[PDF]    http://dx.doi.org/10.3952/lithjphys.51107

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 75–81 (2011)

R. Druteikienė a, R. Morkūnienė b, and B. Lukšienė a
a State Research Institute Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: ruta@ar.fi.lt
b Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania

Received 8 November 2010; revised 14 January 2011; accepted 17 March 2011

Investigation on 137Cs and 239,240Pu activity concentration was undertaken in a coastal zone of the Baltic Sea on the Lithuanian territory to study the vertical distribution of radionuclides (down to 30 cm). The Baltic seaside is one of the regions where the highest radionuclide concentrations after the Chernobyl NPP accident were detected. Moreover, this area is a significant recreational zone, therefore, peculiarities of radionuclide spreading in the environmental ecosystem are important from the radioecological point of view. The obtained results of vertical distribution of 137Cs and 239,240Pu in sand and forest soil suggest that the radionuclide downward migration depends on the structure of matrix and its chemical composition. Besides, the results of radionuclide distribution on the stripe between the Baltic Sea and the Curronian Lagoon indicate that the sea is a possible source of radioactive contaminants.
Keywords: plutonium, radiocesium, activity concentration, sand, forest soil, migration, organic matter
PACS: 28.60.+s, 82.80.-d, 89.40.Cc, 89.60.Ec

R. Druteikienė a, R. Morkūnienė b, B. Lukšienė a
a Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva
b Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Tirtas 239,240Pu ir 137Cs savitojo aktyvumo vertikalus pasiskirstymas Kuršių nerijos miško dirvožemio ir Baltijos pajūrio smėlio 30 cm paviršiaus sluoksnyje. Didžiausios 137Cs ir 239,240Pu savitojo aktyvumo vertės nustatytos miško dirvožemio 0–5 cm sluoksnyje, giliau jos eksponentiškai mažėjo. Pakrantės smėlio vertikaliame profilyje abiejų radionuklidų savitasis aktyvumas pasiskirstęs tolygiai. Tyrimų rezultatai parodė, kad radionuklidų vertikalią migraciją miško dirvožemyje lemia organinė medžiaga, kurios kiekis siekia iki 91% viršutiniame 5 cm sluoksnyje. Pakrantės smėlyje radionuklidų savitojo aktyvumo vertikalųjį pasiskirstymą lemia mineralinė matricos sudėtis.

