[PDF]   
    http://dx.doi.org/10.3952/lithjphys.51107
    
    Open access article / Atviros prieigos straipsnis
    
    Lith. J. Phys. 51, 75–81 (2011)
    
    DISTRIBUTION OF ARTIFICIAL
        RADIONUCLIDES IN THE BALTIC SEASIDE ENVIRONMENT
      R. Druteikienė a, R. Morkūnienė b, and B.
      Lukšienė a
      a State Research Institute Center for Physical
        Sciences and Technology, Savanorių 231, LT-02300 Vilnius,
        Lithuania
      E-mail: ruta@ar.fi.lt
      b Vilnius Gediminas Technical University,
        Saulėtekio 11, LT-10223 Vilnius, Lithuania
    
    
    Received 8 November 2010; revised
      14 January 2011; accepted 17 March 2011
    
    
    Investigation on 137Cs
      and 239,240Pu activity concentration was undertaken in
      a coastal zone of the Baltic Sea on the Lithuanian territory to
      study the vertical distribution of radionuclides (down to 30 cm).
      The Baltic seaside is one of the regions where the highest
      radionuclide concentrations after the Chernobyl NPP accident were
      detected. Moreover, this area is a significant recreational zone,
      therefore, peculiarities of radionuclide spreading in the
      environmental ecosystem are important from the radioecological
      point of view. The obtained results of vertical distribution of 137Cs
      and 239,240Pu in sand and forest soil suggest that the
      radionuclide downward migration depends on the structure of matrix
      and its chemical composition. Besides, the results of radionuclide
      distribution on the stripe between the Baltic Sea and the
      Curronian Lagoon indicate that the sea is a possible source of
      radioactive contaminants.
    
    Keywords: plutonium, radiocesium,
      activity concentration, sand, forest soil, migration, organic
      matter
    
    PACS: 28.60.+s, 82.80.-d, 89.40.Cc, 89.60.Ec
    
    DIRBTINIŲ RADIONUKLIDŲ
        PASISKIRSTYMAS BALTIJOS PAJŪRYJE
      R. Druteikienė a, R. Morkūnienė b, B.
      Lukšienė a
      a Valstybinis mokslinių tyrimų institutas Fizinių
        ir technologijos mokslų centras, Vilnius, Lietuva
      b Vilniaus Gedimino technikos universitetas,
        Vilnius, Lietuva
        
       
    Tirtas 239,240Pu ir 137Cs
      savitojo aktyvumo vertikalus pasiskirstymas Kuršių nerijos miško
      dirvožemio ir Baltijos pajūrio smėlio 30 cm paviršiaus sluoksnyje.
      Didžiausios 137Cs ir 239,240Pu savitojo
      aktyvumo vertės nustatytos miško dirvožemio 0–5 cm sluoksnyje,
      giliau jos eksponentiškai mažėjo. Pakrantės smėlio vertikaliame
      profilyje abiejų radionuklidų savitasis aktyvumas pasiskirstęs
      tolygiai. Tyrimų rezultatai parodė, kad radionuklidų vertikalią
      migraciją miško dirvožemyje lemia organinė medžiaga, kurios kiekis
      siekia iki 91% viršutiniame 5 cm sluoksnyje. Pakrantės smėlyje
      radionuklidų savitojo aktyvumo vertikalųjį pasiskirstymą lemia
      mineralinė matricos sudėtis.
    
    
      References / Nuorodos
    
    [1] E. Holm, Plutonium in the Baltic Sea, Appl. Radiat. Isot. 46(11),
    1225–1229 (1995), 
    
      http://dx.doi.org/10.1016/0969-8043(95)00164-9
    [2] T. Zalewska and J. Lipska, Contamination of the Southern Baltic
    Sea with 137Cs and 90Sr over the period
    2000–2004, J. Environ. Radioact. 91, 1–14 (2006), 
    
      http://dx.doi.org/10.1016/j.jenvrad.2006.08.001
    [3] T.K. Ikäheimonen, I. Outola, V.-P. Vartti, and P. Kotilainen,
    Radioactivity in the Baltic Sea: inventories and temporal trends of
    137Cs and 90Sr in water and sediments, J.
    Radioanal. Nucl. Chem. 282, 419–425 (2009), 
    
