[PDF]    http://dx.doi.org/10.3952/lithjphys.51106

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 65–74 (2011)

K. Kvietkus a, J. Šakalys a I. Rimšelytė a, J. Ovadnevaitė a, V. Remeikis a, and V. Špakauskas b
a State Research Institute Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: kvietkus@ktl.mii.lt
b Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania

Received 2 November 2010; revised 13 December 2010; accepted 17 March 2011

Size and composition real-time measurements of atmospheric submicron aerosol (PM1) were conducted in the Lithuanian background and urban areas during several months (April–July, 2008) using the Quadrupole aerosol mass spectrometer (QAMS). The average mass concentration of non-refractory PM1 ranged within 8–13 μg m−3. Organic compounds of PM1 were the most abundant constituent ranging from 70 to 83%, nitrate made up 4.0–7.7%, ammonium 1.7–3.9%, sulfate 11–21%, and chloride less than 1%. While sulfate concentrations were comparable at the urban and background sites, concentrations of organic compounds and nitrate in Vilnius city were almost twice as high as those at the background site (Rūgšteliškis). The average aerodynamic diameter for nitrate and organics was about 300 nm at both sampling sites – in Vilnius city and at Rūgšteliškis background site. The average aerodynamic diameter for ammonium was about 355 nm and for sulfate about 400 nm. The main source of organics and nitrates in the city was emission from traffic, however the main source of sulfates at urban and background sites was long-range transport. Positive matrix factorization (PMF) analysis of the unit mass-resolution (UMR) spectra was used to identify sources of organic matter in the urban (Vilnius) and background (Rūgšteliškis) aerosol. Organic aerosol components were identified from AMS spectra for both sites: primary anthropogenic emissions –  hydrocarbonlike organic aerosol (HOA), aged oxygenated low volatility organic aerosol (LV-OOA), and less oxygenated, presumably, semivolatile organic aerosol (SV-OOA) at the urban site (Vilnius city) as well as biomass burning organic aerosol (BBOA), aged oxygenated low volatility organic aerosol (LV-OOA), and semivolatile biogenic secondary organic aerosol (SV-OOA) at the background site (Rūgšteliškis).
Keywords: atmospheric submicron aerosol, urban and background sites, concentration, composition, size distribution, sources
PACS: 92.60.Mt, 92.60.Sz, 92.20.Bk

K. Kvietkus a, J. Šakalys a I. Rimšelytė a, J. Ovadnevaitė a, V. Remeikis a, V. Špakauskas b
a Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Submikroninės frakcijos (PM1) atmosferinio aerozolio dalelių pasiskirstymo pagal dydį ir cheminės sudėties tyrimai realiame laike Vilniaus mieste ir Rūgšteliškio foninėje vietovėje, naudojant kvadrupolinį aerozolio masės spektrometrą (AMS), atlikti 2008 m. balandį–liepą. Vidutinė PM1 aerozolio dalelių masės koncentracija kito nuo 8 iki 13 μg m−3. Organinė PM1 aerozolio dalelių komponentė buvo vyraujanti ir kito nuo 70 iki 83 %, nitratai sudarė 4,0–7,7 %, sulfatai – 11–21 %, amonis – 1,7–3,9 %, chloridai – mažiau negu 1%. Sulfatų koncentracijos buvo tos pačios eilės abiejose vietovėse, tuo tarpu organinės komponentės ir nitratų koncentracijos aerozolio dalelėse Vilniaus mieste buvo daugiau nei dvigubai didesnės. Vidutinis organinės komponentės ir nitratų aerodinaminis aerozolio dalelių skersmuo abiejose vietovėse buvo ~300 nm, amonio ~355 nm, sulfatų ~400 nm. Pagrindinis organinės komponentės ir nitratų šaltinis mieste buvo autotransportas, o sulfatų šaltinis ir mieste, ir foninėje vietovėje – tolimoji oro masių pernaša.
Organinės medžiagos, esančios aerozolio dalelėse iš miesto (Vilniaus) ir foninės vietovės (Rūgšteliškio), kilmei nustatyti panaudotas teigiamos matricų faktorizacijos metodas, pritaikytas vienetinės masės skyros spektrams. Vilniaus mieste iš AMS spektro identifikuotos trys organinio aerozolio komponentės: pirminės antropogeninės emisijos angliavandenilio dariniai (HOA), senesnės oksidacijos mažai lakus (LV-OOA) ir mažai oksiduotas pusiau lakus (SV-OOA) aerozoliai. Foninėje vietovėje (Rūgšteliškyje) aptiktas biomasės degimo procese susidaręs organinis aerozolis (BBOA), senesnės oksidacijos mažai lakus (LV-OOA) ir mažai oksiduotas pusiau lakus (SV-OOA) aerozoliai.

