[PDF]     http://dx.doi.org/10.3952/lithjphys.52112

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 44–49 (2012)

V. Špakauskas and D. Melichov
Vilnius Gediminas Technical University, Saulėtekio 11, LT-10223 Vilnius, Lithuania
E-mail: valdas.spakauskas@vgtu.lt

Received 27 October 2011; revised 28 February 2012; accepted 1 March 2012

This paper presents a quasi-empirical model of the distribution of pollutant particles along the roadway. By modelling the source of the pollutant as a cut-off cylinder we assume that aerosol particles (of 0.3–15 μm in diameter) are distributed according to the Gaussian law both along the vertical and horizontal axes. A cross wind translates the pollutant cloud away from the road and the particles are being influenced by gravity, particle buoyancy and thermal plume rise effects. The obtained pollutant concentration function coincides well with the experimental data obtained by Zhu et al. (2011), Grigalavičienė and Rutkovienė (2006), and Zechmeister et al. (2005).
Keywords: aerosol particles, Gaussian distribution, modelling, road dust, dispersion, roadside
PACS: 92.60.Sz, 91.62.Rt, 92.60.Mt, 91.67.gp

V. Špakauskas, D. Melichov
Vilniaus Gedimino technikos universitetas, Vilnius, Lietuva

Darbe pasiūlytas kvaziempirinis modelis, skirtas didesnio kaip 0,3 μm skersmens dalelių sklaidai pakelėse modeliuoti. Modeliuojant taršos šaltinį kaip nupjautinį cilindrą laikome, kad aerozolių dalelės (0,3–15 μm diametro) taršos šaltinyje vertikalia ir horizontalia kryptimis pasiskirsto pagal Gauso dėsnį. Pučiant vėjui, kurio kryptis statmena keliui, dulkių debesis yra nešamas tolyn nuo kelio, o aerozolio dalelės yra veikiamos gravitacijos, dalelių plūdrumo ir terminio teršalų fakelo kilimo efektų. Gauta teršalų koncentracijos kaita transporto magistralės šalikelėse sutampa su eksperimentiniais matavimais (Zhu ir kt., 2011; Grigalavičienė ir Rutkovienė, 2006; Zechmeister ir kt., 2005).

