[PDF]    http://dx.doi.org/10.3952/lithjphys.53101

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 53, 116 (2013)

E. Gaižauskasa and G. Trinkunasb
aLaser Research Center, Vilnius University, Saulėtekio 10, LT-10222 Vilnius, Lithuania
bCenter for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: eugenijus.gaizauskas@ff.vu.lt

Received 3 December 2012; accepted 22 December 2012

An overview of the influence of coherent coupling in light–matter interaction traced by transients in pump-probe spectroscopy is given, with special emphasis on interest and works provided by the authors. Advantages of this technique used to trace pathways of transfer and decay of quantum coherences in atoms, molecular aggregates, and biological structures, as well as feasibility of the probing of both the lifetime and characteristic lengths (area, volume) of coherent excitations are discussed. Theoretical analysis of the pump-probe measurements is based on the numerical solution of the equation for the reduced density matrix in the representation of atomic, molecular, and excitonic states, considering coherent coupling between light and appropriate quantum states precisely.
Keywords: ultrafast laser spectroscopy, molecular aggregates, quantum coherences
PACS: 78.47.jh, 78.47.nj, 71.35.-y


E. Gaižauskasa, G. Trinkūnasb
aVilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva
bValstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Autoriai, remdamiesi moksline patirtimi ir atliktais darbais, apžvelgia koherentinės medžiagos bei lauko sąveikos ypatumus bei apraiškas, stebimas ultrasparčiosios žadinimo-zondavimo spektroskopijos metodais. Aptariami šios technikos privalumai siekiant nustatyti atomuose, molekuliniuose agregatuose bei biologiniuose dariniuose sužadintų koherentinių būsenų gesimo ir pernašos kelius, taip pat galimybės įvertinti tokių sužadinimų gyvavimo trukmę bei koherentiškumo ilgį, plotą ar tūrį (kai kalbama apie molekulinius agregatus). Aprašant lazerinės žadinimo-zondavimo spektroskopijos matavimus remiamasi tankio matricos, užrašytos atomo, molekulės ar eksitoninių funkcijų bazėje, evoliucijos skaitmeniniu sprendimu (netaikant trikdžių teorijos artinių elektromagnetinio lauko ir kvantinių medžiagos būsenų sąveikai aprašyti).

