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The contributions of superconducting fluctuations to the specific heat of dirty superconductors are calculated, including
quantum and classical corrections to the ‘usual’ leading Gaussian divergence. These additional terms modify the Ginzburg
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heat, and set limits on its applicability for materials with a low transition temperature.
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1. Introduction

The superconducting phase transition has been very
well described by the Ginzburg-Landau (GL) theory
[1], which is equivalent to the BCS theory [2] for
temperatures T close to the transition temperature Tc.
However, both theories use mean fields, and therefore
miss the effects of critical fluctuations as T approaches
Tc [3]. A phenomenological way to estimate the re-
gion of validity of these mean-field theories is to cal-
culate a certain effect of the fluctuations, and to require
that this effect be small compared to the correspond-
ing mean-field prediction. The relative temperature
range for which the mean-field theory breaks down,
tG ≡ (TG−Tc)/Tc, is called the “Ginzburg region” [3].

Here we discuss dirty superconductors, which con-
tain non-magnetic impurities. It is well known that
such impurities reduce the superconducting coherence
length, while leaving the transition temperature, as well
as the density of states, largely unchanged [2, 4]. As
a result, although the Ginzburg region is still rather
small, it is significantly larger than for the pure su-
perconductors. For T > Tc, the superconducting or-
der parameter vanishes, and the GL contribution to the
specific heat vanishes. This specific heat has a discon-
tinuity ∆C at Tc. In contrast, the fluctuations in the
order parameter generate non-zero contributions Cfl to
∗ Also at Tel Aviv University

the specific heat even above Tc. One common way
to estimate the Ginzburg region is then to require that
outside of this regime one has Cfl < ∆C [5]. As
T approaches Tc, Cfl diverges in d < 4 dimensions
as |t|(d−4)/2, where t ≡ ln(T/Tc) ≈ (T − Tc)/Tc.
Keeping only this leading divergent term, one finds
|tG| ∼ (∆C/Λd)2/(d−4), where Λ is the momentum
cutoff, which is the inverse of the relevant size of the
fluctuations in space (to be discussed below).

The above result ignores corrections to the leading
divergent term in Cfl. As we discuss below, such cor-
rections arise both from quantum fluctuations and from
corrections to the leading ‘static’ contribution. The
aim of the present paper is to discuss the effects of
these corrections, which become crucial as ∆C be-
comes small. In order to derive these corrections, it is
important to obtain the full expression for the leading
wave-vector and frequency dependent order-parameter
correlation functions, and not just the ‘static’ Ornstein-
Zernike (OZ) [6] approximation χ(q) ∼ 1/(q2 + ξ−2)
which is used in the ‘standard’ GL theory (ξ is the co-
herence length). The derivation of this full expression
is reviewed in Sec. 2. Section 3 then presents the re-
sulting contributions of the fluctuations to the specific
heat, Cfl, including all the corrections, and Sec. 4 dis-
cusses the consequences for the Ginzburg region. The
results are summarized and discussed in Sec. 5.
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2. The partition function

We begin by reviewing the microscopic derivation of
the free energy which determines the superconducting
fluctuations. The Hamiltonian is

H =
∫
drH(r) , (1)

with

H(r) =
∑
σ

ψ†σ(r)H0(r)ψσ(r)

− V (r)ψ†↑(r)ψ†↓(r)ψ↓(r)ψ↑(r) , (2)

where ψ†σ(r) creates an electron with spin σ at r. The
interaction V (r) depends on the spatial coordinate r,

V (r) = λ(r)/N (r) , (3)

where λ(r) is the effective local (dimensionless) elec-
tronic coupling, while N (r) is the local density of
states per unit volume and unit energy. The single-
particle part of the Hamiltonian (2) reads

H0 = −∇2/(2m) + u(r)− µ , (4)

where µ is the chemical potential and the disorder
potential u(r) is modeled by point-like non-magnetic
scatterers [7].

The following calculation has been given, for quasi-
one dimensional rings, in Refs. [8] and [9]. However,
we repeat it here for the general d-dimensional case,
in order to highlight the origin of the two Matsubara
frequencies which generate the slow momentum and
frequency variation of the quadratic coefficient in our
effective GL theory. The quantum partition function Z
is [10]

Z =
∫
D{ψ(r, τ), ψ(r, τ)} exp[−S] , (5)

where the action S is

S =
∫
dr

β∫
0

dτ

[∑
σ

ψσ(r, τ)
∂

∂τ
ψσ(r, τ) +H(r, τ)

]
,

(6)

and β = 1/T (we use ~ = kB = 1). Here, the anni-
hilation and creation field operators in the Hamiltonian
(2) (ψ and ψ†) are replaced by the Grassmann variables
ψ(r, τ) and ψ(r, τ), respectively.