References / Nuorodos

[1] P. Forster, V. Ramaswamy, P. Artaxo, T. Berntsen, R. Betts, D.W. Fahey, J. Haywood, J. Lean, D.C. Lowe, G. Myhre, J. Nganga, R. Prinn, G. Raga, M. Schulz, and R. Van Dorland, in: Climate Change 2007: The Physical Science Basis. Working Group I Contribution to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Cambridge University Press, Cambridge, UK and New York, NY, USA, 2007),
[2] C.D. O’Dowd, M.C. Facchini, F. Cavalli, D. Ceburnis, M. Mircea, S. Decesari, S. Fuzzi, Y.J. Yoon, and J.-P. Putaud, Biogenically driven organic contribution to marine aerosol, Nature 431, 676–680 (2004),
[3] D. Schwela, Air pollution and health in urban areas, Rev. Environ. Health 15, 13–42 (2000)
[4] J. Ovadnevaitė, K. Kvietkus, and A. Maršalka, 2002 summer fires in Lithuania: Impact on the Vilnius city air quality and the inhabitants health, Sci. Total Environ. 356(1–3), 11–21 (2006),
[5] C.P. Chio and C.M. Liao, Assessment of atmospheric ultrafine carbon particle-induced human health risk based on surface area dosimetry, Atmos. Environ. 42, 8575–8584 (2008),
[6] M. Lazaridis, A. Semb, S. Larssen, A.G. Hjellbrekke, O. Hov, J.E. Hanssen, J. Schaug, and K. Torseth, Measurements of particulate matter within the framework of the European Monitoring and Evaluation Programme (EMEP), Sci. Total Environ. 285, 209–325 (2002),
[7] T. Sandström, D. Nowak, and L. van Bree, Health effects of coarse particles in ambient air: messages for research and decision-making, Eur. Respir. J. 26, 187–188 (2005),
[8] J. Ovadnevaite, K. Kvietkus, and J. Šakalys, Evaluation of the impact of long-range transport and aerosol concentration temporal variations at the eastern coast of the Baltic Sea, Environ. Monit. Assess. 32(1–3), 365–375 (2007),
[9] D. Martuzevicius, S.A. Grinshpun, T. Reponen, R.L. Gorny, R. Shukla, J. Lockey, S. Hu, R. McDonald, P. Biswas, L. Kliucininkas, and G. LeMasters, Spatial and temporal variations of PM2.5 concentration and composition throughout an urban area with high freeway density – the Greater Cincinnati Study, Atmos. Environ. 38, 1091–1105 (2004),
[10] K. Slezakova, M.C. Pereira, M.A. Reis, and M.C. Alvim-Ferraz, Influence of traffic emissions on the composition of atmospheric particles of different sizes – Part 1: concentrations and elemental characterization, J. Atmos. Chem. 58, 55–68 (2007),
[11] K. Slezakova, J.C.M. Pires, M.C. Pereira, F.G. Martins, and M.C. Alvim-Ferraz, Influence of traffic emissions on the composition of atmospheric particles of different sizes – Part 2: SEM-EDS characterization, J. Atmos. Chem. 60, 221–236 (2008),
[12] M. Žičkus, K. Kvietkus, A. Maršalka, and V. Augulienė, An investigation of meteorological effects on urban air quality using carbon monoxide measurement results in the Vilnius city, Atmos. Phys. 18(2), 11–20 (1996)
[13] J.-P. Putaud, F. Raes, R. Van Dingenen, E. Brüggemann, M.-C. Facchini, S. Decesari, S. Fuzzi, R. Gehrig, C. Hüglin, P. Laj, G. Lorbeer, W. Maenhaut, N. Mihalopoulos, K. Müller, X. Querol, S. Rodriguez, J. Schneider, G. Spindler, H. ten Brink, K. Tørseth, and A. Wiedensohler, A European aerosol phenomenology – 2: chemical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ. 38, 2579–2595 (2004),
