[PDF]     http://dx.doi.org/10.3952/lithjphys.52309

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 52, 276283 (2012)

K. Kairytea, Z. Luksienea, M. Pucetaiteb , and V. Sablinskasb
aInstitute of Applied Research, Vilnius University, Saulėtekio 10, LT-10223 Vilnius, Lithuania
bFaculty of Physics, Vilnius University , Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mail: kristina.kairyte@tmi.vu.lt

Received 27 April 2012; revised 27 June 2012; accepted 20 September 2012

The silver nanoparticle colloid was used to obtain surface enhanced Raman spectra of Listeria monocytogenes, Salmonela enterica, and Esherichia coli bacteria. The SERS spectra were captured using for excitation the near-infrared (1064 nm) laser radiation with reduced intensity, which ensured the prevention of the fluorescence background as well as photo- and thermal decomposition of the samples. It was found that the optimal size of silver nanoparticles for the enhancement of the Raman signal in the near-infrared spectral region is ca. 50 nm. The spectral data obtained in this study indicate that relative intensities of SERS spectral bands of bacteria can be used for spectral differentiation of bacteria. In case of Listeria , Salmonela, and Esherichia cells, the intensity ratio of spectral bands of adenine and cysteine can be used as a spectral marker for differentiation of the bacteria.
Keywords: SERS, silver colloid, bacteria identification and differentiation
PACS: 87.64.kp, 87.85.Rs, 87.19.xu

K. Kairytėa, Ž. Lukšienėa, M. Pučetaitėb , and V. Šablinskasb
aVilniaus universiteto Taikomųjų mokslų institutas, Vilnius, Lietuva
bVilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva
Listeria monocytogenes, Salmonela enterica ir Esherichia coli bakterijų Ramano spektrai buvo užregistruoti naudojant sidabro nanodalelių koloidinį tirpalą. Bakterijų paviršiumi sustiprintiems Ramano sklaidos (SERS) spektrams žadinti pirmą kartą buvo panaudotas 1064 nm bangos ilgio lazeris. Nustatyta, kad naudojant 50 nm skersmens sidabro nanodalelių koloidą stebimas didžiausias bakterijų Ramano sklaidos signalo stiprinimas. Galima daryti išvadą, kad bakterijų diferencijavimui SERS spektriniu metodu yra naudotini ne spektrinių juostų dažniai, o jų santykiniai intensyvumai. Listeria monocytogenes, Salmonela enterica ir Esherichia coli ląstelių diferencijavimui tinkamiausias yra SERS spektrinis žymuo – adenino ir cisteino spektrinių juostų 600–750 cm–1 srityje intensyvumų santykis.