Applying the Hubbard-Stratonovich transformation
to Eq. (5), and integrating the fermionic part of the ac-
tion, the partition function is cast into the form [10]

Z =
∫
D{∆(r, τ),∆∗(r, τ)}e−S , (7)

with the action

S =
∫
dr

β∫
0

dτ
|∆(r, τ)|2

V (r)
− Tr

{
ln
(
βG−1

)}
,

(8)
where G−1 is the inverse (2× 2 matrix) Green function
at equal positions and imaginary times,

G−1 =
[
G−1
p ∆

∆∗ G−1
h

]
, (9)

with

G−1
p = −∂τ −H0 (10)

being the particle inverse Green function, and

G−1
h = −∂τ +H0 (11)

being the inverse Green function of the holes.
The integration over the bosonic fields in Eq. (7) is

carried out using a stationary-phase analysis [10] of the
action S. At temperatures above the transition temper-
ature, this amounts to expanding the second term on
the right-hand side of Eq. (8) to second order in ∆ (the
first-order contribution to the expansion being zero)

Tr{ln(βG−1)}
∣∣∣
2nd

= Tr
{

lnβ
[
G−1
p 0
0 G−1

h

]}

+
∫
drdr′

Ω2

β∫
0

dτdτ ′

β2
Π(r, r′, τ−τ ′)∆(r′, τ ′)∆∗(r, τ) ,

(12)

where Ω denotes the volume of the system. The first
term on the right-hand side of Eq. (12) gives the par-
tition function of noninteracting electrons; the second
one represents the contribution of the superconducting
fluctuations to that function. Its calculation requires the
correlation

Π(r, r′, τ−τ ′) ≡ −〈Gp(r, r′, τ−τ ′)Gh(r′, r, τ ′−τ)〉 ,
(13)

where 〈. . .〉 indicates averaging over the impurity con-
figurations (see Ref. [7] for details). For the general
case, when the material contains several different re-
gions (as e. g. in a double layer [9]), this average de-
pends separately on r and on r′, and the calculation
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becomes difficult. However, for the purposes of the
present discussion, it suffices to consider the simplest
case, in which the material is homogeneous, and there-
fore the attractive interaction V (r) ≡ V as well as the
density of states N are constant in space. Averaging
over the impurities restores homogeneity even in the
dirty case, and the spatial dependence of Π becomes a
function of r− r′. Hence,

Tr{ln(βG−1)}
∣∣∣
2nd

=
∑
ν

∑
q

Π(q, ν)|∆(q, ν)|2 ,

(14)
where

Π(q, ν) =
∑
p1,p2

∑
ω

〈G(p1 + q,p2 + q, ω + ν)

×G(−p1,−p2,−ω)〉 , (15)

and both Green functions are the particle ones [8], i. e.,
G = Gp. We use the notations ω ≡ ωn = πT (2n+ 1)
for the fermionic Matsubara frequencies, and ν ≡
νm = 2πTm for the bosonic ones (n and m are in-
tegers). Since the phonon-mediated electron-electron
attractive interaction is limited to energies within the
Debye frequency ωD from the Fermi energy, both |ω|
and |ω + ν| are bound by ωD.

Inserting these results into the expression for the ac-
tion [see Eq. (8)], the Gaussian fluctuation-induced par-
tition function, Zfl,2, takes the form

Zfl,2 =
∫
D{∆(q, ν),∆∗(q, ν)}e−S2 , (16)

with

S2 =
∑
q

∑
ν

∆∗(q, ν)
(βΩ
V
−Π(q, ν)

)
∆(q, ν) .

(17)
The function Π(q, ν), Eq. (15), is calculated by extend-
ing the method employed in Refs. [11] and [12] to in-
clude the dependence on ν and on the wave-vector q.
The calculation is valid in the diffusive limit, in which
(D/2πT )1/2 is much larger than the mean-free path
l = vF τ of the relevant metal, where D = l2/(dτ) is
the diffusion coefficient, vF is the Fermi velocity and
τ is the mean free time associated with the scattering
from the non-magnetic impurities. This is equivalent
to the requirement that 2πTτ � 1. Alternatively, we
require that τ be the shortest time in the problem, or
that all the energies (including ωD and T ) be smaller
than ~/τ .

