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We apply Clifford algebra to investigate 2D electron spin reflection off and transmission through a stepped discontinuity
of physical parameters in semiconducting quantum well. The discontinuity may be due to change of spin-orbit interaction
constants, effective masses, or electrostatic potential. In the paper the posed problem has been solved exactly. It is shown
that the reflected electronic beam has identical spin polarization as the incident one. However, the transmitted beam suffers
spin flipping and in general case consists of a mixture of up and down spin states. Optimal conditions for total reversion of
2D electron spin polarization are found. Special attention is paid to correct boundary conditions in the presence of spin-orbit
interaction. A simple formula that connects spin polarization of the transmitted beam and SO interaction constants is presented.
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1. Introduction

The Clifford (geometric) algebra is a noncommuta-
tive algebra which is especially suitable for description
of rotations in multidimensional spaces having posi-
tive, negative, or mixed signatures. Two of them, Cl3,0
and Cl1,3, are used to describe classical and relativis-
tic physics. At present there has appeared a number of
introductory books on Clifford algebra [1–3] as well as
specialized books on classical mechanics [4], electro-
dynamics [5, 6], relativity theory [7], cosmology [8],
computer vision and robotics [9] to mention a few only.
Also a number of books on Clifford calculus have been
published [10, 11].

Recently the first attempt to adapt the Clifford alge-
bra to semiconductor physics was made [12–18]. In
the papers [12–16], electron and hole spin precession
in bulk cubic semiconductors A3B5 and A2B6 was con-
sidered in terms of multivectors. It was shown that for
the description of spin-split conduction band and elec-
tron spin precession the most suitable is Cl3,0 Clifford
algebra. For more complicated valence bands, two alge-
bras – Cl4,0 and mixed signature Cl4,1 – were addressed.
The equivalence rules between the Hilbert space and
Clifford algebra formulations of quantum mechanics
were obtained. In papers [17, 18], spin reflection in 2D

and 3D semiconductors for electrons obliquely incident
onto an infinite potential barrier was analysed. It has
been shown that apart from ordinary electronic wave
an extraordinary one appears if electron is incident at
an angle to a flat potential barrier. The interference of
the incident beam with the reflected ordinary and ex-
traordinary beams that propagate at different angles to
barrier normal results in a spatial interference pattern
having two characteristic spatial beating periods.

Till now, spin flipping in semiconductors was con-
sidered under simplified boundary conditions. The in-
cident electron was assumed to be in spin-degenerate
bands while the spin-orbit (SO) interaction was in-
cluded in the barrier region only [19–21], or infinite
boundary conditions were used [16, 18]. In all cases
the spin-flipping occurs only for electrons obliquely
incident onto the barrier. This is difficult to control
experimentally, or a special sample configuration is
needed [22]. In this paper we shall show that one can
achieve spin flipping in a quantum well (QW) at vertical
incidence of beam onto barrier as well, if SO interaction
is included on both sides of the discontinuity and cor-
rect boundary condition are taken into account.

Recently an attempt to solve a nonrelativistic Schrö-
dinger equation in the presence of square quaternionic
potentials was undertaken by De Leo et al. [23–26].
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Fig. 1. Thick line shows the potential step of height V . In the lower
part of the figure, the horizontal lines show the incident wave of
unit amplitude 1+ = ψ+, reflected, and transmitted ordinary (++)
and extraordinary (+−) waves. In the upper part, thin solid and
dashed lines show electron dispersions for up and down spin states
described by Eq. (9), where characteristic wave vectors (incident
wave vector ki+, reflected ka+, ka−, and transmitted kb+, kb−) are
shown by dots. The kinetic energies Ea and Eb in the conduction

bands in regions a and b are indicated by vertical arrows.

These interesting papers demonstrate a different analyt-
ical approach to application of noncommutative quater-
nionic algebra to electron diffusion problem. The
quaternions, as known, constitute an even subalgebra
of Cl3,0. The present work shows that it is more con-
venient to address to full Cl3,0 algebra and to formulate
the problems in terms of scalars, vectors, bivectors, and
pseudoscalars [3] rather than to adjust the problem to a
Procrustes bed of quaternions. The quaternionic Hamil-
tonian used in papers [23–26] here, as it is accepted in
semiconductor physics, will be called spin-orbit Hamil-
tonian, or Rashba and Dresselhaus Hamiltonian if it is
necessary to indicate a specific SO interaction mecha-
nism.

2. Cl3,0 Hamiltonian and spin

We shall consider the QW that is grown on (100)
plane of a cubic semiconductor. The QW consists of
two regions a and b where physical parameters may
be different, Fig. 1. As shown by the dashed and
solid parabolic-like lines in the figure, the degener-
ate conduction band is assumed to be spin-split by ei-
ther Rashba or Dresselhaus SO interactions, or both
SO mechanisms acting simultaneously, the strength of

which is characterized by constants αR and αD. If the
QW is fabricated from the same material (homobarrier)
the SO interaction constants may be controlled by ex-
ternal voltage applied to a split-electrode deposited on
QW plane. If constituting materials of regions a and
b are different, we have the heterobarrier. In the latter
case the potential step V may appear between regions
a and b. Also, the SO interaction can be controlled by
interface charge trapped in walls of the QW.

