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Market participants who capitalize on high-frequency price dynamics and rely on automated trading are responsible, along
with market makers, for the observed level of market efficiency. The remaininginefficiency is usually measured as the ratio of
expected P&L, derived from the price signals, to its standard deviation. Such signals are also termedalpha in market slang.
Signals and their volatility depend on time in a different manner, leading to temporal diversification and rise of multi-step
strategies. It is shown that the coexistence of small market inefficiencies, multi-step strategies, and market impact lead to price
randomization. In other words, high-frequency strategies redefine prices in their attempt to amplify weak price signals, and
make markets more effective. In this paper we identify and explore discrete and continuous strategies. We further demonstrate
that strategies within the domain of weak inefficiency are stable when incorporated into regular risk-return framework. In the
presence of market impact we show how an efficiency edge propagates towards smaller time scales.
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1. Introduction

A market participant who has instantaneous access
to all public market information would have an ad-
vantage over real-world traders. When the efficient
market hypothesis asserts that this information, or, at
least, all price-based information, is incorporated in the
prices, [1, 2], it leads to the question of how exactly
such incorporation is accomplished [3]. If one be-
gins with a price process containing signals, what is
the mechanism of price adjustment which can diminish
or eliminate signals? Daily operations of prime broker-
dealers, hedge funds [4] and major vendors [5] offer-
ing alpha-generating products provide an insight that
the available level of efficiency is the result of joint
action of well-capitalized and numerous market par-
ticipants seeking excess returns. The shorter are the
time scales where market participants operate the more
challenging and demanding their infrastructure has to
be [6]. While the efficiency progresses towards short
times, decade by decade, thequantitativedescription of
theefficiency edgeis always of interest. There are mul-
tiple potential sources of signals at short time scales,
where tick-by-tick information includes price and vol-
ume patterns, order book with its layers, and behav-
ioral dynamics. Quantitative analysis of the efficiency

edge should be able to connect the details of the market
microstructure at short time scales to the conventional
long-term drift-diffusion behaviour of prices. In this
paper the ideal or classical efficiency is not considered.
The efficiency edge is understood as a boundary be-
tween weak and strong inefficiency, or between large
and short time scales, respectively.

The simplest model which enables one to study both
efficient (long) and inefficient (short) time scales within
a single framework is that of autocorrelated process.
While hopelessly naive at short time scales, where sin-
gle price is replaced by market microstructure around
the bid-ask spread, the model is quite instructive in cap-
turing the interplay of price signals, market impact, op-
timal strategies and their feedback on the price process
on both sides of the efficiency edge. In this paper we
consider a price model which uses signals of two differ-
ent types. The first type is the exogenous expectation of
price increments, which is usually derived from predic-
tors other than the price itself. Its leads to a term struc-
ture of such expectations. The second type is the price
self-predictability manifested in the auto-correlation of
the price process.

We then introduce dynamic strategies on such a price
process, and show that by decreasing time steps, in the
domain of strong inefficiency, a multi-step optimized
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strategy leads to an inherent parametric sensitivity,
where even signs of the position (whether it is long or
short) at any moment in time are not determined by the
signs of the price forecasts at that time, but are instead
dictated by global constraints. The positions exhibit a
divergent or “choppy” nature, and rely, with high sen-
sitivity, on the details of the price forecasts and price
correlations. While the used price model is too sim-
plistic in this domain, the sign-changing solutions dis-
play behavior reminiscent of what happens at the bid-
ask spread, when intermittent trades at bid and ask side
are considered.

We then explore these strategies in the continuous
limit, under constrains that they remain smooth in price
and time, and show that some properties of the price
process, the so-called transport coefficients, is what re-
mains of signal and correlation on the efficiency edge,
namely, on the weakly efficient side of it. The two dif-
ferent types of signals are needed since the first one sur-
vives, in modified form, the application of continuous
limit (price drift), while the second one does not (auto-
correlation gets encapsulated in drift and diffusion).

With market impact explicitly taken into account in
Section 4 we show how smooth strategies acquire addi-
tional time scale of optimal position rebalancing, lead-
ing to non-local solutions in time. Holders of such op-
timal positions should be either (i) self-limited in size
either due to market impact or (ii) grow until the price
process is completely modified, and randomness (or ef-
fectiveness) is established at short time scales. It pro-
vides a mechanism of efficiency propagation toward
smaller time scales.

2. Price-insensitive positions

While we intend to study dynamic strategies re-
solved in time and price simultaneously, in this Section,
in order to begin the study, the positions in the under-
lying security depend only upon timet, and not on the
price variable,S.

2.1. Price process with autocorrelation

The short-term intraday price dynamics is assumed
to be non-Markovian. In discrete time setting it has the
form

St = St−1 + µt + σξt , (1)

wheret is the time index. While the time structure of
expected price incrementsµt is resolved here, these
increments are assumed to be small (with respect to

their standard deviations), as market is close to being
effective, and therefore the term structure of price vari-
ances is disregarded in this section, with the exception
of step-to-step autocorrelation. Thus,σ is the time-
independent standard deviation of the period price in-
crements, andξt is the random number, different for
every time step, historically distributed. (ξ is scaled to
have the mean value of zero and standard deviation of
one.) To establish price self-predictability the random
numbers for subsequent time stepsξt are assumed to be
correlated,〈ξtξt+1〉 = ρ. The time-dependence of such
correlation is disregarded here.

Suppose, further, thatφt is the position we intend to
establish at timet. This position could subsequently be
revised, if needed, at any time step prior to reaching the
time momentt, or att, however consideration of such
revisions is postponed until Section 3.6. Our intention
is to determine optimal positions from the risk-return
perspective.

2.2. Autocorrelation and time step. Stabilization

Since the value of the time step isa priori unknown,
and its change should take us through the efficiency
edge, it is useful to coarse-grain the model Eq. (1). If
the time step is doubled, i. e. every two time steps are
collapsed into one, the expected increment is then the
sum of the two contributing increments, volatility gets
multiplied by2(1 + ρ) times and autocorrelationρ be-
comesρ′,

ρ′ =
ρ(1 + ρ)

2
, (2)

When time steps are doubled, this map possesses a sin-
gle attractor,ρ = 0. (The other root,ρ = 1, is a re-
peller.) By period-doubling one could suppress auto-
correlation.

