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A junction of monolayer and bilayer graphene nanoribbons is investigated using the tight-binding approxi-
mation. An external potential is applied on the bilayer graphene layers to control the electronic transport prop-
erties of the junction. The reflection and transmission probabilities for an incident electron at the junction are 
analytically calculated. The dependence of the reflection probability on the external potential, the wave vector 
of the incident electron and the width of the nanoribbon are evaluated.
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1. Introduction

Graphene is a single sheet of carbon atoms ar-
ranged in a honeycomb lattice. Despite being 
a composition part of graphite, a carbon form 
known for a long time, graphene was isolated only 
in 2004. Graphene has attracted scientific inter-
est because of its unusual electronic and trans-
port properties that are strikingly different from 
those of conventional semiconductor-based two-
dimensional electronic systems (for a review see 
Refs. [1–4]). The potential impact of this new ma-
terial on electronics was immediately recognised. 
It has been demonstrated that graphene has the 
highest carrier mobility at room temperature in 
comparison to any other material [5]. However, 
graphene is a semi-metal with no energy gap and 
zero density of states at the Fermi energy. This 
makes it difficult to utilise it in electronic devic-
es such as field effect transistor (FET) requiring 
a large on/off current ratio. The energy gap can 
be opened in bilayer graphene by applying a gate 

voltage between the layers [6]. This gate-induced 
band-gap was demonstrated by Oostinga et al. [7], 
and the on/off current ratio of around 100 at room 
temperature for a dual-gate bilayer graphene FET 
was reported by IBM [8].

Structures consisting of graphene and bi-
layer graphene parts can be created by a simple 
overlapping of one sheet of graphene over the 
other. The simplest possible structure contain-
ing graphene and bilayer graphene is a junction 
of these two materials. Due to asymmetry such 
junction may function in a similar manner to 
diode because the conditions for the electron 
to pass the junction from the different sides are 
not the same. The symmetric structure with two 
opposite junctions (graphene-bilayer graphene-
graphene) has been already investigated in [9] 
using continuum approximation when energy 
is close to the Dirac point. External voltage 
was applied to control the electronic transport 
parameters of the structure. Similar struc-
tures with more different edge geometries were 
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investigated in [10]. The investigation was also lim-
ited to the continuum approximation without ap-
plication of the external voltage. In our work we use 
the tight-binding approximation, which allows us 
to investigate the system properties for the whole 
energy range. The deficiency of the tight-binding 
approximation is the neglection of higher order 
corrections, which include the graphene nanorib-
bon (GNR) bending effect or its conversion into the 
nanotube. In this way it becomes indistinguishable 
if we have an infinite nanotube with a semi-infinite 
nanotube inside or an infinite nanotube is inserted 
into another semi-infinite nanotube.

An additional insight into electronic properties 
of graphene and GNRs can be obtained from exact 
analytical approaches. Analytic calculations for the 
electronic structure of the GNRs have been reported 
in Refs. [11–15]. The electronic structure of bilayer 
graphene was addressed in Refs. [16–20] where the 
analytical results were presented (both exact and 
perturbative). The electronic structure of bilayer 
GNRs was analytically obtained in [21]. A numeri-
cal study of the magnetobandstructure of the GNRs 
was reported in Ref. [22, 23], and the numerical 
treatment of the edge states in the bilayer GNRs was 
presented in Ref. [20]. The aim of the present study 
is to provide an exact analytical description of the π 
electron reflection and transmission in the junction 
of the bilayer and monolayer nanoribbons with arm-
chair edges, with applied external potential.

The paper is organised as follows: in Sec. 2 we 
present the known analytical results of monolayer 

and bilayer graphene and construct the wave func-
tion for the junction. Subsequently in Sec. 3 we an-
alyse the properties of the electronic transmission 
through the junction. Finally, Sec. 4 summarises 
our findings.