Following the derivation given in Ref. [11], we
present the response function Π in the form

Π(q, ν) =
∑
ω

K(q, ν, ω) . (18)

The function K(q, ν, ω) obeys a diffusion equation
(with the diffusion constant D) due to the scattering
by the non-magnetic impurities. It also obeys a Dyson
equation, which yields

K(q, ν, ω) =
2πNΘ[ω(ω + ν)]
|2ω + ν|+Dq2

, (19)

where N ≡ ΩN (0) is the density of states per unit
energy at the Fermi energy. The appearance of two
frequencies in the denominator of Eq. (19) is crucial
for the discussion below. These two frequencies re-
sult from the appearance of the two Green functions
in Eq. (15). Finally, we find

S2 = βN
∑
q

∑
ν

a|∆(q, ν)|2 , (20)

where

a(q, ν, T ) =
1
λ
− 1
βN

Π(q, ν, T ) . (21)

Since the Debye frequency ωD serves as a cutoff on the
fermionic Matsubara frequencies ω = πT (2n + 1) in
Eq. (19), one finds

1
βN

Π(q, ν, T ) = −Ψ
(1

2
+
|ν|+Dq2

4πT

)

+Ψ
(1

2
+
|ν|+Dq2 + 2ωD

4πT

)
, (22)

where Ψ is the digamma function.
Equation (20) represents the first term in an effec-

tive GL-like expansion of the free energy density in
powers of the order parameters ∆(q, ν). The original
GL theory [1] was phenomenological, and the coeffi-
cient a was written as a = a′(T − Tc) + cq2, which is
equivalent to the Ornstein-Zernike approximation [6].
This ignored the quantum fluctuations, and was pre-
sumed valid very close to Tc and for long wave-lengths.
An extension which includes quantum fluctuations had
a(q, ν, T ) = a′(T − Tc) + c|q|2 + e|ν|m/|q|m′ [13].
Such forms (with m = 1 and m′ = 0) can also be
obtained from the microscopic expression (21), if one
expands that expression to the lowest order in (T −Tc),
in q2 and in ν. However, it is clear that an expansion
of Ψ in ν = 2πTm is not justified for any m 6= 0, and
that an expansion in powers of q may also be allowed
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only in a limited range of momenta. Much of the liter-
ature restricts itself to the ‘static’ limit, i. e. ν = 0, and
to the expansion of a up to order q2 [5]. Our purpose
here is to investigate the full expression (21), and find
deviations from the simpler GL theory.

Within such an effective Ginzburg-Landau theory,
the phase transition occurs when the coefficient
a(q, ν, T ) first vanishes as the temperature T is low-
ered. Using Eq. (22), this happens for the fluctuation-
free “classical", Landau or mean-field limit, q = ν =
0. For ωD � T , we use the asymptotic limit Ψ(z) ∼
ln z for large z and find the transition temperature

Tc =
2γE
π
ωDe

−1/λ , (23)

where γE = e−Ψ[1/2]/4 is the Euler constant. This
result is consistent with the usual BCS one.

For ωD � T (i. e. for small λ), we replace 1/λ in
Eq. (21) by Eq. (23). For T close to Tc, we also denote
t ≡ ln(T/Tc), and replace T by Tc in the denominator
of Dq2/(4πT ). Substituting also ν = 2πTm we find
[5]

a(q, ν, T ) = t+ Ψ
[

1 + |m|
2

+
D

4πTc
q2

]
−Ψ

[
1
2

]
.

(24)
This is the expression we shall use in the following cal-
culations. In some expressions below we change nota-
tion, a(q, ν, T )→ a(q,m, T ).