The inverse map has a single attractor atρ = 1 if
iterated with a positive initial condition. With negative
initial condition it is not single-valued, and depend-
ing upon the branch taken diverges either in one step
or, otherwise, in a few steps. By period-halving one
quickly increases auto-correlation.

We will show below in Subsection 2.4 that the time
step where|ρ| = 1

2 is the efficiency edge for model
(1). Regular risk-return considerations at larger corre-
lations or smaller time scales are not applicable. If a
certain time scale∆t is found to possess a seed cor-
relationρ then the smaller time scale∆tρ/2 suggests
the efficiency edge based on inverse map. We use the
word “suggests” as the small-scale correlation structure
obtained via inverted map provides only an educated
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guess: it should be sampled directly. However, as we
shall see below, within the model (1) the optimal strate-
gies at|ρ| < 1

2 are smooth, while in the other case,
|ρ| > 1

2 they exhibit parametric sensitivity, and should
appear random from a practical viewpoint.

As mentioned in the introduction the single-valued
price assumption usually becomes invalid before con-
dition |ρ| = 1

2 is reached. At small time scales the bid-
ask gap is an obstacle for P&L expressions like Eq. (3),
as the definition of execution price in (3) and gap-
averaged price in Eq. (1) is not the same anymore. (The
execution price is quantized, while the gap-averaged
price doesn’t have to be.) In fact, the elevated fre-
quency of selling at the ask price and buying at bid is
one of the remnants of the choppy strategies (explained
in detail in Subsection 2.4) in presence of the bid-ask
spread.

2.3. Two time steps

In the simple two-step setting it is already instructive
to study the properties of optimal positions in presence
of autocorrelation. Let the first time step to be between
the timest = 0 andt = 1, and the second step to take
place between the timest = 1 and t = 2. The P&L
earned over the first time step is

X1 = φ0(S1 − S0) , (3)

and over two time steps it is

X2 = φ0(S1 − S0) + φ1(S2 − S1) =

φ0(µ1 + σξ1) + φ1(µ2 + σξ2) , (4)

where we used Eq. (1). The expected P&L for the two
periods together is̄X2 = φ0µ1 + φ1µ2, and the two-
period variance isV2 = σ2(φ2

0 + 2ρφ0φ1 + φ2
1), where

ρ is the correlation coefficient betweenξ1 andξ2. It is
a common practice to have a P&L goal in terms of ex-
pectedX̄2 and minimize standard deviation for a given
expectation, in the efficient frontier framework. The
search for the minimum of standard deviation could be
replaced by the search of the minimum of variance, and
the external condition on expectation,X̄2 = X0, could
be incorporated via a Lagrange multiplier,λ. The min-
imum of

L = V2 − λ(X̄2 −X0) (5)

could further be replaced with the maximum ofX̄2 −
X0 − λ1V2, whereλλ1 = 1 and sinceX0 is a constant
here, it also delivers the maximum of̄X2 − λ1V2 (usu-
ally considered in utility function applications which
therefore leaveλ1 unspecified).

Differentiating Lagrangian,L, in Eq. (5) with re-
spect toφ0, φ1, λ, setting the derivatives to zero and
solving the resulting equations one finds

φ0 =
(µ1 − ρµ2)X0

D
, φ1 =

(µ2 − ρµ1)X0

D
, (6)

whereD = µ2
1 − 2ρµ1µ2 + µ2

2. The minimal variance
is given by

V2 =
(1− ρ2)σ2X2

0

D
, (7)

and the signal-to-noise (Sharpe) ratio is

Sh2 =

√
D

(1− ρ2)σ2
. (8)

Despite the elementary nature of this derivation one
could already see rather peculiar properties of the opti-
mal positions in presence of autocorrelation.

At zero correlationρ = 0, both periods simply
make their contributions to the positions via weights,
µ1/(µ2

1 +µ2
2) andµ2/(µ2

1 +µ2
2). However at large cor-

relations, say in theρ → 1 limit, the positions become
opposite to each other inφ0 ' X0/(µ1 − µ2) ' −φ1.
This dependence also has a singularity at equal ex-
pected increments,µ1 = µ2. If the first increment is
larger,µ1 > µ2, the position for the first step is positive
regardless of the sign on the expected incrementµ1.
Optimal position for the second time step is then neg-
ative, and equal to the first one by absolute value. The
alternating sign of the two-period optimal positions at
large positive correlations is quite different from what
one could have arrived at by using step-by-step opti-
mization. For example, at large positive correlations,
with positiveµ1 andµ2, the step-by-step optimization
implies keeping a positive position,

φ0 = X0/(2µ1) > 0 , φ1 = X0/(2µ2) > 0 . (9)

At large negative correlations, the optimal position re-
mains unchanged att = 1, φ0 ' φ1 ' X0/(µ1 + µ2),
producing, again, an answer that has nothing to do with
the step-by-step optimization. The latter leads to alter-
nating positions, asµ1 andµ2 are likely to have oppo-
site signs in (9).

Both two-step optimal strategies have diverging
Sharpe ratio,Sh2 ∝ (1 − |ρ|)−1, implying that
the strategies take advantage of predictability offered
by high correlation to greatly diminish the two-step
volatility. It is this property of global versus local opti-
mization which allows one to guess in advance that the
corresponding multi-period problem ought to possess
solutions with alternating signs.
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2.4. Multi-step discrete setting

Let us consider a case where expectations of price
increments are available for many time steps in ad-
vance. Although each time step amounts only to a
small revision of expected increments, the problem
with the two-step optimization is not resolved in multi-
step setting as we shall see below.