In the Clifford algebra the time-dependent Schrödin-
ger equation for a spinor Ψ in the conduction band of
semiconductor has the following form:

h̄
∂Ψ

∂t
Iσ3 = H(Ψ) . (1)

The appearance of bivector Iσ3 = σ1σ2 = −σ2σ1

indicates that the quantization axis is parallel to vector
σ3. In a cubic crystal the bivector Iσ3 represents (001)
orientated crystal plane. The vector σ3 is perpendicular
to this plane. The remaining equivalent crystal planes
are represented by bivectors Iσ1 and Iσ2. The pres-
ence of pseudoscalar I = σ1σ2σ3 indicates the duality
of the elements. For example, σ3 and Iσ3 are mutually
dual elements which respectively represent unit vector
and oriented unit plane that is perpendicular to σ3. In
Eq. (1) the Hamiltonian function consists of kinetic, po-
tential barrier, and SO interaction energies,

H(Ψ) = − h̄2

2m∗∇
2Ψ+ V (x)Ψ +HSO(Ψ) . (2)

In this paper the potential V (x) is considered to be a
scalar rather than a quaternion. In Cl3,0 the nabla oper-
ator has the form ∇ = σ1

∂
∂x +σ2

∂
∂y +σ3

∂
∂z . The SO

interaction function is

HSO(Ψ) = (ε1σ1 + ε2σ2 + ε3σ3)Ψσ3 , (3)

where the scalar coefficients εi depend on a particular
SO interaction mechanism. Since the Clifford algebra
is noncommutative, the order of different multipliers in
the multivector is important.

For stationary states characterized by energy E the
spinor solution can be separated into coordinate and
time-dependent parts:

Ψ = ψ(x) e−Iσ3Et/h̄ . (4)

Insertion of Ψ into the Schrödinger equation (1) gives
stationary equation for spinor ψ(x),

− h̄2

2m∗∇
2ψ + V ψ + εψσ3 = Eψ , (5)
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where we have introduced the vector with projections
εi,

ε = ε1σ1 + ε2σ2 + ε3σ3 . (6)

In the Clifford algebra formulation, similarly as in
the standard quantum mechanics formulation, the spec-
trum of a quantum system is found from the eigen-
value equation. In the Clifford algebra the correspond-
ing equation reads:

H(ψ±) = E±ψ± , (7)

where E± and ψ± are the eigenenergies and eigen-
spinors, respectively, for up (+) and down (−) spin
states. Since the multipliers in the Clifford algebra
do not commute and the eigenspinor may appear to be
squeezed between elementary vectors, bivectors, etc.
(compare Eq. (3)), the Hamiltonian in (7) is written as
a function of the eigenspinor rather than a product of
operator and spinor as it is in the standard quantum me-
chanics. For (001) quantum well the coefficients in (6)
are

ε1 = kxαD + kyαR ,

ε2 =−kxαR − kyαD ,

ε3 =0 . (8)

In the following we shall limit ourselves to a normal
electron incidence onto a stepped discontinuity. Then
the components of electron wave vector are kx ≡ k and
ky = 0. In experiment this condition can be satisfied if
the QW in y direction is narrow enough. In the follow-
ing it is also assumed that V = 0 in the region a while
V is constant in the region b. The eigenenergies in re-
gions a and b that follow from the eigenvalue equation
and Hamiltonian then are

Ea± =
h̄2k2

2m∗
a

∓ αak ,

Eb± =
h̄2k2

2m∗
b

+ V ∓ αbk , (9)

where effective SO interaction constants were intro-
duced, αa =

√
α2

Da + α2
Ra and αb =

√
α2

Db + α2
Rb.

The plus and minus signs correspond to spin-split en-
ergy subbands as shown in Fig. 1. The respective eigen-
spinors that correspond to these eigenenergies are

ψa± =
∓1√
2αa

(αDa ± αaIσ2 + αRaIσ3) ,

ψb± =
∓1√
2αb

(αDb ± αbIσ2 + αRbIσ3) . (10)

