[PDF]
        http://dx.doi.org/10.3952/lithjphys.52208
    
    Open access article / Atviros prieigos straipsnis
      
    Lith. J. Phys. 52, 165–179 (2012)
      
    
    LUTTINGER
LIQUIDS
        WITH MULTIPLE FERMI EDGES: GENERALIZED FISHER-HARTWIG CONJECTURE
        AND NUMERICAL ANALYSIS OF TOEPLITZ DETERMINANTS
      I.V. Protopopova,b, D.B. Gutmanc, and A.D.
      Mirlina,d,e
      aInstitut für
        Nanotechnologie, Karlsruhe Institute of Technology, 76021
        Karlsruhe, Germany
      E-mail: alexander.mirlin@kit.edu
      bL.D. Landau
        Institute for Theoretical Physics RAS, 119334 Moscow, Russia
      cDepartment of
        Physics, Bar Ilan University, Ramat Gan 52900, Israel
      dInstitut für Theorie
        der kondensierten Materie and DFG Center for Functional
        Nanostructures, Karlsruhe Institute of Technology, 76128
        Karlsruhe, Germany
      ePetersburg Nuclear
        Physics Institute, 188300 St. Petersburg, Russia
      
      Received 28 March 2012; accepted 7 June 2012
    
    
    It has been shown that solutions
      of a number of many-body problems out of equilibrium can be
      expressed in terms of Toeplitz determinants with Fisher-Hartwig
      (FH) singularities. In the present paper, such Toeplitz
      determinants are studied numerically. Results of our numerical
      calculations fully agree with the FH conjecture in an extended
      form that includes a summation over all FH representations
      (corresponding to different branches of the logarithms). As
      specific applications, we consider problems of Fermi edge
      singularity and tunneling spectroscopy of Luttinger liquid with
      multiple-step energy distribution functions, including the case of
      population inversion. In the energy representation, a sum over FH
      branches produces power-law singularities at multiple edges.
    
    Keywords: non-equilibrium,
    many-body problems, Toeplitz determinants, Luttinger liquids,
    Fermi-edge singularity, tunneling spectroscopy
    PACS: 73.23.-b, 73.40.Gk,
    73.50.Td
    