References / Nuorodos

[1] WHO: World Health Organization, Food safety and food borne illness, available at http://www.who.int/mediacentre/factsheets/fs237/en/ (last accessed 08.12.11) (2007)
[2] MMWR, Vital signs: incidence and trends of infection with pathogens transmitted commonly through food-foodborne diseases active surveilance network, 10 US sites, 1996–2010, MMWR 60, 749–755 (2011), full text , PDF
[3] J.W. Chan, A.P. Esposito, C.E. Talley, C.W. Hollars, S.M. Lane, and T. Huser, Reagentless identification of single bacterial spores in aqueous solution by confocal laser tweezers Raman spectroscopy, Anal. Chem. 76, 599–603 (2004),
[4] P. Rösch, M. Harz, M. Schmitt, K.D. Peschke, O. Ronneberger, H. Burkhardt, H.W. Motzkus, M. Lankers, S. Hofer, H. Thiele, and J. Popp, Chemotaxonomic identification of single bacteria by micro-Raman spectroscopy: Application to clean-room-relevant biological contaminations, Appl. Environ. Microbiol. 71, 1626–1637 (2005),
[5] P. Rösch, M. Harz, M. Schmitt, and J. Popp, Raman spectroscopic identification of single yeast cells, J. Raman Spectros. 36, 377–379 (2005),
[6] Y. Liu, Y.-R. Chen, X. Nou, and K. Chao, Potential of surface enhanced Raman spectroscopy for the rapid identification of Escherichia coli and Listeria monocytogenes culture on silver colloidal nanoparticles, Appl. Spectros. 61(8), 824-831 (2007), http://dx.doi.org/10.1366/000370207781540060
[7] P.C. Lee and D. Meisel, Adsorption and surface-enhanced Raman of dyes on silver and gold sols, J. Phys. Chem. 86, 3391–3395 (1982),
[8] K. Maquelin, C. Kirschner, L.P. Choo-Smith, N. van den Braak, H. Endtz, and D. Naumann, Identification of medically relevant microorganisms by vibrational spectroscopy, J. Microbiol. Meth. 51 (3), 255–271 (2002),
[9] M. Tsuboi, I. Ezaki, M. Aida, M. Suzuki, A. Yimit, K. Ushizawa, and T. Ueda, Raman scattering tensors of tyrosine, Biospectroscopy 47, 61–71 (1998),
[10] X. Lu and B. Rasco, in: Applications of vibrational spectroscopy in food science, eds. E.C.Y. Li-Chan, P.R. Griffiths, and J.M. Chalmers (John Wiley & Sons, Ltd., 2010),  pp. 675–694,
[11] W. Cheung, I.T. Shadi, Y. Xu, and R. Goodacre, Quantitative analysis of the banned food dye Sudan-1 using surface enhanced Raman scattering with multivariate chemometrics, J. Phys. Chem. C 114(16), 7285–7290 (2010),
[12] M. Lin, L. He, J. Awika, L. Yang, D.R. Ledoux, H. Li, and A. Mustapha, Detection of melamine in gluten, chicken feed, and processed foods using surface enhanced Raman spectroscopy and HPLC, J. Food Sci. 73(8), T129–T134 (2008),
[13] R. Goodacre and R.M. Jarvis, Raman spectroscopy: Applications in bioprocess and biotechnology, Eur. Pharm. Rev. 11 (4), 72–77 (2005), YMMV
[14] V.L. Brewster, R.M. Jarvis, and R. Goodacre, Raman spectroscopic techniques for biotechnology and bioprocessing, Eur. Pharm. Rev. 14(1), 48–52 (2009), YMMV
[15] S.J. Clarke, R.E. Littleford, W.E. Smith, and R. Goodacre, Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy, Analyst 130(7), 1019–1026 (2005),
[16] A.D. Shaw, M.K. Winson, A.M. Woodward, A.C. McGovern, H.M. Davey, N. Kaderbhai, D. Broadhurst, R.J. Gilbert, J. Taylor, É.M. Timmins, R. Goodacre, D.B. Kell, B.K. Alsberg, and J.J. Rowling Rapid analysis of high-dimensional bioprocesses using multivariate spectroscopies and advanced chemometrics, Adv. Biochem. Eng. Biotechnol. 66 , 83–113 (1999),
[17] L.J. Mauer, A.A. Chernyshova, A. Hiatt, A. Deering, and R. Davis, Melamine detection in infant formula powder using nearand mid-infrared spectroscopy, J. Agr. Food Chem. 57(10), 3974–3980 (2009),