They are normalized, ψ̃a+ψa+ = ψ̃a−ψa− = 1 and
ψ̃b+ψb+ = ψ̃b−ψb− = 1, where the tilde indicates
the reversion operation. The orthogonality is satisfied
if only the scalar part of the product is understood,
⟨ψ̃a+ψa−⟩ = ⟨ψ̃b+ψb−⟩ = 0. However, in general the
product of different eigenspinors gives the bivector, for
example, ψ̃a+ψa− = α−1

a (αDaIσ2 − αRaIσ1).
There exists the following replacement rule between

a spinor defined in the Hilbert space and spinor in a
vector space of Cl3,0, i. e. the Pauli column spinor
|ψ⟩ is placed in one-to-one correspondence with a
4-component quaternion of the Clifford algebra via re-
lation [3, 15]

|ψ⟩ =

[
a0 + ia3

−a2 + ia1

]
←→ ψ =

a0 + a1Iσ1 + a2Iσ2 + a3Iσ3 , (11)

where i =
√
−1, and all ais are real numbers. The

spinor ψ is isomorphic to quaternion. If the rule (11)
is applied to the eigenspinor (10) in the region a, one
finds the following Hilbert space ket-vector:

|ψa±⟩ =
1√
2

±ei arctan(αRa/αDa)

1

 . (12)

In general there are many eigenspinors in the Hllbert
space that satisfy a given eigenvalue equation. This is
also true for Clifford algebra and Eq. (7). One can con-
struct a more general eigenspinor of the Hamiltonian (5)
in a form of pure bivector, namely,

ψ′
± = − I(ε± εσ3)√

2ε(ε ± ε3)
, ψ̃′

±ψ
′
± = 1 , (13)

which is defined in coordinate independent way and
which also satisfies the eigenvalue equation (7) with
eigenenergies (9). Here ε = |ε| =

√
ε̃ε =

√
εε̃ is

the magnitude of the vector ε. The unit vector σ3 in-
dicates the direction of the quantization axis which, in
general, may be pointing in any arbitrary direction. As
mentioned earlier, the vector σ3 in a cubic semiconduc-
tor is along [001] axis. As we shall see, selection of a
concrete vector ε fixes the direction of the average elec-
tron spin in space with respect to crystallographic axes.
If coordinates from Eq. (8) are inserted into spinor (13)
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and effective SO constant α =
√
α2

R + α2
D is intro-

duced, the equation (13) becomes

ψ′
± =

1√
2α

(−αDIσ1 + αRIσ2 ∓ αIσ3) , (14)

which differs from the eigenspinors (10). Nonetheless
the eigenspinors (10) and ψ′

± give the same physically
measurable quantities. In particular, they yield the same
dispersion relations and average electron spin (17), al-
beit with opposite spin direction and interchanged spec-
trum branches. In Cl3,0 algebra the measured average
spin vector is calculated in the following way [3, 15]:

s = ψσ3ψ̃ . (15)

Since in the Clifford algebra the spinor ψ at the same
time represents a rotor, the physical interpretation of
Eq. (15) is very lucid: at first one aligns the spin along
the quantization axis, which is parallel to σ3, and then
with the help of spinor ψ rotates it to the true direction.
The concrete expression for rotor ψ follows from the
Schrödinger equation (5). If one inserts the coordinate
independent spinor (13) into expression (15), one gets
the following average spin:

s± = ψ′
±σ3ψ̃

′
± = ± ε√

ε · ε
= ±ε

ε
. (16)

Here the dot indicates the scalar product of vectors a and
b defined via geometric product as a ·b = (ab+ba)/2.
When a = b then a · b = ab = ãb = ab̃. The expres-
sion (16) shows that the vector ε in the Hamiltonian (5)
defines an average and experimentally measurable elec-
tron spin1. In the considered case of normal incidence
we have ε1 = kxαD, ε2 = −kxαR, ε3 = 0. Then
Eq. (16) reduces to

s± = ±αDσ1 − αRσ2√
α2

R + α2
D

, (17)

which shows that in the presence of Rashba and Dres-
selhaus interactions the spin vector lies in the quantum
well plane. The spin direction is determined by rel-
ative strength of SO interaction constants. The same
expression is found if instead of (14), which is a pure
bivector, one inserts one of the spinors (10). Only the
signs before the spin vector will be different in the fi-
nal result. One also can verify that the spin-split energy
branches are mutually interchanged in the states (10)
and (14). Physically this has no consequences, since
1 To have dimensional quantities the spin should be multiplied

byh̄/2.

which of the energy branches will represent spin-up di-
rection (equivalently plus sign) is a matter of conven-
tion. In the following we shall use eigenspinors given
by expression (10).

3. Kramers (time reversal) operator and unitarity
in Cl3,0

The Kramers operator frequently appears when one
is dealing with degenerate energy bands and SO interac-
tion. In Hilbert space formulation of quantum mechan-
ics the Kramers operator for 1/2 spin is defined as [27]

K̂ = −iσ̂yK0 , (18)

where K0 is the complex conjugation operation. The
Kramers operator K̂ commutes with the degenerate part
of the Hamiltonian. Under action of K̂ the energies re-
main doubly degenerate (invariant of the system). In the
Clifford algebra the Kramers operator goes to Kramers
function

K̂|ψ⟩ ←→ K(ψ) = −ψIσ2 . (19)

