[PDF]    http://dx.doi.org/10.3952/lithjphys.51204

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 51, 91–105 (2011)

B. Peters a, A. Džiugys b, and R. Navakas b
a Faculté des Sciences, de la Technologie et de la Communication, Université du Luxembourg, Campus Kirchberg, 6, rue Coudenhove-Kalergi, L-1359 Luxembourg
E-mail: bernhard.peters@uni.lu
b Laboratory of Combustion Processes, Lithuanian Energy Institute, Breslaujos 3, LT-44403 Kaunas, Lithuania
E-mail: dziugys@mail.lei.lt

Received 15 April 2011; revised 26 May 2011; accepted 21 June 2011

We introduce the discrete particle method (DPM) that derives from the discrete element method (DEM). This is an advanced numerical simulation tool that takes into account both motion and chemical conversion of granular material, such as coal or biomass, in furnaces in conjunction with computational fluid dynamics (CFD). However, predictions of solely motion or conversion in a decoupled mode are also applicable. The DPM uses object oriented computational techniques that support objects representing three-dimensional particles of various shapes, size, and physical properties of particle material. This makes DPM a highly versatile tool in dealing with a variety of problems related to different industrial applications of granular matter. A review of literature concerning different approaches to mass and heat transfer in packed beds is presented.
Keywords: discrete particle method (DPM), numerical modelling, combustion, moving bed, forward acting grate
PACS: 88.20.jj, 47.70.Pq, 07.05.Tp, 45.10.-b, 46.15.-x, 45.70.Mg

B. Peters a, A. Džiugys b, R. Navakas b
a Liuksemburgo universitetas, Liuksemburgas
b Lietuvos energetikos institutas, Kaunas, Lietuva

Aprašytas diskrečiųjų dalelių metodas (DPM), pagrįstas diskrečiųjų elementų metodu. Tai yra pažangus skaitinio modeliavimo įrankis, leidžiantis atsižvelgti į granuliuotos terpės, pvz., anglių ar biomasės, judėjimą ir cheminius virsmus krosnyse, apimantis ir skaitinę fluidų dinamiką. Taip pat galimas atskirų procesų – mechaninio judėjimo arba cheminių virsmų – modeliavimas. Diskrečiųjų dalelių metode pritaikomi objektinio programavimo principai, vaizduojant įvairių formų, dydžių ir medžiagos savybių trimates daleles. Tai leidžia modelį plačiai taikyti įvairiose pramonės srityse, susijusiose su granuliuotų medžiagų panaudojimu. Pateikta literatūros, susijusios su masės ir šilumos virsmų granuliuotose terpėse modeliavimu, apžvalga.