In the “pure" Landau theory, one keeps only the
“classical" term, with ∆0 ≡ ∆(q = 0, ν = 0), and
one adds the quartic term in the free energy density, of
order |∆0|4, so that the Landau free energy density has
the form

FL = −T
Ω
T lnZ0 = TS ≈ N

(
a0|∆0|2 +

1
2
b|∆0|4

)
,

(25)
where Z0 contains only ∆0 and (for large ωD) a0 =
a(0, 0, T ) = λ−1−Π(0, 0, T )/(βN) ≈ t. Microscopic
calculations yield b = 7ζ(3)/(8π2T 2) = b0/T

2, with
b0
∼= 0.1 [5, 14]. For metals, we write the electron

energy asE = pv/2, and therefore the density of states
(per unit volume and unit energy) at the Fermi level is
given by N (0) = Sdp

d−1
F /vF = Sdp

d
F /(2EF ), where

EF and pF are the Fermi energy and momentum, Sd =
Ad/(2π)d, and Ad = 2πd/2/Γ(d/2) is the area of the
unit sphere in d dimensions (Γ is the gamma function).
Minimizing FL with respect to ∆0, one finds a non-

zero ∆0 below Tc and a jump in the specific heat (per
unit volume), from zero to

∆C(d) = N (0)/[bTc] ∼= 10N (0)Tc = 5Sdp
d
FTc/EF .

(26)
However, the fluctuations at non-zero wave-vectors and
frequencies give important contributions to the specific
heat even above Tc, as we discuss next.

3. Specific heat due to fluctuations

Substituting Eq. (20) into Eq. (16) yields a Gaussian
integral, with the result

Zfl,2 ∼
∏
q

∏
ν

1
a(q, ν, T )

, (27)

where unimportant multiplicative factors have been
omitted.

This partition function allows the calculation of the
contribution of the fluctuations to various measurable
quantities. For example, the contribution to the specific
heat (per unit volume) is given in d dimensions by

C
(d)
fl =

β2

Ω
∂2 lnZfl,2

∂β2
=−β

2

Ω

∑
q

∑
ν

∂2 ln a(q, ν, T )
∂β2

.

(28)
Using Eq. (24), with t = ln(T/Tc), we find

C
(d)
fl =

1
Ω

∑
m

∑
q

[
1
a2
− 1
a

]
=
∑
m

SdΛ
dC(d)

m . (29)

Here,

C(d)
m = Λ−d

Λ∫
0

qd−1dq

[
1

a(q,m, t)2
− 1
a(q,m, t)

]
,

(30)
where Λ is the wave-length cutoff.

In contrast to the ‘standard’ GL theory, the function
a in Eq. (24) grows only logarithmically at large |m|
and |q|. Therefore, both terms in Eq. (30) diverge un-
less we impose upper cutoffs on the frequencies and
on the momenta. As we discuss below, some physi-
cal results may be affected by the resulting cutoff de-
pendence. Equation (30) already contains the cutoff
|q| < Λ. In the diffusive dirty limit, one certainly re-
quires that |q| < 1/l, hence Λ . 1/l. As discussed in
connection with Eq. (15), we require |ν| < ωD < 1/τ ,
and therefore |m| < M = ωD/(2πTc). Since we work
in a regime where Tc � ωD [i. e. small λ, see Eq. (23)],
M is rather large. Indeed, Ref. [5] proposes using
Λ = 1/l and M = ωD/(2πTc) (but then abandons the
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quantum fluctuations altogether). However, since the
phonon-mediated attraction arises only for momenta
within ωD/vF from the Fermi momentum, and since
l = vF τ and ωD � 1/τ , one might argue that we
should use Λ = min{1/l, ωD/vF } = ωD/vF [15].

It should be noted that in principle one has to in-
clude also fluctuations with larger wave-lengths, up to
the Fermi momentum pF . It has been known for a
long time that the short-range correlations determine
the critical behavior of the internal energy [16]. In the
range Λ < 1/l < q < pF i. e. on distances shorter
than the mean free path, the superconducting fluctua-
tions are those of a clean superconductor. Decreasing l
then yields the crossover from the clean to the dirty be-
havior. We are not aware of such a full calculation, and
it certainly goes beyond the scope of the present paper.
It is also not clear yet how to deal with the fluctuations
in the intermediate range Λ = ωD/vF < q < 1/l. As
we show below, our main result is not very sensitive to
the choice of Λ. In any case, our calculation gives a bet-
ter description of the ‘extremely’ dirty supercunductor,
when Λ and 1/l approach pF .