The P&L and its variance are given by

Xn =
m=n∑
m=1

φm−1(µm + σξm) ,

Vn = σ2
m=n∑
m=1

(φ2
m−1 + 2ρφm−2φm−1) . (10)

Differentiating the Lagrangian

L = Vn − λ(X̄n −X0) (11)

with respect to positionsφ, results in the linear system

Mφ =
λ

2ρσ
µ , (12)

whereM is a tridiagonal Toeplitz matrix, andµ is the
vector of expected increments,

M =



ρ−1 1 0
1 ρ−1 1
0 1 ρ−1 1

.
.
1 ρ−1 1
0 1 ρ−1


, µ =



µ1

µ2

.

.

.

.
µn


.

(13)

The inversion of this matrix is given by

M−1
ij = (−1)i+j Umin(i,j)−1(v)Un−max(i,j)(v)

Un(v)
,

v =
1
2ρ

, (14)

whereUi(v) is the Chebyshev polynomial of the sec-
ond kind of orderi [7, 8]. At small correlations,ρ � 1,
this inverse matrix behaves as

M−1
ij = (−1)i+jρ1−|i−j| , (15)

i. e. decays exponentially away from the main diago-
nal, along with the contribution of forecasts of adjacent
time steps. These contributions are alternating in sign,

providing another hint of what happens at larger cor-
relationsρ. Differentiating (11) overλ and setting the
derivative to zero gives

λ =
2ρσ2X0∑n

i,j=1 M−1
ij µiµj

. (16)

and finally the multi-step optimal positions as seen at
t = 0 are given by

φm =
∑n

i=1 M−1
m+1,iµiX0∑n

i,j=1 M−1
ij µiµj

. (17)

The leadingρ correction at smallρ � 1 could be ob-
tained from (15) and (17)

φm =
µm+1X0∑n

i=1 µ2
i

×
[
1−ρ

(
µm,0+µm+2,0

µm+1,0
− 2

∑n
i=1 µiµi−1∑n

i=1 µ2
i

)]
. (18)

If one puts the normalization aside, then to first order
in the correlationρ, only the nearest neighboring time
steps make contributions to a given position.

Chebyshev polynomials have zeros at|v| < 1 in
(14), i. e. at |ρ| > 1/2. Similar to the two-step
case we encounter here multiple divergences as cor-
relations grow in view of oscillating nature of these
polynomials.1 While the multi-step setting was in-
troduced to diminish the optimal position sensitivity
to single-step updates in Subsection 2.3, it failed as
such. The ARMA(1,1) price process used here is a
reliable model, and therefore one may conclude that
it is namely the step-by-step sensitive,discretenature
of the optimization procedure that leads to oscillating
strategies with strong inter-period coupling, with signs
completely different from the signs of expected price
increments,µ. We call the results of this sectionpara-
metrically unstableor parametrically sensitive, since
parametrization with real market data is always noisy,
while small changes in the measured values of the ex-
pected price incrementsµ and correlationρ may lead to

1 Consider the following numerical 4-period example:µ1 = 0.1,
µ2 = 0.11, µ3 = 0.09, µ4 = 0.1. Using (17) one finds at
ρ = 0.62 the following strategy in terms of the expected P&L
X0: φ1 = −64.46, φ2 = 96.98, φ3 = −99.64, φ4 = −57.45.
However, atρ = 0.63 the strategy isφ1 = 21.32, φ2 = −23.11,
φ3 = 27.17, φ4 = −10.36. Only the last period sign hap-
pened to be the same, and it is negative, while last period signal
is positive. In fact, the position sizes go through a singularity at
ρ = 0.62203. For reference we also list the answer atρ = 0.1,
φ1 = 2.58, φ2 = 2.67, φ3 = 2.03, φ4 = 2.65, in agreement
not only with the signs but also with relative amplitudes of the
signals.
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complete revision of the optimal positions. Given the
parametrization uncertainty, there are no optimal posi-
tions here at all: the strategy is simply random.

3. Strategies resolved in time and price

We are now interested in the class of strategies which
do not change dramatically from step to step, or from
price to price, as a result of global optimization, un-
less it is warranted by the local signal, which is also
assumed to be smooth. The corresponding limit of the
master equation governing the stochastic process (1) is
that of the drift-diffusion (aka continuous) approxima-
tion. Presence of autocorrelation makes the derivation
of this approximation somewhat involved.

3.1. Lattice model and the continuous approximation

In order to derive the drift- diffusion approximation
we first introduce a lattice model on(t, S). On a binary
recombining tree (aka tilted square lattice) consider a
node at a certain time and price,(t + ∆t, S), which is
connected with two preceding nodes(t, S − ∆S) and
(t, S + ∆S), and two subsequent nodes,(t + 2∆t, S−
∆S) and(t + 2∆t, S + ∆S).

Fig. 1. Lattice.

We now introduce a probabilistic description which
naturally accounts for the price drift and autocorre-
lation of the ARMA(1,1) process (1). Let the prob-
ability of passing through the node(t, S) and node
(t + ∆t, S + ∆S) to be denoted asP (t, S), while the
probability of passing through the node(t, S) andnode
(t + ∆t, S −∆S) to be denoted asQ(t, S).

Now, the price trajectories which arrive at the node
(t + ∆t, S) from above, i. e. from(t, S + ∆S) are de-
scribed by the probabilityQ(t, S + ∆S). Suppose a
fraction q of these trajectories continues to go down,
and contribute toQ(t+∆t, S), while the fraction1−q

reverts up, and contributes toP (t + ∆t, S). Simi-
larly, the price trajectories which arrive at(t + ∆t, S)
from below, i. e. from(t, S − ∆S) are described by
the probabilityP (t, S −∆S). Suppose a fractionp of
these trajectories continues to go up, and contribute to
P (t+∆t, S), while the fraction1−p reverts down, and
contributes to(t + ∆t, S). Thus, the master equations
on the lattice read

P (t + ∆t, S) = pP (t, S −∆S)

+ (1− q)Q(t, S + ∆S) ,

Q(t + ∆t, S) = qQ(t, S + ∆S)

+ (1− p)P (t, S −∆S) .

