[PDF]     http://dx.doi.org/10.3952/lithjphys.52302

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 214218 (2012)

S. Balakauskasa, A. Koroliova, S. Grebinskij a, M. Senulisa,
K. Šliužienėa, V. Lisauskasa, S. Mickevičiusa , and R.L. Johnsonb
aCenter for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania,
bHamburg Synchrotron Radiation Laboratory HASYLAB at German Electron Synchrotron DESY, Notkestrasse 85, D-22603 Hamburg, Germany
E-mail: bsaulius@pfi.lt

Received 29 August 2011; revised 27 March 2012; accepted 20 September 2012

CuInS2 thin films were produced by a two-stage process by means of the sulfurisation of magnetron-sputtered metallic precursor layers on molybdenum-covered soda-lime glass substrates. Terahertz pulse generation from the surface of CuInS2 thin films excited by femtosecond laser pulses was studied. Terahertz radiation efficiency is dependent on the stoichiometry of the films obtained. The interface formation between vacuum-evaporated CdS and CuInS2 thin films was studied by photoelectron spectroscopy using synchrotron radiation. The valence band offset of 0.7 ± 0.1 eV was determined for the CdS/CuInS2 heterojunction.
Keywords: thin film, CuInS2, photovoltaic absorbers, sulfurisation, terahertz radiation, photoelectron spectroscopy
PACS: 68.35.Ct, 79.60.Dp, 79.60.Jv, 88.40.jn

S. Balakauskasa, A. Koroliova, S. Grebinskija , M. Senulisa,
K. Šliužienėa, V. Lisauskasa, S. Mickevičiusa , R.L. Johnsonb
aFizinių ir technologijos mokslų centras, Vilnius, Lietuva
bVokietijos elektronų sinchrotronas (DESY), Hamburgas,Vokietija

CuInS2 plonieji sluoksniai buvo pagaminti sulfitizuojant magnetroninio dulkinimo būdu nusodintus sluoksnius ant molibdenu dengtų stiklo padėklų. Ištirtas terahercinių impulsų generavimas iš CuInS2 plonųjų sluoksnių paviršių, sužadintų femtosekundiniais lazerio impulsais. Terahercinės spinduliuotės efektyvumas priklauso nuo plonųjų sluoksnių stechiometrijos ir morfologijos. Sandūros formavimas tarp vakuume garinto CdS ir CuInS2 plonųjų sluoksnių buvo tiriamas rentgeno fotoelektronine spektroskopija naudojant sinchrotroninę spinduliuotę. CdS ir CIS valentinių juostų netolydumas yra tiesiogiai nustatytas iš valentinės juostos skirtuminių spektrų ir yra ≈ 0,7 ± 0,1 eV.

References / Nuorodos

[1] R. Klenk, J. Klaer, R. Scheer, M.Ch. Lux-Steiner, I. Luck, N. Meyer, and U. Rühle, Solar cells based on CuInS2 – an overview, Thin Solid Films 480–481, 509–514 (2005),
[2] C. Guillén, CuInS2 thin films grown sequentially from binary sulfides as compared to layers evaporated directly from the elements, Semicond. Sci. Technol. 21, 709–712 (2006),
[3] Seung Jae Roh, Rajaram S. Mane, Habib M. Pathan, Oh-Shim Joo, and Sung-Hwan Han, Rapid growth of nanocrystalline CuInS2 thin films in alkaline medium at room temperature, Appl. Surf. Sci. 252, 1981–1987 (2005),
[4] R. Klenk, J. Klaer, Ch. Köble, R. Mainz, S. Merdes, H. Rodriguez-Alvarez, R. Scheer, and H.W. Schock, Development of CuInS2-based solar cells and modules, Sol. Energ. Mater. Sol. Cell. 95, 1441–1445 (2011),
[5] M. Gossla, Th. Hahn, H. Metzner, J. Conrad, and U. Geyer, Thin CuInS 2 films by three-source molecular beam deposition, Thin Solid Films 268, 39–44 (1995),
[6] Y. Yamamoto, T. Yamaguchi, T. Tanaka, N. Tanahashi, A. Yoshida, Characterization of CuInS2 thin films prepared by sputtering from binary compounds, Sol. Energ. Mater. Sol. Cell. 49 , 399–405 (1997),
[7] Y.B. He, T. Krämer, A. Polity, M. Hardt, and B.K. Meyer, Influence of the preparation conditions on the properties of CuInS2 films deposited by one-stage RF reactive sputtering, Thin Solid Films 431–432, 126–130 (2003),
[8] T. Todorov, E. Cordoncillo, J.F. Sanchez-Royo, J. Carda, and P. Escribano, CuInS2 films for photovoltaic applications deposited by a low-cost method, Chem. Mater. 18, 3145–3150 (2006),
[9] I. Oja, M. Nanu, A. Katerski, M. Krunks, A. Mere, J. Raudoja, and A. Goossens, Crystal quality studies of CuInS2 films prepared by spray pyrolysis, Thin Solid Films 480–481 , 82–86 (2005),
[10] M. Gossla, H. Metzner, and H.-E. Mahnke, Coevaporated Cu-In films as precursors for solar cells, J. Appl. Phys. 86, 3624–3632 (1999),
[11] K. Siemer, J. Klaer, I. Luck, J. Bruns, R. Klenk, and D. Bräunig, Efficient CuInS2 solar cells from a rapid thermal process (RTP), Sol. Energ. Mater. Sol. Cell. 67, 159–166 (2001),
[12] R. Adomavičius, A. Krotkus, J. Kois, S. Bereznev, and E. Mellikov, Terahertz radiation from nonstoichiometric CuInSe2 films excited by femtosecond laser pulses, Appl. Phys. Lett. 87 , 191104 (2005),
[13] D.A. Shirley, High-resolution X-ray photoemission spectrum of the valence bands of gold, Phys. Rev. B 5, 4709–4714 (1972),
[14] R. Adomavičius, A. Krotkus, R. Šustavičiūtė, G. Molis, J. Kois, S. Bereznev, E. Mellikov, and P. Gashin, Optoelectronic surface emitters of terahertz radiation from copper chalcogenides, Electron. Lett. 43, 1458–1459 (2007),
[15] M. Kauk, M. Altosaar, J. Raudoja, A. Jagomägi, M. Danilson, and T. Varema, The performance of CuInSe2 monograin layer solar cells with variable indium content, Thin Solid Films 515 , 5880–5883 (2007),
[16] Y. Hashimoto, K. Takeuchi, and K. Ito, Band alignment at CdS/CuInS 2 heterojunction, Appl. Phys. Lett. 67, 980–982 (1995),
[17] A. Klein, T. Löher, Y. Tomm, C. Pettenkofer, and W. Jaegermann, Band lineup between CdS and ultra high vacuum-cleaved CuInS2 single crystals, Appl. Phys. Lett. 70, 1299–1301 (1997),
[18] B. Johnson, L. Korte, T. Lußky, J. Klaer, and I. Lauermann, CuInS 2–CdS heterojunction valence band offset measured with near-UV constant final state yield spectroscopy, J. Appl. Phys. 106, 073712-1–6 (2009),