The appearance of vector σ2 here indicates the gauge
invariance, i. e. the requirement that the physics is unaf-
fected by alignment of σ1 and σ2 vectors in Iσ3 plane.
As follows from the rule (11), the spin up and down
states referenced with respect to quantization axis cor-
respond to elementary scalar and bivector,[

1
0

]
←→ 1,

[
0
1

]
←→ −Iσ2 . (20)

Application of the Kramers function to these states
yields

K(1) = −Iσ2 , K(−Iσ2) = −1 , (21)

i. e. up to the sign the Kramers operator interchanges
up and down spin states. Thus, the application of the
Kramers operator to one of the eigenstates allows one to
construct the second linearly independent state, which
customarily is called the Kramers state. For example,
one finds that

K(ψa+) =
1√
2αa

(−αa+αRaIσ1+αDaIσ2) , (22)

which is orthogonal to the initial state

ψ̃a+K(ψa+) = 0 . (23)

The spinor (22) is different from the partner spinor de-
fined by (10) and used in the present paper. It should
be also noted that now the orthogonality condition (23)



A. Dargys / Lithuanian J. Phys. 51, 53–63 (2011) 57

is exact, i. e. the bivector part does not appear in the
product of the eigenspinors.

A few words about unitary transformation in Cl3,0.
In the Hilbert space the unitary operator transforms
spinor to another spinor. So, it can be employed to
describe the evolution of the quantum system in time.
Similar operator can be defined in the Clifford alge-
bra [3], although its role here is less important since
ψ, being a rotor and spinor simultaneously, controls the
evolution of the spin vector. The multivector M is said
to be unitary if it satisfies |M | =

√
MM̃ =

√
M̃M =

1. Thus, in the Clifford algebra all normalized spinors
are unitary, ψψ̃ = 1. In Cl3,0 they form SU(2) rota-
tion group under multiplication. In particular, multipli-
cation of the spinor by phase factor is also the unitary
transformation,

ψ → ψeϕIσ3 = ψ(cosϕ+ Iσ3 sinϕ) . (24)

When ϕ = π/2 the phase transformation is equivalent
to multiplication by Iσ3. For example, if ψ′

± is right
multiplied by phase factor±Iσ3 and then the Kramers’
conjugation is applied, one returns to initial ψ± given
by Eq. (10).

The unitary transformation can be employed to bring
Rashba Hamiltonian to Dresselhaus Hamiltonian and
vice versa. Two-dimensional Rashba and Dresselhaus
Hamiltonian functions can be obtained from Eqs. (3)
and (8). They are

HR(ψ) = (kyαRσ1 − kxαRσ2)ψσ3 , (25)

HD(ψ) = (kxαDσ1 − kyαDσ2)ψσ3 . (26)

The unitary transformation that connects them has the
following form:

U(ψ) =
1√
2
(σ1 + σ2)ψσ3 . (27)

The mutual transformation between Rashba and Dres-
selhaus Hamiltonians can be checked by calculating the
identity

HD(U(ψ)) = U(HR(ψ))
∣∣
αR→−αD

(28)

for an arbitrary spinor in Cl3,0. The identity (28) is
equivalent to the Hilbert space transformation
ĤDÛ |ψ⟩ = ÛĤR|ψ⟩. Also, with the help of (27) and
(28) it can be demonstrated that the transformation (27)
is no more than coordinate transformation: σ1 → σ2,
σ2 → σ1, σ3 → −σ3. However, when both the
Rashba and Dresselhaus SO mechanisms are operative,
we are obliged to select a particular coordinate system
and treat both of them on equal footing. Finally, one

should notice that the Kramers conjugation is also the
unitary operation, since

K̃(ψ)K(ψ) = 1 . (29)

4. Velocity function in Cl3,0

As we shall see in the future the velocity function is
needed to establish correct boundary conditions in the
interface between regions a and b. In the Hilbert space
formulation the velocity operator is defined through the
commutator in coordinate representation, or derivative
in momentum representation:

v̂ = i[Ĥ, x] =
∂Ĥ

∂p
. (30)

The conversion rules between Hilbert and Clifford al-
gebra pictures [15] allow one to construct the following
functions for x and y velocity components:

vx(ψ) =
h̄kx
m∗ ψ +

αD

h̄
σ1ψσ3 −

αR

h̄
σ2ψσ3 ,

vy(ψ) =
h̄ky
m∗ψ +

αR

h̄
σ1ψσ3 −

αD

h̄
σ2ψσ3 . (31)

In coordinate representation the coordinates kx and ky
must be replaced by −i∂/∂x and −i∂/∂y. The above
written velocity components do not commute. Indeed,
one finds that the velocity commutator is

vy(vx(ψ))− vx(vy(ψ)) =
2

h̄2
(
α2

R − α2
D
)
Iσ3ψ . (32)

When αR = αD the commutator vanishes. This spe-
cial case, as noted in Ref. [28], is tolerant against spin-
dependent scattering processes.