(19)

These probabilities are normalized by summation over
price index S,∑

S

[P (t, S) + Q(t, S)] = 1 . (20)

Assuming detailed balance,

(1− q)Q ' (1− p)P , (21)

and expanding these equations to the second order in
∆S and to the first order in∆t one finds

∂tR = A∂SR + 1
2B2∂2

SR ,

A =
(q − p)∆S

(2− p− q)∆t
, B2 =

(q + p)(∆S)2

(2− p− q)∆t
, (22)

whereR stands for probability density corresponding
in the continuous setting to eitherP or Q, or to most
of their linear combinations, including the combination
P + Q, the usual probability of visiting the point(t, S)
regardless of the subsequent direction taken. This is
the definition ofR which is used below. To make the
connection with the previous section one must assume
that

µ =
(p− q)∆S

1− ρ
, ρ = p + q − 1 . (23)

Dependencies of the drift coefficientA and diffusion
coefficient12B2 on the microscopic lattice probabilities
p andq are as follows. The sign of the drift coefficient
is, obviously, that of the differencep− q. In the case of
strong ”momentum”,p+q → 2 orρ → 1, the drift term
diverges, along with the diffusion coefficient (for the
diffusion approximation to be valid one requires pro-
gressively larger times). In the limit of strong ”mean-
reversion”,p + q → 0 or ρ → −1, the drift term
vanishes,A ' (q − p)∆S/2∆t, also along with the
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diffusion coefficient,12B2 ' (q + p)(∆S)2/4∆t, in
agreement with what one would expect.

Equation (22) is one of the central equations of
this study, it describes evolution of probability den-
sities which are spatially (inS) and temporary (int)
smoothed out at distances exceeding the correspond-
ing steps, and thus free of the step-by-step oscillations
which were abundant in the previous section. There is
nothing novel in the observation that at large times an
ARMA(1,1) process obeys a central limit theorem and
its probability evolves in agreement with the Fokker-
Planck equation (22). However, the transition from
the ARMA(1,1) stochastic description of Eq. (1) to the
SDEdS = Adt + BdW , whereW is the white noise
(aka Wiener process), with the coefficients of (22) is
far from being straightforward. It is important for this
study that optimization based on Eq. (22) is free from
oscillating divergences.

3.2. Equations for moments and optimization

Following closely our previous work [9, 10] one
could introduce a more detailedR(t, X, S), whereX is
the account balance accumulated at the point(t, S) as a
result of establishing a dynamic positionφ(t, X, S) in
the security with the priceS. In view of the determinis-
tic relationshipdX = φdS the derivatives with respect
to S could be simply replaced as∂S → ∂S + φ∂X , so
Eq. (22) becomes

∂tR = A(∂S + φ∂X)R

+ 1
2B2(∂2

S + 2φ∂S∂X + ∂2
X)R . (24)

Unlike in the theory of derivatives this is a forward-in-
time PDE. Closed equations for the expected P&L and
its variance,

X̄ =
∫

dX XR(t, X, S) ,

V =
∫

dX (X − X̄)2P (t, X, S) (25)

could be obtained from (24) using integration by parts,
provided that the dynamic strategy is independent on
P&L, φ(t, S). These equations read

∂tX̄ −A∂SX̄ − 1
2B2∂2

SX̄ = −Aφ ,

∂tV −A∂SV − 1
2B2∂2

SV = B2
(
φ− ∂SX̄

)2
.
(26)

Solutions of these equations depend on future time
and price(t, S), and the forward-in-time optimization

leads to strategies which are contingent on these, un-
known future arguments. The corresponding backward
problem with the terminal conditions̄F (t, S) = 0,
V (t, S) = 0,

∂t0F̄−A∂S0F̄ + 1
2B2∂2

S0
F̄ = Aφ ,

∂t0V −A∂S0V + 1
2B2∂2

S0
V = −B2

(
φ+∂S0F̄

)2
,
(27)

is free from such inconvenience, and optimization
could easily be performed. Before we proceed it is
worth noting that the LagrangianL = V − λ(F −X0)
satisfies a similar equation

∂t0L−A∂S0L+1
2B2∂2

S0
L = −B2 (φ+∂S0F̄

)2−λAφ ,
(28)

and thelocally optimal solution is simply given by

φl = −∂S0F̄ − λA

2B2
. (29)

Substituting this result into the first of Eqs. (27), and
assuming constant coefficientsA and B one finds
F̄ (t, S) = λA2(T − t0)/2B2, and att = 0, S = S0

this givesX0 so thatλ = 2X0B
2/A2T . The second of

Eqs. (27) with (29) gives then the variance

V (t, S) =
B2X2

0 (T − t)
A2T 2

. (30)

We will see below that the global optimum (39) is
lower.

Returning to Eqs. (27) one may simplify the prob-
lem by shifting the strategy,φ = −∂S0F̄ + φ1. The
equations become

∂t0F̄ + 1
2B2∂2

S0
F̄ = Aφ1 ,

∂t0V −A∂S0V + 1
2B2∂2

S0
V = −B2φ2

1 ,
(31)

Let us denote asGA(t− t0, S−S0) the Green function
of the left-hand-side operators. It satisfies the equation

∂t0GA−A∂S0GA+ 1
2B2∂2

S0
GA = δ(t−t0)δ(S−S0) ,

(32)
where indexA is the drift. Solutions for the cumulants
are given by means of this Green function,

F̄ (t0, S0) =
T∫
t0

dt
∞∫

−∞
dS G0(t− t0, S − S0)Aφ1(t, S) ,

V (t0, S0) =
T∫
t0

dt
∞∫

−∞
dS GA(t− t0, S − S0)B2φ2

1(t, S) .

(33)
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The Euler equation which minimizes Lagrangian
δL/δφ(t, S) = 0 reads

2B2GA(t, S − S0)φ1(t, S) + λAG0(t, S − S0) = 0 ,
(34)

at t0 = 0, and allows one to determine the strategy
φ1 up to an overall multiplier. Up to this moment the
derivation is independent on whether the coefficients
are constant or exhibit dependence on time and price.