References / Nuorodos

[1] Sh. Mukamel, Principles of Nonlinear Optical Spectroscopy (Oxford University Press, New York–Oxford, 1995),
[2] J. Mompart and R. Corbalán, Lasing without inversion, J. Opt. B Quant. Semiclass. Opt. 2(3), R7 (2000),
[3] M.M. Kash, V.A. Sautenkov, A.S. Zibrov, L. Hollberg, G.R. Welch, M.D. Lukin, Y. Rostovtsev, E.S. Fry, and M.O. Scully, Ultraslow group velocity and enhanced nonlinear optical effects in a coherently driven hot atomic gas, Phys. Rev. Lett. 82, 5229–5232 (1999),
[4] D.F. Phillips, A. Fleischhauer, A. Mair, R.L. Walsworth, and M.D. Lukin, Storage of light in atomic vapor, Phys. Rev. Lett. 86, 783–786 (2001),
[5] D.S. Bradshaw and D.L. Andrews, Optically controlled resonance energy transfer: Mechanism and configuration for all-optical switching, J. Chem. Phys. 128(14), 144506 (2008),
[6] E. Biolatti, R.C. Iotti, P. Zanardi, and F. Rossi, Quantum information processing with semiconductor macroatoms, Phys. Rev. Lett. 85(26), 5647–5650 (2000),
[7] P. Chen, C. Piermarocchi, and L.J. Sham, Control of exciton dynamics in nanodots for quantum operations, Phys. Rev. Lett. 87(6), 067401 (2001),
[8] A. Nazir, B.W. Lovett, and G.A.D. Briggs, Creating excitonic entanglement in quantum dots through the optical Stark effect, Phys. Rev. A 70, 052301 (1986),
[9] G.S. Engel, T.R. Calhoun, E.L. Read, T.-K. Ahn, T. Mančal, Y.-C. Cheng, R.E. Blankenship, and G.R. Fleming, Evidence of wavelike energy transfer through quantum coherence in photosynthetic systems, Nature 446, 782–786 (2007),
[10] V. Butkus, D. Abramavicius, A. Gelzinis, and L. Valkunas, Two-dimensional optical spectroscopy of molecolar aggregates, Lith. J. Phys. 50(3), 267–303 (2010),
[11] D. Abramavicius, V. Butkus, and L. Valkunas, Interplay of exciton coherence and dissipation in molecular aggregates, in: Quantum Efficiency in Complex Systems, Part II: From Molecular Aggregates to Organic Solar Cells, Vol. 85, eds. U. Wurfel, M. Thorwart, and E.R. Weber (Elsvier Academic Press, San Diego, 2011) pp. 3–46,
[12] A. Gelzinis, D. Abramavicius, and L. Valkunas, Non-Markovian effcts in time-resolved fluorescence spectrum of molecular aggregates: Tracing polaron formation, Phys. Rev. B 84(24), 245430 (2011),
[13] V. Butkus, A. Gelzinis, and L. Valkunas, Quantum coherence and disorder-specific effects in simulations of 2D optical spectra of one-dimensional J-aggregates, J. Phys. Chem. A 115(16), 3876–3885 (2011),
[14] V. Butkus, D. Zigmantas, L. Valkunas, and D. Abramavicius, Vibrational vs. electronic coherences in 2D spectrum of molecular systems, Chem. Phys. Lett. 545, 40–43 (2012),
[15] V. Butkus, L. Valkunas, and D. Abramavicius, Molecular vibrations-induced quantum beats in two-dimensional electronic spectroscopy, J. Chem. Phys. 137(4), 044513 (2012),
[16] T. Meier, V. Chernyak, and S. Mukamel, Femtosecond photon echoes in molecular aggregates, J. Chem. Phys. 107 (21), 8759–8774 (1997),
[17] D. Abramavicius and S. Mukamel, Chirality-induced signals in coherent multidimensional spectroscopy of excitons, J. Chem. Phys. 124(3), 034113 (2006),
[18] K. Blum, Density Matrix Theory and Applications (Plenum Press, New York, 1981),
[19] Y.R. Shen, The Principles of Nonlinear Optics (John Wiley & Sons, New York, 1984),
[20] E. Gaizauskas and L. Valkunas, Femtosecond four-wave mixing spectroscopy of molecular aggregates, J. Phys. Chem. B 101(37), 7321–7326 (1997),
[21] E. Gaižauskas and K.-H. Feller, Effects of strong excitation induced disorder on pump–probe spectra of molecular aggregates, J. Lumin. 102–103, 13–20 (2003),
[22] C.P. Slichter, Principles of Magnetic Resonance (Springer Verlag, New York, 1990),
[23] N. Raja, S. Reddy, P.A. Lyle, and G.J. Small, Applications of spectral hole burning spectroscopies to antenna and reaction center complexes, Photosynth. Res. 31, 167–194 (1992),