An average, i. e. physically measurable velocity, for
example its x component ⟨vx⟩, can be found from

⟨vx⟩ = ψ̃vx(ψ) . (33)

Elementary calculations give the following x compo-
nents for ψa± and ψb± spinors

⟨va±⟩=
h̄ka±
m∗

a

± αa

h̄
,

⟨vb±⟩ =
h̄kb±
m∗

b

± αb

h̄
. (34)

The wave vectors ka± and kb± are indicated in the
Fig. 1. They are identified with spin-split energy sub-
bands that are distinguished by opposite spin directions.
The formulas (34) contain the standard velocity term
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and plus/minus correction due to SO interaction. How-
ever, these formulas are awkward in analytical calcu-
lations because if they are applied the final results for
reflection and transmission amplitudes are found to be
very complicated and do not allow further simplifica-
tion. Fortunately, the average velocity can be rewritten
in a different form if instead of ka± and kb± the spin-
degenerate band wave vectors, ka =

√
2Eam∗

a and
kb =

√
2Ebm

∗
b =

√
2(Ea − V )m∗

b , defined at ener-
gies Ea and Eb as shown in Fig 1, are used. Then one
finds that

⟨va±⟩= ⟨va⟩ = −
√

(h̄ka/m∗
a)

2 + (αa/h̄)2 ,

⟨vb±⟩ = ⟨vb⟩ = +
√

(h̄kb/m
∗
b)

2 + (αb/h̄)2 , (35)

where the signs before the square roots correspond to
reflected and transmitted wave propagation direction.
These equations explicitly demonstrate the important
property that electron velocities in spin-split subbands
(+) and (−) are equal if electron energy is fixed. This
is not so evident from Eq. (34). Thus, the Eq. (35)
implies that in all possible superposition states of ψ+

and ψ− the velocity will be the same and equal to (35)
when electron energy is fixed, say, at the Fermi energy.
By the same reason, in the following it is convenient
to rewrite the spin-split wave vectors ka± and kb± in
terms of degenerate band wave vectors, ka and kb, and
SO coupling constants:

ka± =±m∗
aαa/h̄

2 −
√
k2a + (m∗

aαa/h̄
2)2 , (36)

kb± =±m∗
bαb/h̄

2 −
√
k2b + (m∗

bαb/h̄
2)2 , (37)

ki+ =+m∗
aαa/h̄

2 +

√
k2a + (m∗

aαa/h̄
2)2 , (38)

where (+) and (−) signs indicate respective eigen-
states. The last line represents the wave vector for inci-
dent electronic beam in the region a.

5. Boundary conditions

When electron spin is neglected, the properties of
boundary between two semiconductors is described by
Ben-Daniel and Duke boundary condition which takes
into account mass difference on both sides of the inter-
face [29],

|ψa⟩
∣∣∣
x=0+

= |ψb⟩
∣∣∣
x=0−

,

1

ma

∂|ψa⟩
∂x

∣∣∣
x=0+

=
1

mb

∂|ψb⟩
∂x

∣∣∣
x=0−

. (39)

In the presence of SO interaction the boundary con-
ditions should be modified. When electron spin is in-
cluded, the condition for continuity of spinor, now for
Clifford spinor Ψ, remains valid,

Ψa+

∣∣∣
x=0+

= Ψb+

∣∣∣
x=0−

, (40)

while the condition for derivative should be altered. To
include the SO interaction in the derivative one has to
start from an eight-band k · p model [30]. This line
of reasoning was pursued by Pfeffer and Zawadzki [31,
32]. However the resulting formulas that follow from
the multiple-band approach have been found too com-
plex to be applicable for further analytical treatment of
the problem. As indicated in references [33–35] the
boundary conditions can be obtained in relatively sim-
ple way, by integrating the effective-mass Schrödinger
equation across the interface x = 0. This results in the
continuity condition for velocity

va(Ψa+)
∣∣∣
x=0+

= vb(Ψb+)
∣∣∣
x=0−

, (41)

where the velocity function is given by Eq. (31). The
plus sign in the total spinor indicates that in (41) the in-
cident wave is inψ+ state. Actually, one should demand
the continuity of probability flux across the interface to
be satisfied. Since the flux is the product of the proba-
bility density and velocity, while the spinor (and simul-
taneously the probability) is continuous at x = 0, in-
stead of continuity of the derivative in (39) it is enough
to require the continuity of the velocity. Thus, in the
presence of SO interaction the multivector must satisfy
conditions (40) and (41). In the following these con-
ditions will be used to calculate the amplitudes of re-
flected and transmitted waves.