[18] K.A. Hollywood, I.T. Shadi, and R. Goodacre, Monitoring the succinate dehydrogenase activity isolated from mitochondria by surface enhanced Raman scattering, J. Phys. Chem. C 114 (16), 7308–7313 (2010),
[19] Y. Burgula, D. Khali, S. Kim, S.S. Krishnan, M.A. Cousin, J.P. Gore, B.L. Reuhs, and L.J. Mauer, Review of mid-infrared Fourier transform-infrared spectroscopy applications for bacterial detection, J. Rapid Meth. Autom. Microbiol. 15(2), 146–175 (2007),
[20] L. Mariey, J.P. Signolle, C. Amiel, and J. Travert, Discrimination, classification, identification of microorganisms using FTIR spectroscopy and chemometrics, Vib. Spectros. 26 (2), 151–159 (2001),
[21] O. Preisner, J.A. Lopes, R. Guiomar, J. Machado, and J.C. Menezes, Fourier transform infrared (FT-IR) spectroscopy in bacteriology: towards a reference method for bacteria discrimination, Anal. Bioanal. Chem. 387(5), 1739–1748 (2007),
[22] D. Naumann, FT-infrared and FT-Raman spectroscopy in biomedical research, Appl. Spectros. Rev. 36(2–3), 239–298 (2001),
[23] M. Harz, P. Rösch, and J. Popp, Vibrational spectroscopy—A powerful tool for the rapid identification of microbial cells at the single-cell level, Cytometry 75A(2), 104–113 (2009),
[24] R.M. Jarvis and R. Goodacre, Characterisation and identification of bacteria using SERS, Chem. Soc. Rev. 37 (5), 931–936 (2008),
[25] W.E. Huang, M. Li, R.M. Jarvis, R. Goodacre, and S.A. Banwart, Shining light on the microbial world: the application of Raman microscopy, Adv. Appl. Microbiol. 70, 153–186 (2010),
[26] R. Davis, J. Irudayaraj, B.L. Reuhs, and L.J. Mauer, Detection of E. coli O157:H7 from ground beef using Fourier transform infrared (FT-IR) spectroscopy and chemometrics, J. Food Sci. 75(6), M340–M346 (2010),
[27] M. Lin, M. Al-Holy, H. Al-Qadiri, D. Kang, A.G. Cavinato, Y. Huang, and B.A. Rasco, Discrimination of intact and injured Listeria monocytogenes by Fourier transform infrared spectroscopy and principal component analysis, J. Agr. Food Chem. 52(19), 5769–5772 (2004),
[28] H.M. Al-Qadiri, M. Lin, M. Al-Holy, A.G. Cavinato, and B.A. Rasco, Detection of sublethal thermal injury in Salmonella enterica serotype Typhimurium and Listeria monocytogenes using Fourier transform infrared (FT-IR) spectroscopy (4000 to 600 cm−1), J. Food Sci. 73(2), M54–M61 (2008),
[29] C. Fan, Z.Q. Hu, L.K. Riley, G.A. Purdy, A. Mustapha, and M. Lin, Detecting food- and waterborne viruses by surface-enhanced Raman spectroscopy, J. Food Sci. 75(5), M302–M307 (2010),
[30] M. Beekes, P. Lasch, and D. Naumann, Analytical applications of Fourier transform-infrared (FT-IR) spectroscopy in microbiology and prion research, Vet. Microbiol. 123(4), 305–319 (2007),
[31] R.M. Jarvis, A. Brooker, and R. Goodacre, Surface-enhanced Raman spectroscopy for bacterial discrimination utilizing a scanning electron microscope with a Raman spectroscopy interface, Anal. Chem. 76(17), 5198–5202 (2004),
[32] R.M. Jarvis and R. Goodacre, Ultra-violet resonance Raman spectroscopy for the rapid discrimination of urinary tract infection bacteria, FEMS Microbiol. Lett. 232(2), 127–132 (2004),
[33] J. Guicheteau,  S. Christesen, D. Emge, and A. Tripathi, Bacterial mixture identification using Raman and surface-enhanced Raman chemical imaging, J. Raman Spectros. 41(12), 1632–1637 (2010),
[34] D. Cam, K. Keseroglu, M. Kahraman, F. Sahin, and M. Culha, Multiplex identification of bacteria in bacterial mixtures with surface-enhanced Raman scattering, J. Raman Spectros. 41 , 484–489 (2010),
[35] B.S. Luo and M. Lin, A portable Raman system for the identification of foodborne pathogenic bacteria, J. Rapid Meth. Autom. Microbiol. 16, 238–255 (2008),