If the coefficients are indeed constant, then substi-
tuting φ1 back into F̄ (0, S0) = X0, using (33), and
integrating, one finds

F̄ (0, S0) =
λ

2

[
exp A2T

B2 − 1
]

= X0 . (35)

Determiningλ from Eq. (35) and substituting it into
(34) we obtainφ1

φ1 = −AX0

B2

exp
[

A
B2 (S − S0) + A2t

2B2

]
exp A2T

B2 − 1
, (36)

The intermediate average unearned P&L and unreal-
ized variance could both be determined from (33) with
thisφ1:

F̄ (t, S) = X0 exp

[
A(S − S0)

B2
− A2t

2B2

]

×
exp A2T

B2 − exp A2t
B2

exp A2T
B2 − 1

, (37)

and optimal future variance is

V (t, S) = X2
0 exp

[
2A(S − S0)

B2

]

×
exp A2T

B2 − exp A2t
B2[

exp A2T
B2 − 1

]2 , (38)

which att = 0, S = S0 reduces to

V =
X2

0

exp A2T
B2 − 1

. (39)

As one could see this global minimum is lower than the
local minimum (30).

The full optimal position could be obtained fromφ1

by adding the−∂SF̄ (t, S) shift

φ(t, S) = −AX0

B2

exp
[

A
B2 (S − S0) + A2(2T−t)

2B2

]
exp A2T

B2 − 1
.

(40)

If the security price grows,p > q, andA < 0 according
to (22), the optimal strategy (40) has contrarian behav-
ior: it decreases the position as price grows and vice
versa. This contrarian behavior is more pronounced
at the beginning of the time interval, and diminishes
thereafter.

At the end we also list the solution of the first of
Eqs. (26) with the strategy (36)

X̄(t, S) = X0 exp

[
A(S − S0)

B2
+

A2t

2B2

]

×
exp A2t

B2 − 1

exp A2T
B2 − 1

. (41)

If integrated overS with GA(T, 0, S, S0) is givesX0 at
t = T .

3.3. Time-dependent transport coefficients

At the beginning of this study, when strategies did
not depend on price, it was the time-dependence of the
price increments that lead to extreme parameter sensi-
tivity. Now, in the drift-diffusion approximation, it is of
interest to find out what is the status of this problem. If
the drift rate,A, and diffusivityB2/2 are functions of
time, the Green function of Eq. (32) is the same func-
tional form, only drift and diffusion lengths are time-
averaged as in (43) below. The solution for the optimal
trajectory now reads

φ1(t, S) = −A(t)X0

B2(t)

×

 T∫
0

dt′
A2(t′)
B2(t′)

exp

(
〈A(t′)〉2

〈B2(t′)〉

)−1

× exp

[
(S − S0)〈A(t)〉

2〈B2(t)〉
+
〈A(t)〉2

〈B2(t)〉

]
, (42)

where

〈C(t)〉 ≡
t∫

0

dt′ C(t′). (43)

As one can see the strategy is smooth, and its sign is
dictated by local signal,A(t).
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3.4. The case of small signals

In the small signal limit, where

(S − S0)〈A(t)〉 � 〈B2(t)〉, 〈A(t)〉2 � 〈B2(t)〉 ,
(44)

there is no difference betweenφ1 andφ. The optimal
strategy follows from (42)

φ1(t, S) = φ(t, S) = −A(t)X0

B2(t)

 T∫
0

dt′
A2(t′)
B2(t′)

−1

,

(45)
which is the continuous analog of Eq. (17) if one sup-
presses the time dependence of diffusivity (such time
dependence was disregarded in the derivation of (17)).
In the continuous limit the one-step lead-lag depen-
dence is not needed: formula (45) corresponds to the
uncorrelated limit of (18) atρ = 0. This approximation
could be called “local”, as this result could be obtained
directly from (29).

Thus, in the small signal limit,if the signal is price-
independent, then there is no need to consider price-
dependent strategies.

Similar calculation could be carried out in the case
where the drift coefficient is price-dependent,A(t, S)
but the diffusivity is not,B(t), which is the most rele-
vant case from practical viewpoint. The optimal strat-
egy is simply

φ(t, S) = −A(t, S)X0

B2(t)

[ T∫
0

dt′

B2(t′)
√

2π〈B2(t′)〉

×
∞∫

−∞

dS′ A2(t′, S′) exp

(
−(S − S0)2

2〈B2(t′)〉

)]−1

. (46)

While this strategy is price-dependent, it is also local,
and also could be obtained directly from (29).

We have seen above that after expanding the exact
discrete Eqs. (19) in the continuous limit (the drift-
diffusion approximation) the auto-correlation between
time intervals is encapsulated in the transport coeffi-
cients,A,B. In other words, in the class of smooth
optimal strategies the residual auto-correlation is irrel-
evant as long as drift and volatility are properly deter-
mined.

Finally, Eq. (46) provides an answer for the question
of what happens if the small signal is price-dependent.
As one could see, things do not change much in the
local approximation: the optimal position is still pro-
portional to the local signal. It is normalization, or La-
grange multiplierλ, that gets modified to take into ac-

count possible price trajectories with their appropriate
weights given by the Green function.

3.5. Multiple securities

For a price vectorS = (S1, ..., Sn), and positions
vectorφ = (φ1, ..., φn) the stochastic variables in the
drift-diffusion approximation are driven by coupled Ito
SDEs

dSk = Akdt + BkdWk , k = [1, n] ;

dX = φmdSm ,
(47)

where summation over repeating indices is understood,
anbm ≡

∑k=n
k=1 akbk. The PDE for the probability dis-

tribution of having an unearned P&L,R(F,S, t), anal-
ogous to forward Eq. (24), is given by

∂tR = Ak(∂k + φk∂X)R + 1
2BkBmrkm

×
(
∂k∂m + 2φm∂k∂X + φkφ,∂

2
X

)
R, (48)

with the convention∂/∂Sk = ∂k. The backward equa-
tions for the first two cumulants, generalizing Eqs. (27),
are

∂tF̄ −Ak∂kF̄ + 1
2BkBmrkm∂k∂mF̄ =

Akφk ,

∂tV −Ak∂kV + 1
2BkBmrkm∂k∂mV =

−BkBm
(
φk − ∂kF̄

) (
φm − ∂mF̄

)
.