2. Analytical expressions of the electronic states 
at the junction

Analytical expressions for the electron spectrum 
in GNRs and graphene nanotubes (GNTs), based 
on a tight-binding model, were provided in Ref. 
[14] and the expressions for bilayer graphene were 
provided in Ref. [21]. In this section we exploit 
these expressions to construct the wave function 
for the system of graphene connected to bilayer 
graphene. One may consider this system as a sin-
gle infinite length graphene ribbon with another 
semi-infinite graphene ribbon overlapping, but 
mathematically it is simpler to consider the sys-
tem as a junction of semi-infinite graphene with 
semi-infinite bilayer graphene ribbons. For sim-
plicity, we analyse in this work only AB-α stacking 
of bilayer graphene, as shown in Fig. 1, and other 
configurations are left for the future calculations. 
Also, the atoms at the junction edge are arranged 
in a zigzag configuration, while the sides of the 
ribbon are in the armchair configuration of the 
atoms.

We consider π electron spectrum in an infinite 
sheet of graphene. The structure of graphene can 
be viewed as a hexagonal lattice with a basis of two 

Fig. 1. (Colour online) (a) Sub-lattices A1, A2, B1, B2 on bilayer graphene in AB-α stacking. (b) Indication of labels of 
carbon atom cells used for bilayer graphene.
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atoms per unit cell. The Cartesian components of 
the lattice vectors a1 and a2 are a(³�₂, √³�₂) and a(³�₂, 
–√³�₂), respectively. Here a  ≈  1.42 is the carbon-
carbon distance [1]. The three nearest-neighbour 
vectors are given by δ1  = a(¹�₂, √³�₂) , δ2  = a(¹�₂, 
–√³�₂), and δ3 = a(–1,0). The tight-binding Hamil-
tonian for electrons in graphene has the form

 (1)

where the operators ai and bi annihilate an elec-
tron on sub-lattice A at site Ri

A and on sub-lattice 
B at site Ri

B, respectively (for single graphene con-
sider Fig. 1 with A1 = A and B1 = B). The param-
eter t is the nearest-neighbour hopping energy 
(t ≈ 2.8 eV). Hereinafter all energies will be writ-
ten in the units of the hopping integral t, therefore 
we set t  =  1. Let us label the elementary cells of 
the lattice with two numbers p and q. Then the 
atoms in the sub-lattices A and B are positioned at 
R p

A
,q = pa1 + qa2 and R p

B
,q =δ1 + pa1 + qa2  respec-

tively.
The π electron wave function satisfies the 

Schrödinger equation

HΨ = EΨ. (2)

We search for the eigenvectors of the Hamiltonian 
(1) in the form of the plane waves (Bloch states) by 
taking the probability amplitudes to find an atom 
in the sites R p,

A
,q  and R p

B
,q  of the sub-lattices A and 

B as 

 (3)

Thus Eq. (2) yields the eigenvalue equations for 
the coefficients cA and cB (envelope functions):

–EcA = cBϕ̃ (k) , (4)

– EcB = cAϕ̃ (–k) , (5)

where

ϕ̃ (k) ≡ eik·δ1 + eik·δ2 + eik·δ3. (6)

Further we will consider the spectrum of π elec-
trons in an infinite sheet of bilayer graphene. The 

tight-binding Hamiltonian for electrons in bilayer 
graphene has the following form:

 (7)

where the operators ai,  p and bi,  p annihilate an 
electron on sub-lattice Ap at site R i

Ap and on sub-
lattice Bp at site R i

Bp respectively (Fig. 1). The index 
p  =  1,2 numbers the layers in the bilayer system. 
In the Hamiltonian (7) we neglected the terms 
corresponding to the hopping between atom B1 
and atom B2, with the hopping energy γ3, and the 
terms corresponding to the hopping between atom 
A1 (A2) and atom B2 (B1) with the hopping energy 
γ4. The neglect of these hopping terms leads to the 
minimal model of bilayer graphene [19]. The pa-
rameter t^ (t^≈ 0.4 eV) is the hopping energy be-
tween atom A1 and atom A2 while V is half the shift 
in the electro-chemical potential between the two 
layers. Similarly as in monolayer graphene, we ex-
press all the energies in the units of t. The atoms in 
the sub-lattices A1 and A2 are positioned at R p,

A
,q
1,2 = 

pa1 + qa2, in the sub-lattice B1 the aptoms are posi-
tioned at R p

B
,q
1 = δ1 + pa1 + qa2 and in the sub-lattice 

B2 the atoms are positioned at R p
B

,q
2 = –δ1 + pa1 + qa2. 