      http://dx.doi.org/10.1007/s10967-009-0144-1
    [4] B. Skwarzec, D.I. Struminska, and M. Prucnal, Estimates of 239,240Pu
    inventories in Gdansk bay and Gdansk basin, J. Environ. Radioact. 70,
    237–252 (2003), 
    
      http://dx.doi.org/10.1016/S0265-931X(03)00107-3
    [5] P. Lindahl, P. Roos, E. Holm, and H. Dahlgaard, Studies of Np
    and Pu in the marine environment of Swedish–Danish waters and the
    North Atlantic Ocean, J. Environ. Radioact. 82, 285–301
    (2005), 
    
      http://dx.doi.org/10.1016/j.jenvrad.2005.01.011
    [6] S.P. Nielsen, P. Bengston, R. Bojanowski, P. Hagel, J. Herrmann,
    E. Illus, E. Jakobson, S. Motiejūnas, Y. Panteleev, A. Skujina, and
    M. Suplinska, The radiological exposure of man from radioactivity in
    the Baltic Sea, Sci. Tot. Environ. 237–238, 133–141 (1999),
    
    
      http://dx.doi.org/10.1016/S0048-9697(99)00130-8
    [7] V. Remeikis, R. Gvozdaitė, R. Druteikienė, A. Plukis, N.
    Tarasiuk, and N. Špirkauskaitė, Plutonium and americium in sediments
    of Lithuania lakes, Nukleonika 50(2), 61–66 (2005), 
    http://www.nukleonika.pl/www/back/abstract/vol50_2005/v50n2p061.htm
    [8] J. Herrmann, T.K. Ikäheimonen, E. Ilus, G. Kanisch, M. Lüning,
    J. Mattila, S.P. Nielsen, I. Osvath, and I. Outola, in: Radioactivity
      in the Baltic Sea, 1999–2006, HELCOM thematic assessment,
    Baltic Sea Environment Proceedings No. 117 (HELCOM, Finland, 2009)
    [9] Summary Report on the Post-accident Review Meeting on the
      Chernobyl Accident, INSAG Series No. 1 (IAEA, Vienna, 1986) p.
    106, 
    http://www-pub.iaea.org/mtcd/publications/PubDetails.asp?pubId=3598
    [10] Worldwide Marine Radioactivity Studies (WOMARS):
      Radionuclide Levels in Oceans and Seas, IAEA TECDOC Series No.
    1429 (IAEA, Vienna, 2005) p. 125, 
    
      http://www-pub.iaea.org/MTCD/publications/PDF/TE_1429_web.pdf
    [11] E. Ilus, J. Mattila, S.P. Nielsen, E. Jakobson, J. Herrmann, V.
    Graveris, B. Vilimaite-Silobritiene, M. Suplinska, A. Stepanov, and
    M.Lüning, in: Long-lived radionuclides in the seabed of the
      Baltic Sea, HELCOM thematic assessment, Baltic Sea Environment
    Proceedings No. 110 (HELCOM, Finland, 2007)
    [12] S. Bergström and B. Carlsson, River runoff to the Baltic Sea:
    1950–1990, Ambio 23, 280–287 (1994), 
    http://www.jstor.org/discover/10.2307/4314220?uid=3738480&uid=2&uid=4&sid=21105162685843
    [13] B. Skwarzec, Polonium, uranium and plutonium in the southern
    Baltic Sea, Ambio 26, 113–117 (1997), 
    http://www.jstor.org/discover/10.2307/4314562?uid=3738480&uid=2&uid=4&sid=21105162685843
    [14] D. Butkus, B. Lukšienė, R. Druteikienė, and M. Lebedytė, in: Proceedings,
      Regional IRPA congress, Stockholm (SE), 12–13 June 1998, eds.
    J. Søgaard-Hansen and A. Damkjær (Risø National Laboratory,
    Roskilde, 1998) pp. 169-175
    [15] R. Druteikienė and B. Lukšienė, Plutonium in the environment,
    Atmos. Phys. 19(1) 47–57 (1997)
    [16] B. Lukšienė, R. Druteikienė, R. Gvozdaitė, and A. Gudelis,
    Comparative analysis of 239Pu, 137Cs, 210Pb
    and 40K spatial distributions in the top soil layer at
    the Baltic coast, J. Environ. Radioact. 87, 305–314 (2006),
    