References / Nuorodos

[1] E. Smirnov, A. Muzykantov, V. Kuzmin, A. Kronberg, and I. Zolotarskii, Radial heat transfer in packed beds of spheres, cylinders and Rashig rings: Verification of model with a linear variation of λer in the vicinity of the wall, Chem. Eng. J. 91, 243–248 (2003),
[2] E.I. Smirnov, V.A. Kuzmin, and I.A. Zolotarskii, Radial thermal conductivity in cylindrical beds packed by shaped particles, Chem. Eng. Res. Des. 82(A2), 293–296 (2004),
[3] I. Figueroa, W.L. Vargas, and J.J. McCarthy, Mixing and heat conduction in rotating tumblers, Chem. Eng. Sci. 65, 1045–1054 (2010),
[4] O. Laguerre, S.B. Amara, G. Alvarez, and D. Flick, Transient heat transfer by free convection in a packed bed of spheres: Comparison between two modelling approaches and experimental results, Appl. Therm. Eng. 28, 14 –24 (2008),
[5] O. Laguerre, S.B. Amara, and D. Flick, Heat transfer between wall and packed bed crossed by low velocity airflow, Appl. Therm. Eng. 26, 1951–1960 (2006),
[6] D.C. Swailes and I. Potts, Transient heat transport in gas flow through granular porous media, Transp. Porous Media 65, 133–157 (2006),
[7] G. Venugopal, C. Balaji, and S. Venkateshan, Experimental study of mixed convection heat transfer in a vertical duct filled with metallic porous structures, Int. J. Therm. Sci. 49, 340–348 (2010),
[8] C.L. Tien, Thermal radiation in packed and fluidized beds, Trans. ASME J. Heat Transfer 110, 1230–1242 (1988),
[9] S. Manickavasagam and M.P. Menguc, Effective optical properties of pulverized coal particles determined from FT-IR spectrometer experiments, Energ. Fuel. 7, 860–869 (1993),
[10] S.C. Mishra and M. Prasad, Radiative heat transfer in participating media – A review, Sādhanā 23(2), 213– 232 (1998)
[11] M. Kaviany and B.P. Singh, Radiative heat transfer in packed beds, in: Heat & Mass Transfer in Porous Media, eds. M. Quintard and M. Todorovic (Elsevier Pub. Corp., Amsterdam, 1992) pp. 191–202,
[12] J. Thoméo and J.R. Grace, Heat transfer in packed beds: experimental evaluation of one-phase water flow, Braz. J. Chem. Eng. 21(1), 13–22 (2004),
[13] M.A. Fanaei and B.M. Vaziri, Modeling of temperature gradients in packed-bed solid-state bioreactors, Chem. Eng. Process. 48, 446–451 (2009),
[14] M.F.P. Moreira, M. do Carmo Ferreira, and J.T. Freire, Evaluation of pseudohomogeneous models for heat transfer in packed beds with gas flow and gas–liquid cocurrent downflow and upflow, Chem. Eng. Sci. 61, 2056–2068 (2006),
[15] P. Zehner, Experimentelle und theoretische Bestimmung der effektiven Wärmeleitfähigkeit durchströmter Kugelschüttungen bei mäßigen und hohen Temperaturen, VDI-Forschungsheft 558, 35 (1973) [in German]
[16] F.W. Hennecke and E.U. Schlünder, Heat transfer in heated or cooled tuba with packings of spheres, cylinders and Raschig rings, Chem. Ing. Tech. 45(5), 277–284 (1973),
[17] P. Zehner and E.U. Schlünder, Effective thermal conductivity of spherical packings perfused at moderate and high temperatures, Chem. Ing. Tech. 45(5), 272–276 (1973),
[18] J.J. Lerou and G.F. Froment, Estimation of heat transfer parameters in packed beds from radial temperature profiles, Chem. Eng. J. (Lausanne) 15(3), 233–237 (1978),
[19] R. Bauer, Effective radial thermal conductivity of gas-permeated packed beds containing particles of different shape and size distribution, VDI Forschungsh. 582, 39 (1977)
[20] A.G. Dixon and D.L. Cresswell, Theoretical prediction of effective heat transport parameters in packed beds, AIChE J. 25(4), 663–676 (1979),
[21] H. Hofmann, Fortschritte bei der Modellierung von Festbettreaktoren, Chem. Ing. Tech. 45(5), 257–265 (1979),
[22] T. Wellauer, D.L. Cresswell, and E.L. Newson, Heat transfer in packed bed reactor tubes suitable for selective oxidation, in: Chemical Reaction Engineering–Boston, ACS Symp. Ser. 196 (American Chemical Society, 1982) pp. 527–543,
[23] K.R. Westerterp, W.P.M. van Swaaij, and A.A.C.M. Beenackers, Chemical Reactor Design and Operation, 2nd ed. (Wiley, Chichester, 1987),
[24] E. Tsotsas and H. Martin, Thermal conductivity of packed beds: A review, Chem. Eng. Process. 22, 19–37 (1987),
[25] A.F. Regin, S. Solanki, and J. Saini, An analysis of a packed bed latent heat thermal energy storage system using PCM capsules: Numerical investigation, Renew. Energ. 34, 1765–1773 (2009),
[26] S.M.A.G. Ulson de Souza and S. Whitaker, Mass transfer in porous media with heterogeneous chemical reaction, Braz. J. Chem. Eng. 20(2) (2003),