We search for the eigenvectors of the Hamiltonian 
(7) in the form of the plane waves. The probabil-
ity amplitudes to find an atom in the sites R p,

A
,q
1,2 and 

R p,
B

,q
1,2  of the sub-lattices Aj and Aj are:

 
(8)

The coefficients (envelope functions) cAp and cBp  
obey the eigenvalue equations:

–EcA1 = VcA1 + cB1ϕ̃ (k) + γcA2, (9)

–EcB1 = VcB1 + cA1ϕ̃ (–k) , (10)

–EcA2 = –VcA2 + cB2ϕ̃ (–k) + γcA1, (11)

–EcB2 = –VcB2 + cA2ϕ̃ (k) . (12)
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Here energy E, potential V, and interaction be-
tween layers γ ≡ t^/t are in the units of the hopping 
integral t. Using the nearest-neighbour hopping 
energy t ≈ 2.8 eV and the hopping energy between 
two layers t^ ≈ 0.4 eV, one gets γ ≈ 0.14.

2.1. Electron spectrum in the infinite sheet of 
graphene

Since we are interested in configurations of gra-
phene with rectangular geometry, we use a rectan-
gular unit cell as in Ref. [14] and follow the names 
of the variables and functions used in Ref. [21]. 
Such unit cell has four atoms labelled with symbols 
l, λ, ρ, r, as shown in Fig. 1 (consider at this point 
only one layer with the labels l1, λ1, ρ1, r1, A1, B1).

The atoms with labels l and ρ belong to the sub-
lattice A, the atoms with labels λ and r belong to the 
sub-lattice B. The position of the unit cell is indicated 
with two numbers, n and m. The first Brillouin zone 
corresponding to the rectangular unit cell contains 
the values of the wave vectors κ, ξ. The eigenvectors 
describing the system have the form of plane waves:

ψm,n,α (κ, ξ) = cα (κ, ξ)eiξm+iκ , (13)

where α = l, ρ, λ, r.
The coefficients of the eigenvectors are:

cr = 1,   (14)

 
(15)

where

 (16)

and s3 = ±1 indicates the dispersion branches that 
appear due to a smaller Brillouin zone (for more 
details see Ref. [21]). The energy is (with s1 = ±1):

 
(17)

The zero energy points have coordinates  

in the Brillouin zone corresponding to the rectan-
gular unit cell.

Since we consider finite-size graphene sheets, 
evanescent solutions become important. We as-
sume that exponentially decreasing or increasing 
solution can be obtained by taking κ = i|κ| or ξ = i|ξ| 
in Eqs. (14), (15) and (17).

2.2. Electron spectrum in the infinite sheet of bilayer 
graphene

The form of the wave function is similar to mon-
olayer graphene, Eq. (13), only the labels change:

ψm,n,αp
(κ, ξ) = cαp

(κ, ξ)eiξm+iκn ,  (18)

Here the label p = 1, 2 is the number of the layer. The 
coefficients of the eigenvectors are (from Ref. [21]):

 (19)

 
(20)

 (21)

 (22)

Here s1, s2 = ±1 are the sign coefficients:

 
(23)

and the expression for energy is
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 (24)

The function ϕ(κ,  ξ) has the same expression as 
Eq. (16), and V is the electrostatic potential applied 
on one layer of bilayer graphene, while –V is ap-
plied on the other. The parameter γ describes the 
interaction between the layers in bilayer graphene, 
γ = 0.14, measured in the same units as energy.