6. Total multivectors in regions a and b

As known, superposition of Hilbert space spinors
multiplied by complex numbers also belongs to the
same Hilbert space. Similar superposition can be con-
structed in the Clifford algebra. Since the latter is non-
commutative, the superposition can be written in differ-
ent forms, for example,

Ψ = ψ+a+ ψ−b ,

Ψ= aψ+ + b ψ− . (42)

So, the question arises which of the forms is correct and
what is structure of the amplitudes a and b. The simplest
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way to establish this is to address to conversion rule (11)
between the Hilbert and Clifford algebra elements. In
the case of the Hilbert space the coefficients a and b are
complex numbers. Then, referring to the rule (11) one
can write

a= a0 + a3Iσ3 ,

b= b0 + b3Iσ3 , (43)

where a0, a3, etc. are real. It can be verified that the
square of the module of a general superposition Ψ then
gives the correct form if the coefficients in the superpo-
sition are situated on the right-hand side of the spinors,
i. e., we should have

Ψ̃Ψ = (ψ+a+ψ−b)̃ (ψ+a+ψ−b) = a20+a
2
3+b

2
0+b

2
3 ,

(44)
where Ψ̃ = (ãψ̃+ + b̃ψ̃−). Since the composite spinor
should be normalized, the coefficients should satisfy
condition a20 + a23 + b20 + b23 = 1. As mentioned,
in Cl3,0 the spinor can be interpreted as a rotor while
the Shrödinger equation may be treated as a dynamical
equation for the rotor that controls the motion of classi-
cal (rather than quantum mechanical) spin [3, 36]. The
interpretation of a in the superposition state can be seen
from transformation

aσ3ã = (a0+a3Iσ3)σ3(a0−a3Iσ3) = (a20+a
2
3)σ3 .

(45)
Thus the coefficients a and b change the length of vec-
tors that are parallel to σ3. It can be shown that the
vectors that are parallel to σ1 and σ2, in addition, are
rotated around σ3 axis. From all what has been said we
conclude that in a superposition state the multiplication
of the ket vector |ψ⟩ by complex amplitude A can be
defined by rules

A = a0 + ia3 ←→ A = a0 + a3Iσ3 ,

A|ψ⟩ ←→ ψA , (46)

while in direction x a running wave of amplitude A can
be represented by multivectorψ±AeIσ3k·x. Now we are
prepared to construct the superposition of multivectors
in regions a and b of the quantum well.

In the region x < 0 we have an incident wave in one
of the eigenenergy subbands. For definiteness we shall
assume that the incident wave of unit amplitude is in
the eigenstate ψ+. After reflection from the disconti-
nuity there appear two reflected waves having the same
energy, the ordinary characterized by ψ+ and the ex-

traordinary wave characterized by ψ−. Thus, the total
spinor in the region a is

Ψa+ =ψa+eIσ3ka+·x + ψa+R++eIσ3ka+·x

+ ψa−R+−eIσ3ka−·x . (47)

R++ and R+− are the reflection amplitudes, where the
first and second subscripts indicate the incident and re-
flected wave eigenstate respectively.

In the region b there are two transmitted waves

Ψb+ = ψb+T++eIσ3kb+·x + ψb−T+−eIσ3kb−·x , (48)

where T++ and T+− are the transmission amplitudes.
At x = 0 the multivectors (47) and (48) in accordance
with the boundary condition should be mutually equal.

If the incident wave is in ψ− state, then in regions a
and b the total spinors become

Ψa− =ψa−eIσ3ka−·x + ψa−R−−eIσ3ka−·x

+ ψa+R−+eIσ3ka+·x , (49)

Ψb− =ψb−T−−eIσ3kb−·x + ψb+T−+eIσ3kb+·x . (50)

R−− and R−+ are reflection, and T−− and T−+ are
transmission amplitudes.

6.1. Amplitudes and their properties

After insertion of Ψa+ and Ψb+ into boundary con-
ditions (40) and (41), and noting that in Cl3,0 the mo-
mentum operator is replaced by

h̄k̂x|ψ⟩ = −ih̄
∂|ψ⟩
∂x
←→ −h̄∂ψ

∂x
Iσ3 , (51)

one obtains two algebraic multivector equations for un-
known amplitudes. The simplest of these is the spinor
continuity equation:

ψa+ + ψa+R++ + ψa−R+− = ψb+T++ + ψb−T+− .
(52)

The continuity of the velocity is much more complex.
For example, its right-hand side for the transmitted
wave looks like

vb(Ψb+)
∣∣∣
x=0

=
h̄

m∗
b

(
kb+ψb+T++ + kb−ψb−T+−

)

− 1

h̄
(αDbσ1 + αRbσ2)(ψb+T++ + ψb−T+−)σ3 . (53)

Thus we have two multivector equations and four un-
known amplitudes. One of the ways to solve such sys-
tem is to resort to non-commutative Gröbner bases in
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the Clifford algebras [37, 38]. However, we shall solve
the system in a different way. The property that the mul-
tivector equation is equivalent to a system of 2n real
algebraic equations, where n is an order of the Clif-
ford algebra, will be used. In our case n = 3. Thus,
the boundary conditions yield the following system of
coupled real linear equations for unknown amplitudes,
where the coefficients at scalar and bivector parts of the
amplitudes are supplied with superscripts (for example,
R++ = R