[27] S. Whitaker, Transport Processes with Heterogeneous Reaction, in: Concepts and Design of Chemical Reactors, Chemical Engineering: Concepts and Reviews Vol. 3, eds. S. Whitaker and A.E. Cassano (Gordon and Breach, New York, 1986),
[28] S. Whitaker, Volume Averaging of Transport Equations, in: Fluid Transport in Porous Media, Advances in Fluid Mechanics Vol. 13, ed. J.P. Du Plessis (Computational Mechanics Publications, Southampton, UK, 1997),
[29] S. Whitaker, The Method of Volume Averaging, Theory and Application of Transport in Porous Media Vol. 13 (Kluwer Academic, London, 1999),
[30] M. Quintard and S. Whitaker, Transport in ordered and disordered porous media I: The cellular average and the use of weighting functions, Transport Porous Media 14, 163–177 (1994),
[31] M. Quintard and S. Whitaker, Transport in ordered and disordered porous media II: Generalized volume averaging, Transport Porous Media 14, 179–206 (1994),
[32] M. Quintard and S. Whitaker, Transport in ordered and disordered porous media III: Closure and comparison between theory and experiment, Transport Porous Media 15, 31–49 (1994),
[33] M. Quintard and S. Whitaker, Transport in ordered and disordered porous media IV: Computer generated porous media, Transport Porous Media, 15, 51–70 (1994),
[34] M. Quintard and S. Whitaker, Transport in ordered and disordered porous media V: Geometrical results for two-dimensional systems, Transport Porous Media 15, 183–196 (1994),
[35] A.L. Negrini, A. Fuelber, J. Freire, and J. Thoméo, Fluid dynamics of air in a packed bed: velocity profiles and the continuum model assumption, Braz. J. Chem. Eng. 16(4) (1999),
[36] R.W. Fahien and I.M. Stankovic, An equation for the velocity profile in packed columns, Chem. Eng. Sci. 34, 1350 (1979),
[37] C.E. Schwartz and J.M. Smith, Flow distribution in packed beds, Ind. Eng. Chem. 45(6), 1209 (1953),
[38] D. Vortmeyer and J. Schuster, Evaluation of steady flow profiles in rectangular and circular packed beds by a variational method, Chem. Eng. Sci. 38(10), 1691 (1983),
[39] G.E. Mueller, Prediction of radial porosity distribution in randomly packed fixed beds of uniformly sized spheres in cylindrical containers, Chem. Eng. Sci. 46(2), 706 (1991),
[40] R.F. Benenati and C.B. Brosilow, Void fraction distribution in beds of spheres, AIChE J. 8(3), 359 (1962),
[41] D.P. Haughey and G. Beveridge, Local voidage variation in a randomly packed bed of equal-sized spheres, Chem. Eng. Sci. 21, 905 (1966),
[42] F.M.Z. Zotin, The Wall Effect in Packed Beds, Master’s thesis, Universidade Federal de Sao Carlos, Sao Carlos (1985)
[43] V.M.H. Govindarao and G.F. Froment, Voidage profiles in packed beds of spheres, Chem. Eng. Sci. 41, 533 (1986),
[44] A.G. Dixon, Correlations for wall and particle shape effects on fixed-bed bulk voidage, Can. J. Chem. Eng. 66, 705 (1988),
[45] F.M.Z. Zotin, The packing of spheres in a cylindrical container: the thickness effect, Chem. Eng. Sci. 50(9), 1504 (1995),
[46] M. Winterberg, E. Tsotas, A. Krischke, and D. Vortmeyer, A simple and coherent set of coefficients for modelling of heat and mass transport with and without chemical reaction in tubes filled with spheres, Chem. Eng. Sci. 55, 967–979 (2000),
[47] M. Giese, Strömung in porösen Medien unter Berücksuchtigung effectiver Viskositäten, Ph.D. thesis, TU München, Germany (1998)
[48] M. Giese, K. Rottschädel, and D. Vortmeyer, Measured and modelled superficial flow profiles in packed beds with liquid flow, AIChE J. 44(2), 484–490 (1998),
[49] W. Liu, S.W. Peng, and K. Mizukami, A general methematical modelling for the heat and mass transfer in unsaturated porous media. An application to free evaporative cooling, Heat Mass Tran. 31, 49–55 (1995),
[50] D. Vortmeyer, Mathematical modelling of reactionand transferprocesses in the flow through packed beds taking in account non-homogeneous flow distribution, Wärme- und Stoffübertragung 21, 247–257 (1987),
[51] S. Polesek-Karczewska, Effective thermal conductivity of packed beds of spheres in transient heat transfer, Heat Mass Tran. 39, 375–380 (2003)
[52] D. Vortmeyer, Axial heat dispersion in packed beds, Chem. Eng. Sci. 30, 999–1001 (1975),
[53] E.U. Schlünder, Equivalence of one- and two-phase models for heat transfer processes in packed beds: one-dimensional theory, Chem. Eng. Sci. 30, 449–452 (1975),
[54] G.F. Froment and K.B. Bischoff, Chemical Reactor Analysis and Design (John Wiley & Sons, 1979)
[55] S.I. Duarte, O.A. Ferretti and N.O. Lemcoff, A heterogeneous one-dimensional model for non-adiabatic fixed bed catalytic reactors, Chem. Eng. Sci. 30, 1025–1031 (1984),
