COMPLEXES OF FUNCTIONALIZED QUANTUM DOTS AND CHLORIN e, IN PHOTODYNAMIC THERAPY

R. Rotomskis^{a, b}, J. Valanciunaite^b, A. Skripka^b, S. Steponkiene^b, G. Spogis^b,

S. Bagdonas^a, and G. Streckyte^a

^a Biophotonics Laboratory, Laser Research Center, Vilnius University, Saulėtekio 9-III, LT-10222 Vilnius, Lithuania E-mail: giedre.streckyte@ff.vu.lt

^b Biomedical Physics Laboratory, Institute of Oncology of Vilnius University, Baublio 3b, LT-08406 Vilnius, Lithuania

Received 11 December 2012; accepted 20 December 2012

Recently, it has been suggested that quantum dots (QDs) could be used in the photodynamic therapy of cancer as resonance energy donors for conventional porphyrin type photosensitizers. Here we present the results of the spectroscopic studies on the formation of a non-covalent complex between QDs and photosensitizer chlorin Ce_6 in an aqueous medium and in the presence of bovine serum albumin (BSA). Changes in the absorption and fluorescence spectra of QDs and Ce_6 revealed the formation of a QD- Ce_6 complex which occurs due to hydrophobic interaction between the nonpolar moiety of an amphiphilic photosensitizer and the hydrophobic part of the lipid-based coating of the QD. The photosensitizer conjugated with the QD could be indirectly excited by the Forster resonance energy transfer (FRET) from the QD to Ce_6 . The investigation on the capacity of such complex to generate ${}^{1}O_2$ showed that the QD- Ce_6 complex irradiated by visible light is able to produce ${}^{1}O_2$ more efficiently than QDs or Ce_6 taken separately. The photosensitizer does not absorb provided evidence that such complex could induce FRET-mediated cell destruction.

Keywords: quantum dots, lipids, photosensitizer, energy transfer, photodynamic therapy

PACS: 87.64.kv, 87.85Rs

1. Introduction

Innovative technologies based on application of nanoparticles are developed to bring new solutions for fighting oncological diseases. One of the developing methods introduced into clinical practice about twenty years ago is photodynamic therapy (PDT), a minimally invasive therapeutic modality presently approved for treatment of several types of cancer and non-oncological disorders. The action of PDT is based on the common use of a compound with photosensitising properties selectively accumulated in malignant tissues and the visible light, preferentially in the red region of the spectrum where tissues are more permeable to light. The aim is to bring about a cytotoxic effect to cancerous tissue: a photosensitizer of negligible dark toxicity accumulated preferentially in rapidly

dividing cells is activated by light and elicits the toxic action. Upon illumination, the photosensitizer (PS) is excited from the ground state (S_0) to the first excited singlet state (S_1) followed by conversion to the triplet state (T_1) via intersystem crossing. The excited triplet state may react in two ways, defined as type I and type II mechanisms. A type I mechanism involves hydrogen-atom abstraction or electron-transfer reactions between the excited state of the sensitizer and a substrate to yield free radicals and radical ions which can cause irreparable biological damage. A type II mechanism results from the energy transfer between the excited triplet state of the sensitizer and the ground state molecular oxygen generating the first excited state of oxygen, singlet oxygen $({}^{1}O_{2})$. This species is extremely reactive and can interact with a large number of biological substrates,

inducing oxidative damage and, ultimately, cell inactivation. Singlet oxygen is generally accepted as the major damaging species in PDT [1] and, therefore, photosensitization typically does not occur in anoxic areas of tissue.

Chlorin e_6 (Ce₆) is a second-generation PS with a high quantum yield of singlet oxygen production of 0.65 at pH 7–8 [2]. In addition, the amphiphilic structure of a Ce₆ molecule allows easy penetration through cell membrane, thus ensuring effective accumulation inside cells [3, 4]. However, Ce₆ is highly unstable under light exposure and its absorbance at the red side of the visible spectrum is insufficient for effective excitation in greater depths of the tissue. Another important factor determining the efficacy of PDT is selectivity of PS localization in the tumour, i. e. high ratios of sensititizer concentration in the tumour to that in the healthy surrounding tissue should be achieved. To address these problems new PSs are being sought together with the improved delivery system, including nanoparticle-based carrier systems.

Nanoparticles, such as semiconductor quantum dots (QDs), are gaining much attention due to their unique size-dependent optical properties, high stability, and easy surface modification by binding different functional groups and biomolecules, and are considered promising materials for many biological and medical applications. Recently, it is proposed to use QDs not only for diagnostic purposes but also in the PDT of cancer [5, 6]. Since QDs themselves were shown to generate singlet oxygen inefficiently [5], it has been suggested to use QDs in PDT as resonance energy donors for a conventional PS. The complexation of QDs with a PS could broaden the excitation range of the PS and enhance their excitation efficiency as well as solve selectivity problems of a conventional PS in PDT, thus greatly enhancing its applicability and efficiency.

The nature of interaction between QDs and PSs is crucial for the stability, photophysical properties and effectiveness of the QD-PS complex. Numerous studies on the primary photo-physical properties of complexes of QDs and various PSs in aqueous solutions assembled mainly by the electrostatic interaction have been already performed [7–9]; however, the stability, compatibility in biological media and singlet oxygen generation of these complexes is yet to be investigated.