It is now convenient to switch to dimensionless
quantities: Q = q/Λ, δ = Λl and

γ =DΛ2/(4πTc) = δ2/(4πdTcτ)

=MωDτ/(2d) = M(ωD/EF )pF l/(4d) . (31)

In total, the problem is described by three dimension-
less numbers, namely δ, γ and M , which depend on
ωD/Tc, ωD/EF and pF l. With these, we write

a(Q,m, t) ≈ t+ Ψ
[

1 + |m|
2

+ γQ2

]
−Ψ

[
1
2

]
(32)

and

C(d)
m =

1∫
0

Qd−1dQ

[
1

a(Q,m, t)2
− 1
a(Q,m, t)

]
.

(33)
Note that C(d)

m depends only on t and on γ.
With upper cutoffs, all the integrals over Q in

Eq. (33) remain finite, except for the ‘static’ terms with
m = 0. We therefore start with a detailed discussion of
the ‘static’ term, C(d)

0 . The function a(Q, 0, t) is small-
est for small |t| and |Q|. Defining Q2

1 = 0.001/γ (the
prefactor 0.001 is arbitrary, chosen so that γQ2 � 1),
we now divide the integration over Q into two regimes.
In the first, for 0 < |Q| < Q1, we use the GL-like
expansion

a(Q, 0, t) ≈ t+ cQ2 , (34)

where

c = Ψ′[1/2]γ ≡ π2γ/2 , (35)

Ψ′(z) being the derivative of Ψ(z). Within this approx-
imation, ξ =

√
c/t/Λ =

√
πξ0l/(8dt), is the cor-

relation length associated with the fluctuations of the
Gaussian ‘static’ dirty mode. Here, ξ0 = vF /Tc is the
(T = 0) coherence length of the pure superconductor,
and we assume ξ0 � l [2].

We next write C(d)
0 = C

(d)
0,0 − C

(d)
0,c , with C(d)

0,c =

C
(d)
0,1 − C

(d)
0,2 + C

(d)
0,3 . Here and below, the subscript c

stands for ‘correction’. The first term in C(d),

C
(d)
0,0 =

∞∫
0

Qd−1dQ

(t+ cQ2)2
= At(d−4)/2 , (36)

represents the leading singular contribution. Here,A =
Id/c

d/2 and

Id =

∞∫
0

xd−1dx/(1 + x2)2 = (2− d)π csc(dπ/2)/4

(37)
is equal to 0.5 at d = 2 and to π/4 for d = 1, 3. The
correction terms include

C
(d)
0,1 =

∞∫
Q1

Qd−1dQ

(t+ cQ2)2
=

Qd−4
1

(4− d)c2
+O(t) , (38)

C
(d)
0,2 =

1∫
Q1

Qd−1dQ

a(Q, 0, t)2
=

1∫
Q1

Qd−1dQ

a(Q, 0, 0)2
+O(t) ,

(39)
and

C
(d)
0,3 = C

(d)
0,3′ +

1∫
Q1

Qd−1dQ

a(Q, 0, 0)
+O(t) , (40)

where C(d)
0,3′ =

∫ Q1
0 Qd−1dQ/(t + cQ2). For d = 3,

all the integrals in C(3)
0,c converge even at t = 0. For

d ≤ 2, C(d)
0,3′ diverges at t = 0: C(2)

0,3′ = ln[cQ2
1/t]/(2c)

and C(1)
0,3′ = π/[2(ct)1/2] − 1/(cQ1). This term adds

a negative singular correction to C(d)
0 , causing an in-

crease inC(d)
0,c at small |t|. For reasons explained below,

we calculate this term for t = tG = tG,static/2
2/(4−d)

[see Eqs. (44) and (46) below]. This value of t is at
the border of the Ginzburg region, where we need to
evaluate C(d)

0,c . For the range of parameters used below,
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C
(2)
0,3′ turns out to be negligible compared to the total

correction term. Both C(3)
0,c and C(2)

0,c decrease fast from
large positive values as γ increases towards 0.5, and
then decrease much more slowly as γ increases above
0.5. For fixed ωD/EF and pF l, γ is proportional to
M ∼ ωD/Tc [see Eq. (31)], so that it increases as Tc
decreases.