′
++ +R

′′
++Iσ3):

R
′′
++ +R

′′
+− − T

′′
++ − T

′′
+− =0 , (54)

1 +R
′
++ +R

′
+− − T

′
++ − T

′
+− =0 , (55)

m∗
bκa(R

′′
++ +R

′′
+−)

+m∗
aκb(T

′′
++ + T

′′
+−) = 0 , (56)

m∗
bκa(−1 +R

′
++ +R

′
+−)

+m∗
aκb(T

′
++ + T

′
+−) = 0 , (57)

αb

[
αDa(1 +R

′
++ −R

′
+−)

+ αRa(R
′′
+− −R

′′
++)

]
+ αa

[
αDb(T

′
+− − T

′
++)

+ αRb(T
′′
++ − T

′′
+−)

]
=0 , (58)

αb

[
αRa(1 +R

′
++ −R

′
+−)

+ αDa(R
′′
++ −R

′′
+−)

]
+ αa

[
αRb(T

′
+− − T

′
++)

+ αDb(T
′′
+− − T

′′
++)

]
=0 , (59)

m∗
bαbκa

[
αDa(1−R

′
++ +R

′
+−)

+ αRa(R
′′
++ −R

′′
+−)

]
+m∗

aαaκb
[
αDb(−T

′
++ + T

′
+−)

+ αRb(T
′′
++ − T

′′
+−)

]
=0 , (60)

m∗
bαbκa

[
αRa(1−R

′
++ +R

′
+−)

+ αDa(−R
′′
++ +R

′′
+−)

]
+m∗

aαaκb
[
αRb(−T

′
++ + T

′
+−)

+ αDb(−T
′′
++ + T

′′
+−)

]
=0 , (61)

where effective wave vectors were introduced,

κa =

√
k2a + (m∗

aαa/h̄
2)2 ,

κb =
√
k2b + (m∗

bαb/h̄
2)2 . (62)

In obtaining the above system we have used the formu-
las (36)–(38) that connect the wave vectors in degen-
erate and spin-split subbands. If instead of κa and κb
one keeps nondegenerate wave vectors ka+, ka−, etc.
shown by points in Fig. 1, the solution of the system
(54)–(61), which can be found using a computer algebra
package, appears very complicated and does not render
further simplification. In addition, the interpretation of
the solution is difficult.

In terms of effective wave vectors the system (54)–
(61) gives the following very simple solution for reflec-
tion amplitudes of ordinary and extraordinary waves:

R++ =
m∗

bκa −m∗
aκb

m∗
bκa +m∗

aκb
, R+− = 0 . (63)

One sees that they have exactly the same form as reflec-
tion coefficient for zero-spin particle found in all text-
books on quantum mechanics. It should be noted that
R++ is a scalar, i. e. R++ = R

′
++. Since R+− =

R
′
+− + R

′′
+−Iσ3 = 0, we conclude that the reflected

wave has the same spin direction as the incident wave,
however, the wavelength of the reflected wave is differ-
ent as can be seen from ki+ and ka+ in Fig. 1.

The solution for a sum of transmitted amplitudes is
real and resembles the textbook formula as well,

T++ + T+− =
2m∗

bκa
m∗

bκa +m∗
aκb

. (64)

However, the separate components in (64), apart from
the scalar part, also contain the bivector part Iσ3:

T++ = m∗
bκa

[
αaαb + αRaαRb + αDaαDb + Iσ3

×(αRaαDb−αRbαDa)
]
/
[
αaαb(m

∗
bκa+m

∗
aκb)

]
,

(65)

T+− = m∗
bκa

[
αaαb − αRaαRb − αDaαDb − Iσ3



A. Dargys / Lithuanian J. Phys. 51, 53–63 (2011) 61

×(αRaαDb − αRbαDa)
]
/
[
αaαb(m

∗
bκa +m∗

aκb)
]
.
(66)

It can be verified that the amplitudes (63)–(66) sat-
isfy the probability continuity equation:

(1 +R++)
2 = |T++|2 + |T+−|2 . (67)

They also satisfy the current continuity equation

|⟨va⟩|
(
1−R2

++

)
= |⟨vb⟩|

(
|T++|2 + |T+−|2

)
, (68)

where on the left-(right-)hand side of (68) stands the
total flux in region a (b). The property (35) was used in
obtaining the latter. From the continuity equations (67)
and (68) the following approximate relation between the
reflection coefficient and electron velocities in regions
a and b can be obtained:∣∣∣∣ ⟨vb⟩⟨va⟩

∣∣∣∣ = 1−R2
++

(1 +R++)2
≈ 1− |R++| , (69)

which may be useful in device construction.
Figure 2 shows the dependence of moduli of ampli-

tudes of ordinary T++ and extraordinary T+− transmit-
ted waves as a function of Rashba coefficients in the
regions a and b. The plots demonstrate that spin flip-
ping is the largest when Rashba constants αRa and αRb
have opposite signs. The probability of flipping is small
or even vanishes at large Rashba constants having the
same sign. Also, the plots demonstrate that the transi-
tion region from up to down spin occurs in the interval
whose magnitude is of the order of Dresselhaus con-
stant.