[24] G. Small, Spectral hole burning: Methods and applications to photosynthesis, in: Biophysical Techniques in Photosynthesis , eds. J. Amesz and A.J. Hoff (Kluwer Academic Publishers, 1996) pp. 123–136,
[25] W.T. Pollard and R.A. Friesner, Solution of the Redfield equation for the dissipative quantum dynamics of multilevel system, J. Chem. Phys. 100, 5054–5065 (1993),
[26] M. Chachisvilis and V. Sundström, Femtosecond vibrational dynamics and relaxation in the core light-harvesting complex of photosynthetic purple bacteria, Chem. Phys. Lett. 261, 165–174 (1996),
[27] E. Gaižauskas and L. Valkūnas, Coherent transients of pump-probe spectroscopy in two-level approximation, Opt. Commun. 109(1–2), 75–80 (1994),
[28] E. Gaižauskas, A. Beržanskis, and K.-H. Feller, Effects of non-Markovian relaxation in the femtosecond differential absorption spectra, Chem. Phys. 235(1–3), 123–130 (1998),
[29] A. Savickas and E. Gaižauskas, Manifestation of the optical Stark effect in differential transmission spectra, Lith. J. Phys. 48(2), 155–162 (2008),
[30] J.-Y. Bigot, M.T. Portella, R.W. Schoenlein, C.J. Bardeen, A. Migus, and C.V. Shank, Non-Markovian dephasing of molecules in solution measured with three-pulse femtosecond photon echoes, Phys. Rev. Lett. 66, 1138–1141 (1991),
[31] E. Gaizauskas, K.-H. Feller, and L. Valkunas, Manifestation of the transition from the excited state by means of femtosecond four-wave mixing spectroscopy, Opt. Quant. Electron. 28, 1203–1213 (1996),
[32] A. Guzman de Garcia, P. Meystre, and R.R.E. Salomaa, Time-delayed probe spectroscopy in two-photon–pumped systems, Phys. Rev. A 32, 1531–1540 (1985),
[33] E. Gaižauskas and G. Gedvilas, Theory of coherent one- and two-photon interaction in a three-level system, Opt. Commun. 91(34), 312–320 (1992),
[34] C.S. Mullin, D. Kim, M.B. Feller, and Y.R. Shen, Picosecond studies of optical second harmonic generation in atomic vapor, Phys. Rev. Lett. 74, 2678–2681 (1995),
[35] O. Kittelmann, J. Ringling, A. Nazarkin, G. Korn, and I.V. Hertel, Direct observation of coherent medium response under the condition of two-photon excitation of krypton by femtosecond UV-laser pulses, Phys. Rev. Lett. 76, 2682–2685 (1996),
[36] A. Nazarkin, G. Korn, O. Kittelmann, J. Ringling, and I.V. Hertel, Femtosecond-pulse two-photon resonant difference-frequency mixing in gases: A technique for tunable vacuum-ultraviolet femtosecond-pulse generation and a spectroscopic tool for studying atoms in strong laser fields, Phys. Rev. A 56, 671–684 (1997),
[37] I. Pop and L. Moorman, Electromagnetically induced generation, gain in delayed wave mixing, and measuring coherent states using quantum-interference windows, Phys. Rev. A 60, 678–686 (1999),
[38] E. Gaižauskas, D. Pentaris, T. Efthimiopoulos, and V. Vaičaitis, Probing electronic coherences by combined two- and one-photon excitation in atomic vapors, Opt. Lett. 38, 124–126 (2013),
[39] M. Chachisvilis, H. Fidder, and V. Sundström, Electronic coherence in pseudo two-collour pump-probe spectroscopy, Chem. Phys. Lett. 234, 141 (1995),
[40] J.A. Leegwater, Theory of coherent oscillations in the photosynthetic reaction center, J. Phys. Chem. 99 (29), 11605–11611 (1995),
[41] J-Aggregates, ed. T. Kobayashi (World Scientific, Singapore, 1996),
[42] E. Hanamura, Rapid radiative decay and enhanced optical nonlinearity of excitons in a quantum well, Phys. Rev. B 38, 1228–1234 (1988),
[43] E. Hanamura, Very large optical nonlinearity of semiconductor microcrystallites, Phys. Rev. B 37, 1273–1279 (1988),
[44] H. van Amerongen, R. van Grondelle, and L. Valkunas, Photosynthetic Excitons (World Scientific, Singapore, 2000),
