 109, 82–86 (2008),
[15] A. Amulevicius, D. Baltrunas, V. Bendikiene, A. Daugvila, R. Davidonis, and K. Mazeika, Investigation of the magnetic properties of nanocrystalline Fe3O4 precipitated on the surface of chitin, Phys. Status Solidi A 189, 243–252 (2002),
[16] Yu.M. Vysochanskii, D. Baltrunas, A.A. Grabar, K. Mazeika, K. Fedyo, and A. Sudavicius, 119Sn and XPS spectroscopy of Sn2P2S6 and SnP2S6 crystals, Phys. Status Solidi B 246, 1110–1117 (2009),
[17] V.V. Remeikis, A.K. Dragunas, K.V. Makariunas, and B.P. Ruziale, Change of the electron-capture probability-positron Ga-68 decay probability ratio in chemical compounds, Izv. Akad. Nauk SSSR Ser. Phys. 52, 2–4 (1988) [in Russian]
[18] S.E. Enescu and I. Bibicu, Rayleigh scattering of Mössbauer radiation method used in dynamics studies of condensed matter, Acta Phys. Pol. A 107, 479 (2005),
[19] A. Deriu, F. Cavatorta, and G. Albanese, Rayleigh scattering of Mössbauer radiation in hydrated amylase, Hyperfine Interact. 141/142, 261 (2002),
[20] S.E. Enescu, I. Bibicu, V. Zoran, A. Kluger, A.D. Stoica, and V. Tripadus, A PC-based set-up for Rayleigh scattering of Mössbauer radiation, Measur. Sci. Technol. 9, 708 (1998),
[21] F.G. Parak, K. Achterhold, M. Schmidt, V. Prusakov, and S. Croci, Protein dynamics on different timescales, J. Non-Cryst. Solids 352, 4371 (2006),
[22] K.S. Singwi and A. Sjolander, Resonance absorbtion of nuclear gamma rays and the dynamics of atomic motion, Phys. Rev. 120, 1093 (1960),
[23] V.N. Gavrilov, E.V. Zolotojabko, and E.M. Iolin, Line broadening effect in the Rayleigh scattering of Mössbauer radiation on single crystals. Phys. Lett. A 75, 429 (1980),
[24] Yu.F. Krupyanskii, S.V. Esin, G.V. Eshenko, and M.G. Michailyuk, Spatio-temporal features of protein specific motions. The influence of hydration, J. Biol. Phys. 28, 139–145 (2002),
[25] Yu.F. Krupyanskii, S.V. Esin, G.V. Eshenko, and M.G. Michailyuk, Equilibrium fluctuations in lysozyme and myoglobin, Hyperfine Interact. 141–142, 273–277 (2002),
[26] S.K. Basovets, I.V. Uporov, K.V. Shaitan, Yu.F. Krupyanskii, I.V. Kurinov, I.P. Suzdalev, A.B. Rubin, and V.I. Goldanskii, A method of Mössbauer Fourier spectroscopy for determination of the biopolimer coordinate correlation functions, Hyperfine Interact. 39, 369 (1988),
[27] E.W. Knapp, S.F. Fischer, and F. Parak, Protein dynamics from Mössbauer spectra. The temperature dependance, J. Phys. Chem. 86, 5042 (1982),
[28] G.U. Nienhaus, F. Drepper, F. Parak, R.L. Mössbauer, D. Bade, and W. Hoppe, A multiwire proportional counter with spherical drift chamber for protein crystallography with X-rays and gamma-rays, Nucl. Instrum. Methods A 256, 581 (1987),
[29] G.U. Nienhaus and F. Parak, Rayleigh scattering of Mössbauer radiation on met-myoglobin, Hyperfine Interact. 29, 1451 (1986),
[30] C. Zach, C. Keppler, E. Huenges, K. Achterhold, and F. Parak, Angular- and temperature-dependent RSMR on myoglobin using 183W and 57Fe, Hyperfine Interact. 126, 83 (2000),
[31] I.P. Suzdalev, Yu.F. Krupyanskii, and V.I. Goldanskii, Electronic state of the iron atom in heme and protein molecular motion studied by Mössbauer spectroscopy, J. Mol. Catal. 47, 179 (1988),
[32] Yi-Long Chen and De-Ping Yang, Mössbauer Effect in Lattice Dynamics: Experimental Techniques and Applications (Wiley–VCH, Weinheim, 2007),