(49)

The local optimizer is

φk = −∂mF̄ − λ
2N−1

kmAm, Nkm = BkBmrkm ,
(50)

and after normalization (determiningλ) it reads

φk(t, S) = −X0N
−1
kmAm(t, S)

{ T∫
0

dt′

(2π)n/2
×

× 1
〈detN1/2〉

∞...∞∫
−∞...−∞

dS Al(t′,S)N−1
lj (t′)Aj(t′,S)

× exp
[
−1

2 (Si − Si0) 〈N−1
ip (t′)〉 (Sp − Sp0)

]}−1

,

generalizing Eq. (46).



110 S. Esipov / Lith. J. Phys.52, 102–114 (2012)

3.6. Signal updates

At time t = 1 new expectations regarding second-
period price increment are formed,µ11 6= µ10, as
new information becomes available, not necessarily ac-
counted for by the correlation coefficientρ, as the latter
only accounts for (auto)correlation of the price, and the
price forecast may have other predictors.

The revised second period position could be deter-
mined in more than one way. If the ultimate goal is to
achieve a certain P&L, thenφ11 = (X0 − X11)/µ21,
whereX11 = φ00(S11 − S00) is the realized P&L for
the first time step as assessed att = 1 (the second sub-
script here refers to the time when assessment is made).
Regardless of whether the updated second period ex-
pected price increment,µ21, has anything to do with
the its previous estimateµ20, the updated position dif-
fers arbitrarily from the initially proposed value in (6).

If, instead of keeping the P&L goal, the two-step op-
timization procedure is simply rolled over, then the up-
dated optimal position

φ11 =
(µ21 − ρµ31)X0

µ2
21 − 2ρµ21µ31 + µ2

31

, (51)

also differs arbitrarily from the initially proposed value
in (6). Since the value ofµ21 is unknown at the moment
when first positionφ00 is established one cannot in ad-
vance determine whether the two-step optimization is
to be chosen.

The situation is simplified in the case of small sig-
nals where standard deviation of the mean value of the
signal is smaller than period price volatility,σµ � σ.
Explicit account of the second-step signal volatility is
then dwarfed by that of the price and the original model
is recovered. Thus, there is no need to modify the opti-
mization procedure in view of the signal volatility. This
simplification comes under condition that only the truly
”average” part of the signal is left, i. e. the parametriza-
tion procedure for determining expectations of future
period price increments, such asµ20, retains only that
portion of the signal which, on expected basis, survives
the future signal updates.

The price process (1), by itself, is stable with re-
spect to the deterioration of the initial forecastµ20 over
time (which manifests itself in renormalization of the
inter-period correlation coefficient). Consider, for ex-
ample, a model where the forecast update is contingent
on the realized price increment. If such deterioration is
small over one time step (or could be made small by de-
creasing the time step), then to the first approximation
µ21 − µ20 ' γ(S11 − S00) = γ(µ20 + σξ11) ' γσξ11,

whereξ11 is the realized ”random” number for the first
period, as seen fromt = 1. The constant term is ab-
sent here, as there couldn’t be any systematic price-
independent increase or decrease of increments. In
the model, the second price increment acquires depen-
dence on the previous noise term,ξ10 :

S20 = S10 + µ20 + σ(γξ10 + ξ20) . (52)

Since the term in the parentheses here is again a zero-
mean normal number with the variance slightly in-
creased in1+2γρ+γ2 times, and renormalized corre-
lation coefficient is(γ + ρ)/

√
1 + 2γρ + γ2 ' γ + ρ,

the model of Eq. (1) is adequate for describing auto-
correlation and deterioration of expected increments at
the same time. The processes (1) and (52) both belong
to the ARMA(1,1) category, and the latter form shows
both noise terms explicitly. We preferred to work with
the form (1).

4. Market impact

Dynamic optimal strategies obtained above follow
signals regardless of the position size and trading rate.
In practice, both position size and trading rates are con-
strained. Price responds to trading rate and number of
shares traded, this response is known as market im-
pact [11]. Detailed modeling of market impact and
its implications for portfolio rebalancing is a developed
topic [12, 13]. Possession of insider information re-
garding expected future price impact does not contadict
even ideal efficiency, as the trader may determine (from
historical experience and from quantitative analysis)
the price implications for a given trading trajectory,φ.
Analysis of the market impact given below combines
it with weak market inefficiency. In a simpleperma-
nent impact model we consider a contribution to the
drift term which is an odd function of the local rate of
portfolio rebalancing,Aφ = A+a(∂tφ), and the equa-
tions for the cumulants (27) acquire strategy-dependent
drift Aφ. While the general(t, S)-dependent search for
optimal strategies becomes analytically intractable past
Eqs. (33), since the Green functionGA now explicitly
depends on strategy through the drift term, the progress
could be made in the small-signal small-impact approx-
imation, or, separately, forS-independent strategies.