For a quantitative assessment of spin-flipping prop-
erties it is convenient to introduce experimentally mea-
surable polarization parameter. Since the average ve-
locities in spin-split subbands are equal (Eqs. (35)),
the ratio of spin currents can be expressed through the
transmission amplitudes. Therefore, the resulting spin
current polarization magnitude can be defined by

P =
|T++|2 − |T+−|2

|T++|2 + |T+−|2
. (70)

For the amplitudes (65) and (66) the polarization sim-
plifies to a very elegant formula

P =
αRaαRb + αDaαDb√

(α2
Ra + α2

Da)(α
2
Rb + α2

Db)
, (71)

which depends on SO interaction constants of semicon-
ductor only. We see that the outgoing beam will be
depolarized totally when the product of SO constants
satisfies the condition αRaαRb + αDaαDb = 0. On the

other hand, the transmitted beam will be totally polar-
ized, P = +1 or P = −1, when one of the SO mech-
anisms vanishes, i. e. when either αDa = αDb = 0 or
αRa = αRb = 0.

7. Summary and conclusions

We have formulated and solved general problem of
spin flipping in terms of Clifford algebra Cl3,0 when a
two-dimensional electron is diffused by a stepped dis-
continuity in a quantum well. The discontinuity may
include hetero- or homobarrier. A general boundary
condition is presented which apart from mass difference
also takes into account the difference in SO interaction
constants on both sides of the discontinuity. It is shown
that spin polarization of the transmitted beam can be

(a)

(b)
Fig. 2. Moduli of amplitudes of (a) ordinary and (b) extraor-
dinary transmitted waves in Rashba coefficient plane marked in
atomic units (a. u.). The incident wave is in state ψa+ and has
a well defined spin. The Rashba constants are varied in the
range ±1.44·10−11 eV m = ±0.01 a. u. The Dresselhaus con-
stants have the following constant values: αDa = 0.00139 a. u. =

0.2·10−11 eV m, αDb = αDa/2.
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controlled by varying the SO interaction parameters. A
general formula for polarization of the transmitted beam
is presented. Depending on sign and values of the SO
constants the transmitted electronic beam may be depo-
larized or its polarization may be inverted by a stepped
discontinuity. Also the continuity equations that should
be satisfied by the amplitudes of ordinary and extraor-
dinary waves as well as electron velocities on both sides
of discontinuity are presented. They may be useful in
description of spin polarization in spintronic devices.
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DVIMAČIO ELEKTRONO SUKINIO VALDYMAS KVANTINIAME ŠULINYJE
NAUDOJANT STAIGŲ FIZIKINIŲ PARAMETRŲ PASIKEITIMĄ

A. Dargys

Fizinių ir technologijos mokslų centro Puslaidininkių fizikos institutas, Vilnius, Lietuva

Santrauka
Suformuluotas ir išnagrinėtas elektrono sukinio atspindžio ir

pernašos uždavinys, kuriame atsižvelgta į staigų fizikinių parametrų
pasikeitimą, pavyzdžiui, sukeliamą sukinio ir orbitos sąveikos ne-
tolygumo, efektinių masių skirtumo arba potencinio laiptelio bu-
vimo kvantiniame šulinyje. Uždavinys išspręstas pasitelkus Clif-
fordo algebros, dar vadinamos geometrine algebra, matematinį apa-
ratą. Tiksliai išnagrinėtas atvejis, kai elektronas krinta statmenai
netolygumo laipteliui. Parodyta, kad, nepaisant laiptelio savybių,
atsispindėjusio elektroninio spindulio poliarizacija visada sutampa
su krintančio spindulio poliarizacija. Tuo tarpu praėjusio pro ne-

tolygumą elektrono poliarizacija gali pasikeisti į priešingą. Nusta-
tyta, kad bendruoju atveju praėjęs elektroninis spindulys sudarytas
iš ordinarinės ir ekstraordinarinės bangų. Apibūdintos optimãlios
poliarizacijos apvertimo bei spindulio depoliarizacijos sąlygos, ku-
rias turi atitikti kvantinio šulinio medžiaga abiejose parametrų trū-
kio pusėse. Gauta labai paprasta formulė, kurioje yra tik sukinio ir
orbitos sąveikos konstantos ir kuri leidžia nustatyti praėjusio elek-
troninio spindulio poliarizaciją. Taip pat gautos elektrono spinoro
amplitudės bei jo greičio nenutrūkstamumo lygtys, kurios gali pra-
versti tuo atveju, kai elektrono sukinio judėjimas nagrinėjamas kla-
siškai.
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