    
    References / Nuorodos
    
    [1] P.W. Anderson, Phys. Rev. Lett. 18, 1049 (1967), 
    http://dx.doi.org/10.1103/PhysRevLett.18.1049
    [2] P. Nozières and C.T. De Dominicis, Phys. Rev. 178, 1097 (1969), 
    http://dx.doi.org/10.1103/PhysRev.178.1097
    [3] S. Tomonaga, Prog. Theor. Phys. 5, 544 (1950), 
    http://dx.doi.org/10.1143/PTP.5.544
    [4] J.M. Luttinger, J. Math. Phys. 4,
    1154 (1963), 
    http://dx.doi.org/10.1063/1.1704046
    [5] D.C. Mattis and E.H. Lieb, J. Math. Phys. 6, 304 (1965), 
    http://dx.doi.org/10.1063/1.1704281
    [6] A. Luther and I. Peschel, Phys. Rev. B 9, 2911 (1974), 
    http://dx.doi.org/10.1103/PhysRevB.9.2911
    [7] J. Kondo, Prog. Theor. Phys. 32,
    37 (1964), 
    http://dx.doi.org/10.1143/PTP.32.37
    [8] G. Yuval and P.W. Anderson, Phys. Rev. B 1, 1522 (1970), 
    http://dx.doi.org/10.1103/PhysRevB.1.1522
    [9] E.H. Lieb and W. Liniger, Phys. Rev. 130, 1605 (1963), 
    http://dx.doi.org/10.1103/PhysRev.130.1605
    [10] E.H. Lieb, Phys. Rev. 130,
    1616 (1963), 
    http://dx.doi.org/10.1103/PhysRev.130.1616
    [11] V.E. Korepin, N.M. Bogoliubov, and A.G. Izergin, Quantum Inverse Scattering Method and
      Correlation Functions (Cambridge University Press, 1993), 
    http://dx.doi.org/10.1017/CBO9780511628832
    [12] D.B. Gutman, Y. Gefen, and A.D. Mirlin, Europhys. Lett. 90, 37003 (2010), 
    http://dx.doi.org/10.1209/0295-5075/90/37003
    [13] D.B. Gutman, Y. Gefen, and A.D. Mirlin, Phys. Rev. B 81, 085436 (2010), 
    http://dx.doi.org/10.1103/PhysRevB.81.085436
    [14] D.B. Gutman, Y. Gefen, and A.D. Mirlin, Phys. Rev. Lett. 105, 256802 (2010), 
    http://dx.doi.org/10.1103/PhysRevLett.105.256802
    [15] D.B. Gutman, Y. Gefen, and A.D. Mirlin, J. Phys. A 44, 165003 (2011), 
    http://dx.doi.org/10.1088/1751-8113/44/16/165003
    [16] Bosonization, ed. M.
    Stone (World Scientific, 1994), 
    http://www.worldscibooks.com/physics/2436.html
    [17] J. von Delft and H. Schoeller, Ann. Phys. 7, 225 (1998), 
    http://dx.doi.org/10.1002/(SICI)1521-3889(199811)7:4<225::AID-ANDP225>3.0.CO;2-L
    [18] A.O. Gogolin, A.A. Nersesyan, and A.M. Tsvelik, Bosonization
      and Strongly Correlated Systems (Cambridge University
    Press, Cambridge 1998), 
    http://www.cambridge.org/gb/knowledge/isbn/item1157633/
    [19] T. Giamarchi, Quantum
      Physics in One Dimension (Clarendon Press, Oxford, 2004), 
    http://ukcatalogue.oup.com/product/9780198525004.do
    [20] D.L. Maslov, in: Nanophysics:
      Coherence and Transport, eds. H. Bouchiat, Y. Gefen, G.
    Montambaux, and J. Dalibard (Elsevier, 2005) p. 1, 
    http://dx.doi.org/10.1016/S0924-8099(05)80042-3
    [21] M.E. Fisher and R.E. Hartwig, Toeplitz determinants: some
    applications, theorems, and conjectures, in: Stohastic Processes in Chemical
      Physics, Advances in Chemical Physics, Vol. 15, ed. K.E.
    Schuler (John Wiley & Sons, 1969) p. 333, 
    http://eu.wiley.com/WileyCDA/WileyTitle/productCd-0470144009.html
    [22] P. Deift, A. Its, and I. Krasovsky, Ann. Math. 174(2),
    1243 (2011), 
    http://dx.doi.org/10.4007/annals.2011.174.2.12
    [23] K.D. Schotte and U. Schotte, Phys. Rev. 182, 479 (1969), 
    http://dx.doi.org/10.1103/PhysRev.182.479
    [24] D.A. Abanin and L.S. Levitov, Phys. Rev. Lett. 93, 126802 (2004), 
    http://dx.doi.org/10.1103/PhysRevLett.93.126802
    [25] D.A. Abanin and L.S. Levitov, Phys. Rev. Lett. 94, 186803 (2005), 
    http://dx.doi.org/10.1103/PhysRevLett.94.186803
    [26] Y.-F. Chen, T. Dirks, G. Al-Zoubi, N. Birge, and N. Mason,
    Phys. Rev. Lett. 102,
    036804 (2009), 
    http://dx.doi.org/10.1103/PhysRevLett.102.036804
    [27] C. Altimiras, H. le Sueur, U. Gennser, A. Cavanna, D. Mailly,
    and F. Pierre, Nat. Phys. 6,
    34 (2010), 
    http://dx.doi.org/10.1038/nphys1429
    [28] S.G. Jakobs, V. Meden, and H. Schoeller, Phys. Rev. Lett. 99, 150603 (2007), 
    http://dx.doi.org/10.1103/PhysRevLett.99.150603
    [29] D.B. Gutman, Y. Gefen, and A.D. Mirlin, Phys. Rev. Lett. 101, 126802 (2008), 
    http://dx.doi.org/10.1103/PhysRevLett.101.126802
    [30] D.B. Gutman, Y. Gefen, and A.D. Mirlin, Phys. Rev. B 80, 045106 (2009), 
    http://dx.doi.org/10.1103/PhysRevB.80.045106
    [31] M. Trushin and A.L. Chudnovskiy, Europhys. Lett. 82, 17008 (2008), 
    http://dx.doi.org/10.1209/0295-5075/82/17008
    [32] S. Pugnetti, F. Dolcini, D. Bercioux, and H. Grabert, Phys.
    Rev. B 79, 035121 (2009), 
    http://dx.doi.org/10.1103/PhysRevB.79.035121
    [33] S. Ngo Dinh, D.A. Bagrets, and A.D. Mirlin, Phys. Rev. B 81, 081306 (R) (2010), 
    http://dx.doi.org/10.1103/PhysRevB.81.081306
    [34] S. Takei, M. Milletarì, and B. Rosenow, Phys. Rev. B 82, 041306 (R) (2010), 
    http://dx.doi.org/10.1103/PhysRevB.82.041306
    [35] C. Bena, Phys. Rev. B 82,
    035312 (2010), 
    http://dx.doi.org/10.1103/PhysRevB.82.035312
    [36] D.L. Maslov and M. Stone, Phys. Rev. B 52, R5539 (1995), 
    http://dx.doi.org/10.1103/PhysRevB.52.R5539
    [37] I. Safi and H.J. Schulz, Phys. Rev. B 52, R17040 (1995), 
    http://dx.doi.org/10.1103/PhysRevB.52.R17040
    [38] V.V. Ponomarenko, Phys. Rev. B 52, R8666 (1995), 
    http://dx.doi.org/10.1103/PhysRevB.52.R8666
    [39] G. Szegö, Ein Grenzwertsatz über die Toeplitzschen
    Determinanten einer reellen positiven Funktion, Mathematische
    Annalen 76, 490 (1915), 
    http://dx.doi.org/10.1007/BF01458220
    [40] G. Szegö, Orthogonal
      Polynomials, AMS Colloquium Publ. Vol. 23 (AMS, New York,
    1939)
    [41] T. Ehrhardt, in: Recent
      Advances in Operator Theory, Operator Theory: Adv. Appl.
    Series Vol. 124 (Birkhäuser, 2001) p. 217, 
    http://www.springer.com/birkhauser/mathematics/book/978-3-7643-6573-8
    [42] A.G. Abanov, D.A. Ivanov, and Y. Qian, J. Phys. A 44, 485001 (2011), 
    http://dx.doi.org/10.1088/1751-8113/44/48/485001
    [43] D.A. Ivanov, A.G. Abanov, and V.V. Cheianov, arXiv:1112.2530
    (2011), 
    http://lanl.arxiv.org/abs/1112.2530
    [44] E. Bettelheim, A.G. Abanov, and P. Wiegmann, Phys. Rev. Lett. 97, 246402 (2006), 
    http://dx.doi.org/10.1103/PhysRevLett.97.246402
    [45] I.V. Protopopov, D.B. Gutman, and A.D. Mirlin, in preparation