In bilayer graphene there are two eigenstates 
with wave vectors κ(1) and κ(2), having different ab-
solute values but corresponding to the same ener-
gy: E (κ(1), ξ) = E (κ(2), ξ). One or both of the wave 
vectors κ(1), κ(2) can be imaginary. The energy can be 
equal only if the signs s1, s2 obey the condition

s1
(2) s2

(2) = –s1
(1) s2

(1). (25)

It has to be noted that the sign coefficients from the 
set s1, s2, s3 in bilayer graphene are not necessary, 
the same as in the single graphene equations.

In addition to the propagating waves, for finite-
size bilayer graphene sheets evanescent solutions 
become important. We assume that exponentially 
decreasing or increasing solution can be obtained 
by taking κ = i|κ| or ξ = i|ξ|. In addition to the pure-
ly imaginary ξ there are solutions, corresponding to 
s3 = –1, having complex values of ξ.

2.3. Calculation of wave vector from energy

From the dispersion of bilayer graphene (Eq. (24)) 
we obtain

 
(26)

From this dispersion equation we find the expres-
sion for |ϕ|2:

 
(27)

It should be noted that when

we get that |ϕ|2 is a complex number. This means 
that κ is also a complex number and has both real 
and imaginary parts.

We have that

 
(28)

therefore, the dimesnionless x-component of the 
wave vector κ can be expressed as

 
(29)

The indices s1 and s1 can be calculated from the 
equations (derived from Eq. (26))

 (30)

and

 
(31)

2.4. Construction of wave functions for the junction

The graphene and bilayer graphene junction is con-
structed as shown in Fig. 2. The unit cells (indicat-
ed with two numbers n and m) are the same both 
for graphene and bilayer graphene, just starting at 
a certain cell n (we choose: n < 0) the upper layer 
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of bilayer graphene is removed. Mathematically the 
condition for the absence of the second layer is:

ψm,n,α2
(κ, ξ) = 0, n < 0. (32)

In particular, at the boundary

ψm,-1,l2
(κ, ξ) = 0. (33)

The condition for connecting monolayer graphene 
and bilayer graphene solutions is that amplitudes of 
monolayer and bilayer graphene should coincide:

ψm,0,λ(κ, ξ) = ψm,0,λ1
(κ, ξ), (34)

ψm,0,l(κ, ξ) = ψm,0,l1
(κ, ξ). (35)

We analyse the situation when the electron ap-
proaches the junction from the graphene side and 
is partially reflected with the reflection probabil-
ity |R|2. The incoming electron wave vector com-
ponent κ brings the phase eiκn, while back reflect-
ed it is e–iκn. Since the system is symmetric in the 
transverse direction, we construct the combina-
tions for the wave vector component ξ in the form 
(cα(ξj, κ)eiξjm

 -  cα(–ξj, κ)e–iξjm). Here ξ has the index 
j for the general case when the discrete values of ξ 
are used to describe the finite size system.

The form of the solution in monolayer graphene 
then is:

ψm,n,α(κ, ξ) = [cα(ξj, κ)eiξjm
 –cα(–ξj, κ)e–iξjm]eiκn

+ R[cα(ξj, –κ)eiξjm–cα(–ξj, –κ)e–iξjm]e–iκn. (36)

In bilayer graphene there are two wave vectors κ(1), 
κ(2) corresponding to the same energy, thus we in-
troduce two coefficients T1 and T2. The form of the 
solution in bilayer graphene is:

ψm,n,αp
(κ, ξ) = T1[cαp

(ξj, κ
(1))eiξjm–cαp

(–ξj, κ (1))e–iξjm]eiκ(1)n

+ T2[cαp
(ξj, κ

(2))eiξjm
 – cαp

(–ξj, –κ (2))e–iξjm]e–iκ(2)n.    (37)

From the boundary conditions (Eqs. (33)–(35)) we 
obtain three equations for three unknowns (R, T1 
and T2).