References / Nuorodos

[1] E. Holm, Plutonium in the Baltic Sea, Appl. Radiat. Isot. 46(11), 1225–1229 (1995),
[2] T. Zalewska and J. Lipska, Contamination of the Southern Baltic Sea with 137Cs and 90Sr over the period 2000–2004, J. Environ. Radioact. 91, 1–14 (2006),
[3] T.K. Ikäheimonen, I. Outola, V.-P. Vartti, and P. Kotilainen, Radioactivity in the Baltic Sea: inventories and temporal trends of 137Cs and 90Sr in water and sediments, J. Radioanal. Nucl. Chem. 282, 419–425 (2009),
[4] B. Skwarzec, D.I. Struminska, and M. Prucnal, Estimates of 239,240Pu inventories in Gdansk bay and Gdansk basin, J. Environ. Radioact. 70, 237–252 (2003),
[5] P. Lindahl, P. Roos, E. Holm, and H. Dahlgaard, Studies of Np and Pu in the marine environment of Swedish–Danish waters and the North Atlantic Ocean, J. Environ. Radioact. 82, 285–301 (2005),
[6] S.P. Nielsen, P. Bengston, R. Bojanowski, P. Hagel, J. Herrmann, E. Illus, E. Jakobson, S. Motiejūnas, Y. Panteleev, A. Skujina, and M. Suplinska, The radiological exposure of man from radioactivity in the Baltic Sea, Sci. Tot. Environ. 237–238, 133–141 (1999),
[7] V. Remeikis, R. Gvozdaitė, R. Druteikienė, A. Plukis, N. Tarasiuk, and N. Špirkauskaitė, Plutonium and americium in sediments of Lithuania lakes, Nukleonika 50(2), 61–66 (2005),
[8] J. Herrmann, T.K. Ikäheimonen, E. Ilus, G. Kanisch, M. Lüning, J. Mattila, S.P. Nielsen, I. Osvath, and I. Outola, in: Radioactivity in the Baltic Sea, 1999–2006, HELCOM thematic assessment, Baltic Sea Environment Proceedings No. 117 (HELCOM, Finland, 2009)
[9] Summary Report on the Post-accident Review Meeting on the Chernobyl Accident, INSAG Series No. 1 (IAEA, Vienna, 1986) p. 106,
[10] Worldwide Marine Radioactivity Studies (WOMARS): Radionuclide Levels in Oceans and Seas, IAEA TECDOC Series No. 1429 (IAEA, Vienna, 2005) p. 125,
[11] E. Ilus, J. Mattila, S.P. Nielsen, E. Jakobson, J. Herrmann, V. Graveris, B. Vilimaite-Silobritiene, M. Suplinska, A. Stepanov, and M.Lüning, in: Long-lived radionuclides in the seabed of the Baltic Sea, HELCOM thematic assessment, Baltic Sea Environment Proceedings No. 110 (HELCOM, Finland, 2007)
[12] S. Bergström and B. Carlsson, River runoff to the Baltic Sea: 1950–1990, Ambio 23, 280–287 (1994),
[13] B. Skwarzec, Polonium, uranium and plutonium in the southern Baltic Sea, Ambio 26, 113–117 (1997),
[14] D. Butkus, B. Lukšienė, R. Druteikienė, and M. Lebedytė, in: Proceedings, Regional IRPA congress, Stockholm (SE), 12–13 June 1998, eds. J. Søgaard-Hansen and A. Damkjær (Risø National Laboratory, Roskilde, 1998) pp. 169-175
[15] R. Druteikienė and B. Lukšienė, Plutonium in the environment, Atmos. Phys. 19(1) 47–57 (1997)
[16] B. Lukšienė, R. Druteikienė, R. Gvozdaitė, and A. Gudelis, Comparative analysis of 239Pu, 137Cs, 210Pb and 40K spatial distributions in the top soil layer at the Baltic coast, J. Environ. Radioact. 87, 305–314 (2006),
[17] P. Bossew and G. Kirchner, Modelling the vertical distribution of radionuclides in soil. Part 1: the convection–dispersion equation revisited, J. Environ. Radioact. 73, 127–150 (2004),
[18] G.D. Arapis and M.G. Karandinos, Migration of 137Cs in the soil of sloping semi-natural ecosystems in northern Greece. J. Environ. Radioact. 77, 133–142 (2004),
[19] M.S. Al-Masri, Vertical distribution and inventories of 137Cs in the Syrian soils of the eastern Mediterranean region, J. Environ. Radioact. 86, 187–198 (2006),
[20] S. Almgren and M. Isaksson, Vertical migration studies of 137Cs from nuclear weapons fallout and the Chernobyl accident, J. Environ. Radioact. 91, 90–102 (2006),
[21] N. Tarasiuk, N. Špirkauskaitė, T. Petelski, and M. Chomka, Radiocesium load on the Baltic Sea beach, Environ. Chem. Phys. 22(3–4), 103–111 (2000)
[22] F.R. Livens and M.S. Baxter, Chemical associations of artificial radionuclides in Cumbrian soil, J. Environ. Radioact. 7, 75–86 (1988),
[23] J.M. Abril and E. Fraga, Some physical and chemical features of the variability of kD distribution coefficients of radionuclides, J. Environ. Radioact. 30(3), 253–270 (1996),
[24] M.H. Lee and C.W. Lee, Association of fallout-derived 137Cs, 90Sr and 239,240Pu with natural organic substances in soil, J. Environ. Radioact. 47, 253–262 (2000),
[25] Q. Chen, A. Aarkrog, S.P. Nielsen, H. Dahgaalrd, B. Lind, A.K. Kolstad, and Y. Yu, Procedures for Determination of 239,240Pu, 241Am, 237Np, 234,238U, 228,230,232Th, 99Tc and 210Pb-210Po in Environmental Materials, Risø-R-1263(EN) (Risø National Laboratory, Roskilde, 2001)
[26] Soil Quality – Determination of pH, ISO Standard 10390:2005,
[27] D. Copplestone, M.S. Johnson, and S.R. Jones, Behavior and transport of radionuclides in soil and vegetation of a sand dune ecosystem, J. Environ. Radioact. 55, 93–108 (2001),
[28] K. Bunzl, W. Kracke, W. Schimmack, and L. Zelles, Forms of fallout 137Cs and 239,240Pu in successive horizons of a forest soil, J. Environ. Radioact. 39, 55–68 (1998),
[29] I. Nikolova, K.J. Johanson, and S. Clegg, The accumulation of 137Cs in the biological compartment of forest soil, J. Environ. Radioact. 47, 319–326 (2000),