We now turn to the quantum terms, Cm(γ) with
m 6= 0. All these terms have finite non-zero values at
t = 0. Furthermore, since Ψ[(1+|m|)/2]−Ψ[1/2] > 1
for all m 6= 0, the integrand in Cm is always negative,
henceC(d)

m < 0. At γ = 0, one hasC(d)
m = {1/(Ψ[(1+

|m|)/2]−Ψ[1/2])−1/(Ψ[(1+|m|)/2]−Ψ[1/2])2}/d,
which stays between 0.2/d and 0.25/d for 1 ≤ m ≤ 10
and then decreases very slowly as m increases. As γ
increases, C(d)

m decreases slowly. In any case, the sum
over m grows as the cutoff M grows (i. e. as Tc de-
creases), and adds to the correction term in the specific
heat,

C(d)
c = C

(d)
0,c − 2

M∑
m=1

C(d)
m . (41)

At small Tc, M is large and (unlike C(d)
0,c ) the total

correction term C
(d)
c increases with decreasing Tc, see

Fig. 1.
Writing

C
(d)
fl ≈ SdΛd[At(d−4)/2 − C(d)

c ] , (42)

see Eq. (36), the correction C(d)
c becomes important as

one moves away from Tc and t increases. Equation (42)
shows that the calculated C(d)

fl becomes negative when
t < t0, where

t0 ≡
( A

C
(d)
c

)2/(4−d)

=
[
Id

C
(d)
c

(8d
π

Tc
ωD

1
(ωDτ)

)d/2]2/(4−d)

=
[
Id

C
(d)
c

(8d
π

Tc
ωD

2EF
ωD

1
(pF l)

)d/2]2/(4−d)

. (43)

This threshold decreases rather fast as Tc decreases.
For d ≤ 2, C(d)

c contains the t−dependent term C
(d)
0,3′ ,

and one has to solve for t0 iteratively. Since the spe-
cific heat should always remain positive, we conclude
that the Gaussian approximation becomes questionable
at t < t0. In that regime one should add higher order
terms to the free energy. As we see below, one never

Fig. 1. The correction term C
(d)
c in the Gaussian specific heat

(thick line) and the discontinuity in the Landau specific heat
∆C(d)/(SdΛd) (thin line) at d = 3 (top) and at d = 2 (bottom),
for ωD = 400 K, EF = 105 K and pF l = 10. For C(2)

c we used
t = tG = .4/(πpF l) = 0.012.

reaches this ‘forbidden’ regime, since we always have
tG & t0.

4. The Ginzburg region

The fluctuations become dominant when their con-
tribution to the specific heat C(d)

fl (t) becomes com-
parable to or larger than the mean-field discontinuity
∆C(d) [5]. Comparing Eq. (42) with ∆C(d) gives the
so-called Ginzburg criterion,

tG =
(
[∆C(d)/(SdΛ

d) + C(d)
c ]/A

)−2/(4−d)
. (44)

Since we find that C(d)
c is mostly positive, it causes a

decrease in tG, which becomes more and more signifi-
cant as more and more quantum fluctuations are added
(i. e. at lower Tc) (although it also contains ‘classical’
corrections from C

(d)
0,c ). Counterintuitively, quantum

fluctuations may reduce the Ginzburg regime!
Using Eq. (26), together with Λ = ωD/vF , we find

∆C(d)

SdΛd
= 5
(2EF
ωD

)d Tc
EF

, (45)
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which is linear in Tc, with a large slope.
We now consider the dependence of tG on the tran-

sition temperature Tc. Figure 1 shows the dependence
of both terms in the denominator of Eq. (44), C(d)

c and
∆C(d)/(SdΛ

d), on Tc. At high Tc, the correction term
is small, and one may neglect is and obtain the ‘usual’
‘static’ Ginzburg criterion tG,static, see below. How-
ever, at low Tc the correction term becomes large, and
it cannot be ignored. The two curves in Fig. 1 inter-
cept at crossover temperature T×. Although both ωD
and EF are much larger than Tc, usually ωD is much
smaller than EF , and therefore the slope 5(2EF /ωD)d

in Eq. (45) becomes quite large at d = 3, yielding a rel-
atively small T×. For example, if we use EF = 105 K,
ωD = 400 K and pF l = 10, the resulting value for the
crossover temperature is T× ≈ 0.024 K (see Fig. 1).
However, the crossover temperature T× becomes sig-
nificantly larger at lower dimensions: At d = 2 we find
T× ≈ 1 K.