2.5. Reflection and transmission amplitudes for 
V = 0

In the case when the external potential is zero, 
V = 0, by inserting the expressions for the coeffi-
cients from Eqs. (14), (15) and (19)–(22) we get:

Fig. 2. (Colour online) Perspective view of the graphene-bilayer graphene junction. The upper layer is connected 
to the potential +V, while the lower layer to the potential –V.
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(38)

 
(39)

 (40)

The solutions are:

 
(41)

 
(42)

 
(43)

2.6. Reflection and transmission amplitudes forV> 0

With the potential –V the coefficients of the eigen-
vectors in graphene are (Ref. [21]):

 
(44)

 
(45)

By inserting the expressions for the coefficients 
from Eqs. (44), (45) and (19)–(22) into boundary 
conditions we get the equations:

 
(46)

 
(47)

 (48)

The solutions for these equations are

 
(49)

 
(50)
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(51)

where F (κ(1),κ(2), ξj) = f (κ(1), ξj)/ f (κ(2), ξj). Further 
we are interested in the reflection probability |R|2 = 
|R (κ, ξj)|

2:

 
(52)

The electron transmission probability|T (κ, ξj)|2 can 
be found from the equation

 (53)

Both coefficients |T(κ, ξj)|2 and |R(κ, ξj)|2 are tied by 
the last relation and normalised to unity, thus it is 
enough to analyse one of them by meaning that an 
increase of reflection causes a decrease of transmis-
sion and vice versa.

3. Behaviour of reflection probability

3.1. Very large width of nanoribbons

For the infinite (large) width of the junction the 
wave vector ξj values change continuously and the 
index j is not required. At first we analyse the de-
pendence of reflection when ξ is close to the Dirac 

point ( ). As shown in Fig.  3, the reflec-

tion for every κ at a certain value of the external 
potential sharply drops to zero, thus the junction 
becomes transparent for the electrons in a certain 
state. That state corresponds to the electron energy 
equal to the potential of the upper layer in bilayer 
graphene. Further, with increased potential, reflec-
tion increases to the maximum value and holds in 
a relatively wide potential range, then drops again 
to the lower values. Thus it is possible to control 
reflection (and transmission) through the barrier 
by external potential. The junction acts as a tunable 

Fig. 3. (a) Dependence of reflection on the wave vector κ and the external potential V. (b) The cut of the graph in 
(a) at the potential V = 0.2.
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electron spectrum filter: with certain potential we 
may pick which energy electrons can pass the bar-
rier without reflection.

3.2. Finite width of nanoribbons

We have a finite number of atoms N in transverse 
direction, so the transverse wave vector ξj can ob-
tain only certain values, numbered with the index 
j. These values determine the energy subbands. For 
the armchair bilayer graphene ribbon of infinite 
length with AB-α stacking, the wave vector ξj is de-
termined by 

 (54)

In graphene and bilayer graphene nanoribbons 
with armchair edges the possible values of the 
wave vector ξj determine the system conductiv-
ity type, i.  e. if there is an energy subband with 
the threshold energy coinciding with the chemi-
cal potential (which is set to zero in our inves-
tigation), the conductivity becomes metallic, 
otherwise bilayer graphene appears as semi-con-
ducting. When V = 0 and j*≡ 2 (N + 1)/3 is an in-
teger, then the armchair bilayer graphene ribbon 
is metallic and the index ν = j – j* = 0 corresponds 
to the zero-energy band. If 2(N  +  1)/3 is not an 
integer, the armchair bilayer graphene ribbon 
spectrum has a gap, and the band closest to zero 
is either j*≡ (2N + 1)/3 or j*≡ (2N + 3)/3 depend-
ing on which of these two numbers is an integer. 
Thus the system with N = 100 is semiconducting 
and with N = 101 it is metallic. The electronic re-
flection (and transmission) is also affected by the 
width N of the nanoribbons.

By exploiting the relation (54) we show the 
dependence of the reflection probability on the 
longitudinal wave vector κ and the distance, de-
scribed by the index ν, from the zero energy band. 
It appears that the reflaction probabilities for 
metallic nanoribbons behave similarly as those 
for semiconducting nanoribbons, so we show 
only one type in Fig. 4. As one can see, when the 
wave vector κ is close to zero (corresponding to 
the Dirac point), the reflection probability for 
the bands with negative and positive indices ν 
are the same; this symmetry breaks with increas-
ing κ. There are values of the external potential 

Fig. 4. Dependence of the reflection probability on the 
wave vector κ and the subband index ν at different po-
tentials: (a) V = 0, (b) V = 0.2, (c) V = 1.8.
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where total transmission occurs, as can be seen in 
Fig. 4(b). In Fig. 4(b) the reflection probability at 
certain values of κ and ν drops to zero.