4.1. Small-signal small-impact approximation

While the small-signal limit, along with the avail-
able level of efficiency, are both maintained by joint
action of market participants, the impact magnitude of
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rebalancing someone’s portfolio is entirely in the hands
of portfolio managers. Assuming that it is in the best
interest of the managers to keep the impact small while
taking advantage of the signal (this assumption is re-
laxed in Subsection 4.3), one could study the local ap-
proximation. As explained above, in the local approxi-
mation the difference between the Green function with
the drift and without is negligible, and so is the differ-
ence betweenφ and δ-correctedφ1. In this approxi-
mation Eq. (28) has the following solution for the La-
grangian,L,

L =
T∫

0

dt

∞∫
−∞

dS G0(T − t, S − S0)

×
{
B2φ2 + λφ [A + a(∂tφ)]

}
. (53)

If there is noS-dependence in the drift and diffusion
coefficients, the averaging over prices is reduced to nor-
malization condition and taking derivative with respect
to φ(t) results in the Euler equation

2B2φ + λ
[
A + a(φ̇)

]
= λ

d

dt

[
φa′(φ̇)

]
, (54)

whereφ̇ = dφ/dt. To give an example of what this
Euler equation leads to, consider a family of power-
law impacts,a(x) = a0x

ν with ν > 1. Then Eq. (54)
is satisfied, for instance, by

B2φ(t) = −λA+
{ [

B2φ(0)+λA
] ν−1

ν

−B2t [λa0(ν−1)]−
1
ν

} ν
ν−1

(55)

(there exist other solutions). In presence of signalA
this trading trajectory delivers a time-dependent opti-
mizer for rebalancing portfolio fromφ(0) ≥ φ(t) down
to the local optimizer−λA/B2 which we encountered
in (29). The rebalancing takes finite time,tr, and it is
over when the curly bracket in (55) reaches zero,

tr = B−2 [λa0(ν − 1)]
1
ν

[
B2φ(0) + λA

] ν−1
ν , (56)

If the signal changes considerably over this time scale,
the strategy enters a strong-coupling regime where re-
balancing is not finished by the time a given forecast
expires, and market impact begins to limit the position
trajectory at all times. Clearly, the rebalancing time,tr
increases with the position size, and any growing strat-
egy always becomes impact-limited. When this hap-
pens the position sign may again lose direct relation

to the local signal, and in this sense large portfolios
may act as price randomizers, redefining price volatil-
ity and other refined properties. Indeed, the price pro-
cessdS = [A + a(φ̇)]dt + BdW is contingent on the
strategyφ(t) above.2

On the other side, the rebalancing time decreases as
impact elasticity parameterν approaches 1 from above.
At ν = 1 impact is trajectory-independent, and at
ν < 1 instant rebalancing is favored, this leads toblock
trading, and it is not considered here.

If the drift is time-dependent,A(t), Eq. (54) could
be integrated numerically. If driftA and thereforeφ ex-
hibit joint (t, S)-dependence, the Euler equation reads

G0(T − t, S − S0)
{
2B2φ + λ

[
A + a(φ̇)

]}
=

λ∂t

[
φG0(T − t, S − S0)

da(φ̇)
dφ̇

]
. (57)

or

2B2φ + λ(A + a) = λ∂t(φa′) + λφa′h(t, S) ,

h(t, S) =
(S − S0)2

2B2(T − t)2
− 1

2(T − t)
, (58)

and also requires numerical integration for differentS.
Here φ̇ = ∂tφ. Finally, if price volatility depends on
time, a substitutionB2(T − t) →

∫ T
t dt′B2(t′) should

be done in the Green functionsG0 entering Eq. (57).

4.2. Multiple securities revisited

Market impact for multiple securities is a rela-
tively less understood issue as compared to single-
security case. Assuming for simplicity that each secu-
rity is influenced by its own trading, and disregarding
cross-terms, one could write the solution for multiple

2 Even in the highly idealistic case when there are (i) only two
market participants, and (ii) their views regarding the signals are
identical, and (iii) they make use of the optimization procedure
outlined above, and (iv) they employ the same capital, each par-
ticipant should factor in the presence of the other. Otherwise, a
term proportional to[a(2φ̇) − a(φ̇)] would have to be assigned
to the volatility, thus slightly redefiningB. Since none of the
assumptions above holds true in real markets, there is no quanti-
tative methodology that may separate joint market impact of trad-
ing and that of the news which are exogenous to trading.
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securities Lagrangian in the small-signal small-impact
approximation

L =
T∫

0

dt

∫
dS G0(T − t, S − S0)

× {BkBmφkφm + λφk [Ak + ak(∂tφk)]} . (59)

The system of coupled non-linear Euler ODEs reads

G0(T − t,S − S0)

×
{
2BkBmφm + λ

[
Ak(t, S) + ak(φ̇k)

]}
= (60)

λ∂t

[
φkG0(T − t, S − S0)

dak(φ̇k)
d(φ̇k)

]
, k ∈ [1, N ] ,

(61)

or

2BkBmφm + λ(Ak(t, S) + ak) =

λ∂t(φka
′
k) + λφka

′
kH(t, S) ,

H(t, S) =
∂tG0(T − t, S − S0)
G0(T − t, S − S0)

. (62)

This system requires a numerical solution.

4.3. Market impact at two discrete timesteps

The trading-dependent non-linearity that market im-
pact introduces raises two fundamental questions. The
first question is whether the “roundtrip” strategy could
be made profitable? In other words, could a position
be opened and then closed with different expected im-
pacts? The second question is how does market impact
limit the position size as one increases the value of ex-
pected profitX0?

Let us return to the simple setting of Subsection 2.3,
where, in addition, we assume first returnµ1 is positive
and exceeds the second returnµ2 by absolute value.
Further suppose that a long positionφ is uniformly
opened during the first time step and uniformly closed
during the second. Then the rate of position change
is φ/∆t, and the market impact is±a0(φ/∆t)ν =
±a1φ

ν , where plus sign corresponds to the first step
when the position is opened, and minus sign corre-
sponds to the second time step when the positon is
closed. The total random P&L is

F2 =
φ(µ1 + a1φ

ν)
2

+
φ(µ2 − a2φ

ν)
2

+
σφ(ξ1 + ξ2)

3
,

(63)

and the minmization results in
σ2φ(1 + ρ) = µ1 + µ2 + (a1 − a2)(ν + 1)φν ,

φ[µ1 + µ2 + (a1 − a2)φν ] = 2X0 .
(64)

These equations are instructive. First of alla1 6= a2. 3

At a1 < a2, by increasingX0 in the second equa-
tion (64) one finds that there exists a critical value of
X0c = φc[µ1 + µ2 + (a1 − a2)φν

c ]/2 corresponding to
thelargestpossible position size,φν

c = (µ1+µ2)/(a2−
a1)(ν + 1). At yet larger values ofX0 there is no posi-
tive solution (and could be no solution at all, depending
on ν): the negative impact from positon closure domi-
nates both the signal and the positive impact of position
opening, thus making the goalX0 unfeasable. Depend-
ing on value ofν (e. g. atν = 3) more than one real
root may exist, including negative roots, taking advan-
tage of the impact properties.