[14] R. Van Dingenen, F. Raes, J. Putaud, U. Baltensperger, A. Charron, M.-C. Facchini, S. Decesari, S. Fuzzi, R. Gehrig, H. Hansson, R. Harrison, C. Huglin, A. Jones, P. Laj, G. Lorbeer, W. Maenhaut, F. Palmgren, X. Querol, S. Rodriguez, J. Schneider, H. ten Brink, P. Tunved, K. Tørseth, B. Wehner, E. Weingartner, A. Wiedensohler, and P. Wåhlin, A European aerosol phenomenology – 1: physical characteristics of particulate matter at kerbside, urban, rural and background sites in Europe, Atmos. Environ. 38, 2561–2577 (2004),
[15] M.R. Canagatatna, J.T. Jayne, J.L. Jimenez, J.D. Allan, M.R. Alfarra, Q. Zhang, T.B. Onasch, F. Drewnick, H. Coe, A. Middlebrook, A. Delia, L.R. Williams, A.M. Trimborn, M.J. Northway, P.F. DeCarlo, C.E. Kolb, P. Davidovits, and D.R.Worsnop, Chemical and microphysical characterization of ambient aerosols with the Aerodyne aerosol mass spectrometer, Mass Spec. Rev. 26, 185–222 (2007),
[16] J.D. Allan, M.R. Alfarra, K.N. Bower, H. Coe, J.T. Jayne, D.R. Worsnop, P.P. Aalto, M. Kulmala, T. Hyötyläinen, F. Cavalli, and A. Laaksonen, Size and composition measurements of background aerosol and new particle growth in a finnish forest during QUEST 2 using an aerodyne aerosol mass spectrometer, Atmos. Chem. Phys. 6, 315–327 (2006),
[17] I. Rimšelytė, J. Ovadnevaitė, D. Čeburnis, K. Kvietkus, and E. Pesliakaitė, Chemical composition and size distribution of fine aerosol particles on the east coast of the Baltic Sea, Lith. J. Phys. 47(4), 523–529 (2007),
[18] Y. Sun, Q. Zhang, A.M. Macdonald, K. Hayden, S.M. Li, J. Liggio, P.S.K. Liu, K.G. Anlauf, W.R. Leaitch, A. Steffen, M. Cubison, D.R. Worsnop, A. van Donkelaar, and R.V. Martin, Size-resolved aerosol chemistry on Whistler Mountain, Canada with  a high-resolution aerosol mass spectrometer during INTEX-B, Atmos. Chem. Phys. 9, 3095–3111 (2009),
[19] V.A. Lanz, A.S.H. Prévôt, M.R. Alfarra, C. Mohr, P.F. DeCarlo, S. Weimer, M.D.F. Gianini, C. Hueglin, J. Schneider, O. Favez, B.D. Anna, C. George, and U. Baltensperger, Characterization of aerosol chemical composition by aerosol mass spectrometry in Central Europe: an overview, Atmos. Chem. Phys. Discuss. 9, 24986–25021 (2009),
[20] J. Ovadnevaite, D. Ceburnis, K. Plauskaite-Sukiene, R. Modini, R. Dupuy, I. Rimselyte, M. Ramonet, K. Kvietkus, Z. Ristovski, H. Berresheim, and C.D. O’Dowd, Volcanic sulphate and arctic dust plumes over the North Atlantic Ocean, Atmos. Environ. 43(32), 4968–4974 (2009),
[21] Q. Zhang, M.R. Alfarra, D.R. Worsnop, J.D. Allan, H. Coe, M.R. Canagaratna, and J.L. Jimenez, Deconvolution and quantification of hydrocarbon-like and oxygenated organic aerosols based on aerosol mass spectrometry, Environ. Sci. Technol. 39, 4938–4952, (2005),