References / Nuorodos

[1] J.A. Markus and A.B. McBratney, An urban soil study: heavy metals in Glebe, Australia, Aust. J. Soil Res. 34, 453–465 (1996),
[2] W. Wilcke, S. Muller, N. Kanchanakool, and W. Zech, Urban soil contamination in Bangkok: heavy metal and aluminium portioning in topsoils, Geoderma 86, 211–228 (1998),
[3] J.E. Ferguson and N.D. Kim, Trace elements in street and house dusts: source and speciation, Sci. Total Environ. 100, 125–150 (1991),
[4] M.S. Akhter and I.M. Madany, Heavy metal in street and house dust in Bahrain, Water Air Soil Pollut. 66, 111–119 (1993),
[5] S.M. Al-Shayeb and M.R.D. Seaward, Heavy metal content of roadside soils along ring road in Riyadh (Saudi Arabia), Asian J. Chem. 13, 407–423 (2001),
[6] Y. Nakamoto, Rapid determination of arsenic in thermally cracked gasoline by graphite-furnace AAS, Bunseki Kagaku 49, 43–47 (2000) [in Japanese],
[7] L. Liang, M. Horvat, and P. Danilchik, A novel analytical method for determination of picogram levels of total mercury in gasoline and other petroleum products, Sci. Total Environ. 187, 57–64 (1996),
[8] C. Samara and D. Voutsa, Size distribution of airborne particulate matter and associated heavy metals in the roadside environment, Chemosphere 59(8), 1197–1206 (2005),
[9] A. Christoforidis and N. Stamatis, Heavy metal contamination in street dust and roadside soil along the major national road in Kavala’s region, Greece, Geoderma 151, 257–263 (2009),
[10] D. Podnar, D. Koračin, and A. Panorska, Application of artificial neural networks to modeling the transport and dispersijon of tracers in complex terrain, Atmos. Environ. 36(3), 561–570 (2002),
[11] B. Fisher, Fuzzy environmental decision-making: application to air pollution, Atmos. Environ. 37(14), 1865–1877 (2003),
[12] D. Oettl, J. Kukkonen, R.A. Almbauer, P.J. Sturm, M. Pohjola, and J. Härkönen, Evaluation of a Gaussian and a Lagrangian model against a roadside data set, with emphasis on low wind speed conditions, Atmos. Environ. 35(12), 2123–2132 (2001),
[13] S.S. Rasa, R. Avila, and J. Cervantes, A 3-D Lagrangian stochastic model for the meso-scale atmospheric dispersion applications. Nucl. Eng. Des. 208(1), 15–28, (2001),
[14] A.G. Clarke, L.A. Robertson, R.S. Hamilton, and B. Gorbunov, A Lagrangian model of the evolution of the particulate size distribution of vehicular emissions, Sci. Total Environ. 334–335, 197–206 (2004),
[15] F. Pasquill, The estimation of the dispersion of windborne material, Meteorol. Mag. 90, 33–49 (1961)
[16] F.A. Gifford, Jr., Consequences of effluent releases, Nucl. Safety 17(1), 68–86 (1976)
[17] P. Neofytou, A.G. Venetsanos, S. Rafailidis, and J.G. Bartzis, Numerical investigation of the pollution dispersion in an urban street canyon, Environ. Model. Software 21, 525–532 (2006),
[18] D.R. Parsons, G.F.S. Wiggs, I.J. Walker, R.I. Ferguson, and B.G. Garvey, Numerical modelling of airflow over an idealised transverse dune, Environ. Model. Software 19, 153–162 (2004),
[19] K.S. Rao, R.L. Gunter, J.R. White, and R.P. Hosker, Turbulence and dispersion modeling near highways, Atmos. Environ. 36, 4337–4346 (2002),
[20] B. Martinėnas and V. Špakauskas, Simulation of traffic pollution dispersion near roadways, Lith. J. Phys. 50(2), 255–260 (2010),
[21] A. Micallef and J.J. Colls, Variation in airborne particulate matter concentration over the first three metres from ground in an urban street canyon: implication for human exposure, Atmos. Environ. 32(21), 3795–3799 (1998),
[22] J.J. Colls and A. Micallef, Measured and modelled concentrations and vertical profiles of airborne particulate matter within the boundary layer of a street canyon, Sci. Total Environ. 235, 221–233 (1999),
[23] S.-K. Park, S.-D. Kim, and H. Lee, Dispersion characteristics of vehicle emission in urban street canyon, Sci. Total Environ. 323, 263–271 (2004),
[24] S. Weber, W. Kuttler, and K. Weber, Flow characteristics and particle mass and number concentration variability within a busy urban street canyon, Atmos. Environ. 40, 7565–7578 (2006),
[25] P. Kumar, P. Fennell, D. Langley, and R. Britter, Pseudo-simultaneous measurements for the vertical variation of coarse, fine and ultrafine particles in an urban street canyon, Atmos. Environ. 42, 4304–4319 (2008),
[26] I. Kanda, K. Uehara, Y. Yamao, Y. Yoshikawa, and T. Morikawa, A wind-tunnel study on exhaust gas dispersion from road vehicles–Part I: Velocity and concentration fields behind single vehicles, J. Wind Eng. Ind. Aerodyn. 94, 639–658 (2006),
[27] I. Kanda, K. Uehara, Y. Yamao, Y. Yoshikawa, and T. Morikawa, A wind-tunnel study on exhaust-gas dispersion from road vehicles–Part II: Effect of vehicle queues, J. Wind Eng. Ind. Aerodyn. 94, 659–673 (2006),
[28] Z. Ning, C.S. Cheung, Y. Lu, M.A. Liu, and W.T. Hung, Experimental and numerical study of the dispersion of motor vehicle pollutants under idle condition, Atmos. Environ. 39(40), 7880–7893 (2005),
[29] P.E. Benson, Modifications to the Gaussian vertical dispersion parameter, σz, near roadways, Atmos. Environ. 16(6), 1399–1405 (1982),
[30] Y. Zhu and W.C. Hinds, Predicting particle number concentrations near a highway based on vertical concentration profile, Atmos. Environ. 39, 1557–1566 (2005),
[31] J.A. Gillies, V. Etyemezian, H. Kuhns, D. Nikolic, and D.A. Gillette, Effect of vehicle characteristics on unpaved road dust emissions, Atmos. Environ. 39(13), 2341–2347 (2005),
[32] D. Zhu, H.D. Kuhns, J.A. Gilies, V. Etyemezian, A.W. Gertler, and S. Brown, Inferring deposition velocities from changes in aerosol size distributions downwind of a roadway, Atmos. Environ. 45, 957–966 (2011),
[33] I. Grigalavičienė and V. Rutkovienė, Heavy metals accumulation in the forest soils and mosses along highway Vilnius–Kaunas, Miškininkystė 2(60), 12–19 (2006),
[34] H.G. Zechmeister, D. Hohenwallner, A. Riss, and A. Hanus-Illnar, Estimation of element deposition derived from road traffic sources by using mosses, Environ. Poll. 138, 238–249 (2005),