[45] V. Sundström, T. Gillbro, R.A. Gadonas, and A. Piskarskas, Annihilation of singlet excitons in J aggregates of pseudoisocyanine (PIC) studied by pico- and subpicosecond spectroscopy, J. Chem. Phys. 89, 2754–2762 (1988),
[46] H. Stiel, S. Daehne, and K. Teuchner, J-aggregates of pseudoisocyanine in solution: New data from nonlinear spectroscopy, J. Lumin. 39(6), 351–357 (1988),
[47] E. Gaižauskas, K.-H. Feller, and R. Gadonas, Anihillation enhanced four-wave mixing in molecular aggregates, Opt. Commun. 118(3–4), 360–366 (1995),
[48] R. Gadonas, K.-H. Feller, A. Pugzlys, G. Jonusauskas, J. Oberl é, and C. Rulliè re, Wavelength and intensity-dependent transient degenerate four-wave mixing in pseudoisocyanine J-aggregates, J. Chem. Phys. 106(20), 8374–8383 (1997),
[49] D.B. Chesnut and A. Suna, Fermion behavior of one-dimensional excitons, J. Chem. Phys. 39, 146 (1963),
[50] G. Juzeliūnas, Exciton absorption spectra of optically excited linear molecular aggregates, Z. Phys. D 8 , 379–384 (1988),
[51] G. Juzeliūnas and P. Reineker, Influence of exciton–exciton interaction on one-to-two exciton transitions in molecular aggregates with linear and circular geometries, J. Chem. Phys. 107 (23), 9801–9806 (1997),
[52] F.C. Spano, J.R. Kuklinski, and S. Mukamel, Temperature-dependent superradiant decay of excitons in small aggregates, Phys. Rev. Lett. 65, 211–214 (1990),
[53] F.C. Spano, J.R. Kuklinsky, and S. Mukamel, Cooperative radiative dynamics in molecular aggregates, J. Chem. Phys. 94, 7534 (1991),
[54] E. Gaižauskas and K.-H. Feller, Nonlinear transients to pump–probe spectra of strongly excited J-aggregates, Opt. Commun. 216(1–3), 217–224 (2003),
[55] E.W. Knapp, Lineshapes of molecular aggregates, exchange narrowing and intersite correlation, Chem. Phys. 85 , 73–82 (1984),
[56] H. Fidder, J. Knoester, and D.A. Wiersma, Optical properties of disordered molecular aggregates: A numerical study, J. Chem. Phys. 95(11), 7880 (1991),
[57] D.J. Thouless, Electrons in disordered systems and the theory of localization, Phys. Rep. 13(3), 93–142 (1974),
[58] G. Trinkunas, J.L. Herek, T. Polívka, V. Sundström, and T. Pullerits, Exciton delocalization probed by excitation annihilation in the light-harvesting antenna LH2, Phys. Rev. Lett. 86 (18), 4167–4170 (2001),
[59] G. Trinkunas, Probing of molecular aggregates with exciton annihilation, J. Lumin. 102, 532–535 (2003),
[60] J.A. Leegwater, Coherent versus incoherent energy transfer and trapping in photosynthetic antenna complexes, J. Phys. Chem. 100(34), 14403–14409 (1996),
[61] R. van Grondelle and V.I. Novoderezhkin, Quantum effects in photosynthesis, in: 22nd Solvay Conference on Chemistry – Quantum Effects in Chemistry and Biology, Vol. 3, eds. G.R. Fleming, G.D. Scholes, and A. DeWit (Elsevier Science BV, Amsterdam, the Netherlands, 2011) pp. 198–210,
[62] R.A. Jensen, R.F. Kelley, S.J. Lee, M.R. Wasielewski, J.T. Hupp, and D.M. Tiede, Fast energy transfer within a self-assembled cyclic porphyrin tetramer, Chem. Commun. 16, 1886–1888 (2008),
[63] M.-C. Yoon, S. Cho, P. Kim, T. Hori, N. Aratani, A. Osuka, and D. Kim, Structural dependence on excitation energy migration processes in artificial light harvesting cyclic zinc(II) porphyrin arrays, J. Phys. Chem. B 113(45), 15074–15082 (2009),
[64] Ch. Maeda, P. Kim, S. Cho, J.K. Park, J.M. Lim, D. Kim, J. Vura-Weis, M.R. Wasielewski, H. Shinokubo, and A. Osuka, Large porphyrin squares from the self-assembly of meso-triazole-appended L-shaped meso-meso-linked Zn II-triporphyrins: Synthesis and efficient energy transfer, Chem. Eur. J. 16(17), 5052–5061 (2010),
[65] J. Yang and D. Kim, Excitation energy migration processes in various multi-porphyrin assemblies, Phil. Trans. R. Soc. A 370(1972), 3802–3818 (2012),