[22] Q. Zhang, J.L. Jimenez, M.R. Canagaratna, J.D. Allan, H. Coe, I. Ulbrich, M.R. Alfarra, A. Takami, A.M. Middlebrook, Y.L. Sun, K. Dzepina, E. Dunlea, K. Docherty, P.F. De-Carlo, D. Salcedo, T. Onasch, J.T. Jayne, T. Miyoshi, A. Shimono, S. Hatakeyama, N. Takegawa, Y. Kondo, J. Schneider, F. Drewnick, S. Borrmann, S. Weimer, K. Demerjian, P. Williams, K. Bower, R. Bahreini, L. Cottrell, R.J. Griffin, J. Rautiainen, J.Y. Sun, Y.M. Zhang, and D.R.Worsnop, Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes, Geophys. Res. Lett. 34, L13801, (2007),
[23] P. Paatero, Least squares formulation of robust nonnegative factor analysis, Chemometr. Intell. Lab. Syst. 37, 23–35 (1997),
[24] V.A. Lanz, M.R. Alfarra, U. Baltensperger, B. Buchmann, C. Hueglin, and A.S.H. Prevot, Source apportionment of submicron organic aerosols at an urban site by factor analytical modelling of aerosol mass spectra, Atmos. Chem. Phys. 7, 1503–1522 (2007),
[25] K. Kvietkus, Air pollution tendencies in Vilnius city, Environ. Chem. Phys. 21(3–4), 72–77 (1999)
[26] J.T. Jayne, D.C. Leard, X.F. Zhang, P. Davidovits, K.A. Smith, C.E. Kolb, and D.R. Worsnop, Development of an aerosol mass spectrometer for size and composition analysis of submicron particles, Aerosol Sci. Technol. 33(1–2), 49–70 (2000),
[27] J.L. Jimenez, J.T. Jayne, Q. Shi, C.E. Kolb, D.R. Worsnop, I. Yourshaw, J.H. Seinfeld, R.C. Flagan, X. Zhang, K.A. Smith, J.W. Morris, and P. Davidovits, Ambient aerosol sampling using the Aerodyne Aerosol Mass Spectrometer, J. Geophys. Res. 108(D7), 8425 (2003),
[28] P. Paatero and U. Tapper, Positive matrix factorization – a nonnegative factor model with optimal utilization of error-estimates of data values, Environmetrics 5(2), 111–126 (1994),
[29] I.M. Ulbrich, M.R. Canagaratna, Q. Zhang, D.R. Worsnop, and J.L. Jimenez, Interpretation of organic components from positive matrix factorization of aerosol mass spectrometric data, Atmos. Chem. Phys. 9, 2891–2918, (2009),
[30] R.R. Draxler and G.D. Hess, Description of the HYSPLIT_4 Modeling System, NOAA Technical Memorandum ERL ARL-224 (Air Resources Laboratory, Silver Spring, Maryland, December 1997),
[31] M.R. Alfarra, H. Coe, J.D. Allan, K.N. Bower, H. Boudries, M.R. Canagaratna, J.L. Jimenez, J.T. Jayne, A.A. Garforth, S.-M. Li, and D.R.Worsnop, Characterization of urban and rural organic particulate in the Lower Fraser Valley using two Aerodyne Aerosol Mass Spectrometers, Atmos. Environ. 38, 5745–5758 (2004),
[32] F.W. McLafferty and F. Turecek, Interpretation of Mass Spectra, 4th ed. (University Science Books, Mill Valley, California, 1993),
[33] E. Dinar, T.F. Mentel, and Y. Rudich, The density of humic acids and humic like substances (HULIS) from fresh and aged wood burning and pollution aerosol particles, Atmos. Chem. Phys. 6, 5213–5224 (2006),
[34] C. Marcolli, M.R. Canagaratna, D.R. Worsnop, R. Bahreini, J.A. de Gouw, C. Warneke, P.D. Goldan, W.C. Kuster, E.J.Williams, B.M. Lerner, J.M. Roberts, J.F. Meagher, F.C. Fehsenfeld, M. Marchewka, S.B. Bertman, and A.M. Middlebrook, Cluster analysis of the organic peaks in bulk mass spectra obtained during the 2002 New England air quality study with an Aerodyne aerosol mass spectrometer, Atmos. Chem. Phys. 6, 5649–5666 (2006),