[56] G.C. Glatzmaier and W.F. Ramirez, Use of volume averaging for the modelling of thermal properties of porous materials, Chem. Eng. Sci. 30, 3157–3169 (1988),
[57] J.G. Fourie and J.P. Du Plessis, A two-equation model for heat conduction in porous media, Transport Porous Media 53, 145–161 (2003),
[58] R.J. Wijngaarden and K.R. Westerterp, A heterogeneous model for heat transfer in packed beds, Chem. Eng. Sci. 48, 1273–l280 (1993),
[59] D. MacPhee and I. Dincer, Thermal modeling of a packed bed thermal energy storage system during charging, Appl. Therm. Eng. 29, 695–705 (2009),
[60] J.J. Lee, G.C. Park, K.Y. Kim, andW.J. Lee, Numerical treatment of pebble contact in the flow and heat transfer analysis of a pebble bed reactor core, Nucl. Eng. Des. 237, 2183–2196 (2007),
[61] H. Mei, C. Li, and H. Liu, Simulation of heat transfer and hydrodynamics for metal structured packed bed, Catal. Today 105, 689–696 (2005),
[62] J. Yang, Q. Wang, M. Zeng, and A. Nakayama, Computational study of forced convective heat transfer in structured packed beds with spherical or ellipsoidal particles, Chem. Eng. Sci. 65, 726–738 (2010),
[63] F. Augier, F. Idoux, and J. Delenne, Numerical simulations of transfer and transport properties inside packed beds of spherical particles, Chem. Eng. Sci. 65, 1055–1064 (2010),
[64] K. Papadikis, S. Gu, and A.V. Bridgewater, Computational modelling of the impact of particle size to the heat transfer coefficient between biomass particles and a fluidised bed, Fuel Process. Techn. 91, 68–79 (2010),
[65] B.W. Gamson, G. Thodos, and O.A. Hougen, Heat, mass and momentum transfer in the flow of gases through granular solids, Trans. Am. Inst. Eng. 39(1), 135 (1943)
[66] A. Zahed and R. Singh, Convective heat transfer coefficient in a packed bed of rice, JKAU Eng. Sci. 1, 11–20 (1989),
[67] J. Barker, Heat transfer in packed beds, Ind. Eng. Chem. 57(4), 43–51 (1965),
[68] T.G. Bowers and H. Reintjes, A review of fluid-toparticle heat transfer in packed and moving beds, Chem. Eng. Progr. Symp. 57(32), 69–74 (1961)
[69] P. Nithiarasu, K. Seetharamu, and T. Sundararajan, Finite element modelling of flow, heat and mass transfer in fluid saturated porous media, Arch. Comput. Meth. Eng. 9(1), 3–42 (2002),
[70] A. Džiugys and B. Peters, An approach to simulate the motion of spherical and non-spherical fuel particles in combustion chambers, Granular Matter 3(4), 231–266 (2001),
[71] A. Džiugys and R. Navakas, The role of friction on size segregation of granular material, Mechanika No. 4(66), 59–68 (2007),
[72] A. Džiugys and R. Navakas, The role of friction in mixing and segregation of granular material, Granular Matter 11(6), 403–416 (2009),
[73] P. Chapman, CFD enhances waste combustion design and modification, in: Combustion Canada ‘96, Ottawa, Ontario, Canada, June 5–7, 1996
[74] E. Specht, Kinetik der Abbaureaktionen, Habilitationsschrift, TU Clausthal-Zellerfeld (1993),
[75] N.M. Laurendeau, Heterogeneous kinetics of coal char gasification and combustion, Progr. Energ. Combust. Sci. 4, 221 (1978),
[76] M.A. Elliott, in: Chemistry of Coal Utilization, Suppl. Vol. 2, Ch. Fundamentals of Coal Combustion (Wiley, New York, 1981) p. 1153,
[77] Y.H. Man and R.C. Byeong, A numerical study on the combustion of a single carbon particle entrained in a steady flow, Combust. Flame 97, 1–16 (1994),
[78] J.C. Lee, R.A. Yetter, and F.L. Dryer, Transient numerical modelling of carbon ignition and oxidation, Combust. Flame 101, 387–398 (1995),
[79] J.C. Lee, R.A. Yetter and F.L. Dryer, Numerical simulation of laser ignition of an isolated carbon particle in quiescent environment, Combust. Flame 105, 591–599 (1996),
[80] M. Grønli, A Theoretical and Experimental Study of the Thermal Degradation of Biomass, Ph.D. thesis, The Norwegian University of Science and Technology Trondheim (1996)
[81] Shih-I Pai, Two-Phase Flows, Vieweg Tracts in Pure and Applied Physics (Braunschweig, 1977),
[82] F.A.L. Dullien, Porous Media: Fluid Transport and Pore Structure (Academic Press, San Diego, 1979),
[83] M. Kraume, Transportvorgänge in der Verfahrenstechnik (Springer, 2003),
[84] D. Hänel, Molekulare Gasdynamik (Springer, 2004),
[85] A. Schönbucher, Thermische Verfahrenstechnik (Springer, 2002),
[86] B. Peters, Thermal Conversion of Solid Fuels (WIT Press, Southampton, 2003),
[87] B. Peters, A. Džiugys, H. Hunsinger, and L. Krebs, An approach to qualify the intensity of mixing on a forward acting grate, Chem. Eng. Sci. 60(6), 1649–1659 (2005),