At a1 > a2 in the limit of largeX0 and ν > 1
(see Subsection 4.1) the signalsµ1,2 become irrelevant,
φ ' [2X0/(a1 − a2)]1/(ν+1), and profit is made based
on the position “roundtrip”, due to the impact alone.
The parameter relationa1 > a2 implies that opening
positions generates more impact than closing the posi-
tion. Moreover, one can see that the position sizeaf-
ter the market impact taken into account isunlimited
in the model, and therefore the corresponding ineffi-
ciency will be discovered, the impact will grow with
the position sizes assumed by the participants, and the
price process will be surely modified, potentially inval-
idating the data series used to perform parametrization,
on which the conditiona1 > a2 was based. Since cor-
relationρ is not present in the last two paragraphs, the
consideration remains valid on both sides of the effi-
ciency edge.

4.4. Market impact randomizes the price process

The simple two-step example of the previous Sub-
section allows one to consider how the price process
is modified. For this let’s suppose thata1 > a2, and
the value of expected profilX0 is large enough, so that
the impact is the major contributor to P&L. When the
position is opened, at the end of first time step, with ac-
cumulated position,φ = [2X0/(a1 − a2)]1/(ν+1), the
price acquires an additional positive increment

∆Sφ,1 = a1[2X0/(a1 − a2)]ν/(ν+1) . (65)

3 Even if these coefficients are made equal, the equality will be
violated by changing the time step durations.
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Similarly, during the second period one gets an addi-
tional negative increment,

∆Sφ,2 = −(a2/a1)∆Sφ,1 . (66)

Single-step observed volatility is then renormalized

σ2→ σ2 +
(a1 + a2)2

4a2
1

∆S2
φ,1 =

σ2 +
(a1 + a2)2

4
[2X0/(a1 − a2)]2ν/(ν+1) , (67)

i. e. inreases withX0, assuming everything else be-
ing constant. The limita1 → a2, where the market-
impact“roundtrip” P&L vanishes, is singular in terms
of volatility renormalization. This singularity is the re-
sult of removing signalµ1,2 from consideration, and it
is saturated ata1 − a2 ∼ (µ1 + µ2)ν+1(2X0)−ν . Us-

ing the dependenceσ ∝ X
ν/(ν+1)
0 , and terms structure

of volatility at different time scales,T , (on top of
√

T )
one could estimate the amount of capital employed at
different time scales.

Step-to-step correlation is similarly renormalized,

ρ →
ρ− (a1−a2)2

4a2
1σ2 ∆S2

φ,1

1 + (a1+a2)2

4a2
1σ2 ∆S2

φ,1

, (68)

i. e. decreases withX0 while market impact could still
be considered as a perturbation. The growth of volatil-
ity is the major manifestations of price randomization
caused by market impact.4

5. Conclusion

We have studied optimal dynamic investment strate-
gies within a range of timescales in a price model
with external and internal signals (auto-correlation). At
short timescales as determined by temporal correlation
of the underlying security price the optimal strategies
are noisy and parametrically unstable. The signs and
amplitudes of the optimal positions are not determined
by the local properties of the signal, these positions ex-
hibit strong coupling and are essentially global in their
properties. Small change of the correlation assumption
or of the price signal term structure may completely

4 The decrease of correlation is only helpful if the seed correla-
tion was positive. If the seed correlation were negative it would
have become even more negative. The negative contribution to
autocorrelation is simply the result of position being opened and
closed in this example. As all kinds of strategies are explored the
impacted price will exhibit all kinds of trajectories.

modify these strategies. In other words the parame-
ter space(ρ > 1/2,µ) is broken into an infinitely
large number of sub-domains containing quickly vary-
ing term structures of positions. If such large correla-
tions were in existence in a world with single-valued
price, then price at these time scales would have be-
come increasingly chaotic not because the price pro-
cess is assumed random, but because any attempts to
optimize the high-frequency trading under these as-
sumptions lead to practically random strategies, and
randomize the price process with market impact taken
into account. The bid-ask spread trading is the rem-
nant of these oscillations. The net effect of this process
would be propagation of the efficiency edge towards
shorter time scales.

At large timescales correlations enter transport co-
efficients of drift and diffusion, and the market is only
weakly ineffective. The optimal dynamic strategies de-
pending on time and underlying security prices have
been studied globally here for large time-scales in
the continuous or drift-diffusion approximation. They
were found to be contrarian in nature and more so at
the beginning of the time domain rather then at the
end. Extensions to time and price-dependent trans-
port coefficients and to multiple securities are given in
the so-called small-signal approximation, which is also
termed “local”. In this approximation the sign and am-
plitude of positions are simply proportional to the sig-
nal (barring the non-local signal-dependent normaliza-
tion factor if Lagrange multiplier is left unspecified).

Presence of market impact modifies optimal strate-
gies at large time scales, and numerical computations
are required to determine the positions by solving sys-
tems of non-linear ODEs even in the local approxima-
tion. Market impact introduces its own time scale, the
so-called optimal rebalancing time. If this time exceeds
the time step the problem again exhibits strong cou-
pling due to the delays caused by slow trading in view
of market impact. With increasing position size one
finds that a price randomization mechanism operates at
large time scales as well.

We have shown that high-frequency strategies in
presence of market impact provide a mechanism for ef-
ficiency propagation towards smaller time scales. The
larger are the positions the stronger is the randomiza-
tion effect. A number of solutions (or equations to be
solved numerically) is given for optimal strategies, in
the risk-return framework, under the joint effect of in-
efficiency and market impact.
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