    
      http://dx.doi.org/10.1016/j.jenvrad.2005.12.005
    [17] P. Bossew and G. Kirchner, Modelling the vertical distribution
    of radionuclides in soil. Part 1: the convection–dispersion equation
    revisited, J. Environ. Radioact. 73, 127–150 (2004), 
    
      http://dx.doi.org/10.1016/j.jenvrad.2003.08.006
    [18] G.D. Arapis and M.G. Karandinos, Migration of 137Cs
    in the soil of sloping semi-natural ecosystems in northern Greece.
    J. Environ. Radioact. 77, 133–142 (2004), 
    
      http://dx.doi.org/10.1016/j.jenvrad.2004.03.004
    [19] M.S. Al-Masri, Vertical distribution and inventories of 137Cs
    in the Syrian soils of the eastern Mediterranean region, J. Environ.
    Radioact. 86, 187–198 (2006), 
    
      http://dx.doi.org/10.1016/j.jenvrad.2005.08.006
    [20] S. Almgren and M. Isaksson, Vertical migration studies of 137Cs
    from nuclear weapons fallout and the Chernobyl accident, J. Environ.
    Radioact. 91, 90–102 (2006), 
    
      http://dx.doi.org/10.1016/j.jenvrad.2006.08.008
    [21] N. Tarasiuk, N. Špirkauskaitė, T. Petelski, and M. Chomka,
    Radiocesium load on the Baltic Sea beach, Environ. Chem. Phys. 22(3–4),
    103–111 (2000)
    [22] F.R. Livens and M.S. Baxter, Chemical associations of
    artificial radionuclides in Cumbrian soil, J. Environ. Radioact. 7,
    75–86 (1988), 
    
      http://dx.doi.org/10.1016/0265-931X(88)90043-4
    [23] J.M. Abril and E. Fraga, Some physical and chemical features of
    the variability of kD distribution coefficients of radionuclides, J.
    Environ. Radioact. 30(3), 253–270 (1996), 
    
      http://dx.doi.org/10.1016/0265-931X(95)00010-8
    [24] M.H. Lee and C.W. Lee, Association of fallout-derived 137Cs,
    90Sr and 239,240Pu with natural organic
    substances in soil, J. Environ. Radioact. 47, 253–262
    (2000), 
    
      http://dx.doi.org/10.1016/S0265-931X(99)00033-8
    [25] Q. Chen, A. Aarkrog, S.P. Nielsen, H. Dahgaalrd, B. Lind, A.K.
    Kolstad, and Y. Yu, Procedures for Determination of 239,240Pu,
    241Am, 237Np, 234,238U,
    228,230,232Th, 99Tc
      and 210Pb-210Po
      in Environmental Materials, Risø-R-1263(EN) (Risø National
    Laboratory, Roskilde, 2001)
    [26] Soil Quality – Determination of pH, ISO Standard
    10390:2005, 
    http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=40879
    [27] D. Copplestone, M.S. Johnson, and S.R. Jones, Behavior and
    transport of radionuclides in soil and vegetation of a sand dune
    ecosystem, J. Environ. Radioact. 55, 93–108 (2001), 
    
      http://dx.doi.org/10.1016/S0265-931X(00)00181-8
    [28] K. Bunzl, W. Kracke, W. Schimmack, and L. Zelles, Forms of
    fallout 137Cs and 239,240Pu in successive
    horizons of a forest soil, J. Environ. Radioact. 39, 55–68
    (1998), 
    
      http://dx.doi.org/10.1016/S0265-931X(97)00042-8
    [29] I. Nikolova, K.J. Johanson, and S. Clegg, The accumulation of 137Cs
    in the biological compartment of forest soil, J. Environ. Radioact.
    47, 319–326 (2000), 
    http://dx.doi.org/10.1016/S0265-931X(99)00048-X