Since the cutoff on the momenta enters only via
the dimensionless parameter γ, and since C(d)

c varies
slowly with γ at large γ, it turns out that the results for
T× are not very sensitive to the value of the cutoff Λ.
This is true for all pF l > 1 in d = 3, and for pF l > 2
at d = 2. Therefore, the questions raised above, before
Eq. (31), may not be too severe. For d = 1 the equa-
tions yield Tc ∼ 3 K, but they also yield tG ∼ 200,
which is certainly beyond the range of the approxima-
tions used above. However, the latter value is consis-
tent with Ref. [8], which found very large effects of the
quantum fluctuations in one dimension.

For Tc � T× we can neglect the second term in the
square brackets in Eq. (44), and reproduce the ‘usual’
static Ginzburg criterion,

tG,static =
[
SdIdΛ

d

cd/2∆C(d)

]2/(4−d)

=
[
Id
5

(4d
π

)d/2( Tc
EF

)(d−2)/2 1
(pF l)d/2

]2/(4−d)

, (46)

as found in many earlier papers [5, 15]. Interestingly,
tG,static increases with Tc at d = 3, does not depend
on Tc at d = 2 and deacreases with Tc at d = 1. In-
deed, this approximate expression has been adopted in
most of the literature [5]. However, as Tc approaches
T× the square brackets in Eq. (44) increase, and tG
decreases relative to Eq. (46). At Tc = T× we have
tG = tG,static/2

2/(4−d), as used in the plot of C(2)
c

in Fig. 1. Eventually, Eq. (46) is no longer valid for
Tc < T×.

For Tc < T×, the square brackets in Eq. (44) are
dominated by C(d)

c . This means that the difference be-
tween the two terms on the right hand side of Eq. (42),
which is of order ∆C(d), is very small. As a result, the
solution tG to the equation C

(d)
fl = ∆C(d) becomes

very close to t0, where the approach must be aban-
doned. Since we still have tG & T×, and we must
stay above tG, we never encounter the regime t < t0.
However, for Tc < T× the higher order terms in C(d)

fl

may be important even above the calculated tG.
The ‘static’ tG,static and corrected (lower) tG Ginz-

burg criteria are plotted in Fig. 2. Unfortunately, for the
parameters used above the value of tG at the crossover
point T× for d = 3 becomes of order 10−10, which
is not realistic experimentally. In contrast, at d = 2
we find tG ≈ 0.012, which is quite reasonable. These
numbers are proportional to 1/(pF l)

d/(4−d), so they in-
crease with increasing disorder.

Fig. 2. The ‘static’ (upper curve) and the corrected (lower curve)
Ginzburg ranges versus the transition temperature, at d = 3 (top)
and d = 2 (bottom), for the same parameters as in Fig. 1. The

vertical lines show T×.
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5. Summary and discussion

Our main result concerns the crossover tempera-
ture T×, at which the (classical and quantum) correc-
tions to the leading divergent Gaussian specific heat be-
come equal to the Landau mean-field discontinuity in
the specific heat. When the superconducting transition
temperature Tc is larger than T×, the Gaussian fluctu-
ations (and especially the quantum ones) cause a (sur-
prising) decrease in the Ginzburg region, by a factor
which can be as large as 22/(4−d) [see Eq. (44)]. How-
ever, when Tc is smaller than T×, the Landau mean-
field discontinuity becomes smaller than the contribu-
tion from the fluctuations, so that the Ginzburg cri-
terion implies an almost vanishing Gaussian specific
heat. Therefore, one should no longer use the specific
heat to deduce the Ginzburg criterion.

In three dimensions we estimate T× ≈ 0.025 K,
which is rather low. However, T× increases at lower
dimensions, which casts doubts on the use of the ‘stan-
dard’ Ginzburg criterion for low transition temperature
superconductors in those dimensions.

It should be noted that we derived the Ginzburg cri-
terion above Tc, based on the specific heat. Other
derivations of the Ginzburg criterion are mainly below
Tc, e. g. comparing the fluctuations in the order param-
eter to its average value [15], or comparing the order-
ing free energy in a coherence volume to kBT [17]. In
Ref. [9] we compared the persistent current due to the
Gaussian fluctuations to that generated by the quartic
term in the GL free energy. All of these criteria give
the same scaling with the basic physical parameters of
the problem, but yield different prefactors. Future work
should consider the effects of quantum fluctuations on
these other criteria.

It should also be noted that similar correction terms
arise in all phase transitions (even without the quantum
fluctuations). We hope that our paper will stimulate
more discussion of such corrections in other cases.
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