4. Conclusions

An exact analytical description of the electronic 
wave function at the graphene and AB-α stack-
ing bilayer graphene interface based on the tight-
binding model is presented. The model enables to 
analyse the properties of the structure far away from 
the Dirac point. We investigated the dependence of 
probabilities of electron reflection and transmis-
sion through the junction on the external voltage 
in bilayer graphene. We showed that transmission 
or reflection could be enhanced at certain voltages. 
This can be useful for the creation of a transistor 
type device from graphene nanoribbons. The model 
describing the system of the junction is suitable for 
the extension to other configurations. In addition, a 
finite width graphene and bilayer graphene nanor-
ibbon junction was analysed. It was shown that the 
size of the ribbon affected the reflection of electrons 
at the junction interface. It was shown that there 
was no significant difference of reflection between 
metallic and semiconducting bilayer graphene.
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Santrauka

 Grafenas – tai lakštas, sudarytas iš anglies ato-
mų, išsidėsčiusių plokštumoje heksagonine struktūra. 
Nuo 2004  m. juo susidomėta dėl specifinių elektronų 
pernašos savybių. Buvo nustatyta, kad krūvininkų jud-
ris (kambario temperatūroje) jame didžiausias iš visų 
iki šiol žinomų medžiagų, o IBM firma jau pademons-
travo veikiantį lauko tranzistorių, pagamintą iš dvigu-
bo grafeno sluoksnio. Grafenas yra pusmetalis, netu-
rintis draustinių energijų tarpo, o ties Fermi energija 
būsenų tankis lygus nuliui. Draustinių energijų tarpas 
yra reikalingas atlikti tranzistoriaus valdymo funkci-
jas. Bigrafene šis tarpas sukuriamas prijungus įtampą 
tarp sluoksnių, o grafene, pasirodo, jis atsiranda, kai 
grafeno lakštas sumažinamas iki nanojuostos matme-
nų. Grafeno ir bigrafeno banginės funkcijos jau buvo 
suskaičiuotos anksčiau artimo ryšio metodu. Šiame 
darbe buvo pasinaudota jau turimais sprendiniais ir 
suskaičiuota nauja grafeno ir AB-α konfigūracijos bi-

grafeno barjerinės sandūros būsenos funkcija, su kuria 
pavyko analiziškai užrašyti elektrono pralaidumo per 
sistemą ir atspindžio tikimybes, išreikštas elementa-
riomis funkcijomis. Ši struktūra yra asimetrinio lauko 
tranzistoriaus atitikmuo, kuriame užtūrą sudaro viršu-
tinis grafeno lakštas bigrafene. Veikiant išoriniu elek-
triniu lauku, galima valdyti elektronų pralaidumą per 
sistemą. Tokios pat sandaros sitema jau buvo nagrinėta 
ir anksčiau, tačiau tik tolydiniu artiniu, o pateikti dės-
ningumai nėra pakankamai išanalizuoti. Šiame darbe 
suskaičiuota atspindžio tikimybės priklausomybė nuo 
išorinio potencialo tarp bigrafeno sluoksnių ir nuo 
banginio vektoriaus. Nustatyta, kad potencialui didė-
jant atspindys rezonansiškai išauga iki maksimalios 
vertės (absoliutaus atspindžio), tada krinta iki minima-
lios (absoliutaus pralaidumo), t. y. galima tokią sistemą 
valdyti išoriniu potencialu. Taip pat nustatyta, kaip kei-
čiasi sistemos savybės, kai grafeno ir bigrafeno sandūra 
pagaminama ant baigtinio pločio nanojuostos.
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