In this work, we present steady-state spectroscopic studies on the formation of a non-covalent complex between QDs with lipid coatings and amphiphilic photosensitizer Ce_6 . The excitation of Ce_6 via FRET by exploring non-covalent complexation of the PS with QDs was studied and generation of ${}^{1}O_2$ by such complex was measured. The possibility of a QD- Ce_6 complex as a candidate for the photosensitized tumour therapy was evaluated as well.

2. Materials and methods

2.1. Reagents and preparation of solutions

Chlorine e_6 tetrasulfonic acid (Ce₆) was purchased from *Frontier Scientific Inc.* (USA). CdSe/ZnS QDs with terminal amine or carboxyl groups (620 nm), used for the investigations of the formation of a QD-Ce₆ complex, were obtained from *eBioscience* (USA).

The stock solution of Ce₆ was freshly prepared and further diluted to concentrations from 0.005 to 5 μ M. QDs solutions were prepared by diluting aqueous stock solution (10.9 nmol/ml) provided directly by manufacturers. Mixture solutions of QDs with Ce₆ were prepared by adding 1 μ l of Ce₆ solution of appropriate concentration to 2 ml of the QDs solution. In these mixed QD-Ce₆ solutions, the concentration of QDs was kept constant at 0.05 μ M, while concentration of Ce₆ varied from 0.025 to 5 μ M (QDs:Ce₆ molar ratios from 1:0.5 to 1:100 were obtained). The spectra were measured 15 minutes after the preparation of QD-Ce₆ mixture solutions.

CdSe/ZnS QDs coated with amphiphilic polymer (AMP) and polyethylene glycol (PEG) bearing amine groups (NH₂ 100%), used for the investigations of the formation of a QD-Ce₆ complex in an aqueous medium in the presence of bovine serum albumin, were obtained from *Invitrogen Corp.* (USA). Bovine serum albumin (BSA) was purchased from *Sigma* (Germany).

The stock solutions of Ce₆ and BSA were freshly prepared before experiments. The QDs solution (0.05 μ M) was prepared by directly diluting the stock solution of QDs (8 μ M) provided by manufactures. For the spectroscopic experiments three working solutions with a different mixing order of QDs, Ce₆ and BSA were used. The appropriate amount of BSA or Ce₆ was added to QDs solutions to reach the molar ratio 1:20 for QDs:BSA and 1:10 for QDs:Ce₆. The solution initially containing Ce₆ (0.5 μ M) was mixed with BSA to the molar ratio of 10:20. Further, appropriate amounts of Ce₆, BSA, and QDs solutions were added to QD-BSA, QD-Ce₆, and Ce₆-BSA mixtures, respectively, to reach the final molar ratio of all three components QD-BSA-Ce₆ in the mixture solutions to be 1:20:10.

CdSe/ZnS QDs (625 nm) in toluene (15.18 μ M), used for the elucidation of the effect of lipid coating on the formation of a QD-Ce₆ complex, were purchased from *Evident Tech.* (USA). Phospholipids containing saturated and unsaturated fatty acids: 1,2-dipalmitoyl-*sn*-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt) (PEG-DPPE), 1,2-dioleoyl-*sn*-glycero-3-phosphoethanolamine-N-[methoxy(polyethylene glycol)-2000] (ammonium salt) (PEG-DOPE), and 1,2-dioleoyl-*sn*-glycero-3-phosphocholine (DOPC), were obtained from *Avanti Polar Lipids* (USA).

Carboxyl-Functionalized eFluor[®] 605NC QDs, composed of CdSe/ZnS core/shell, outer lipid coating with PEG and carboxyl functional groups and used for the evaluation of the production of singlet oxygen by a QD-Ce₆ complex as well as in PDT experiments in cells, were purchased from *eBioscience* (USA). Singlet oxygen sensor green (SOSG) was obtained from *Invitrogen* (USA). All materials were used without further purification. Solutions were prepared in the phosphate buffer (PB) solution of pH 7.

2.2. Spectroscopic measurements

Absorption measurements were carried out with the Cary 50 spectrophotometer (*Varian Inc.*, USA). Fluorescence measurements were performed on the Cary Eclipse fluorescence spectrophotometer (*Varian Inc.*, USA). Quartz cuvette with the optical path length of 1 cm was used for absorption and fluorescence measurements.

2.3. Evaluation of singlet oxygen production by QD-Ce₆ complex

The stock solution of CdSe/ZnS (605 mn) QDs bearing lipid-based coating with terminal amine

groups was diluted to the concentration of 0.02 μ M. The stock solution of Ce₆ was prepared just before the experiments and further diluted to the working 0.2 μ M Ce₆ concentration. Mixed QD-Ce₆ solutions were prepared by adding 5 μ l Ce₆ solution of appropriate concentration to 2 ml of QDs solutions. The final concentration of QDs in the QD-Ce₆ mixture solution was 0.02 μ M, while Ce₆ concentration was 0.2 μ M (the QDs:Ce₆ molar ratio 1:0.1 was obtained). For ¹O₂ detection, 2 μ l of SOSG stock solutions. The final concentration of QDs, Ce₆, and QD-Ce₆ solutions. The final concentration of SOGS was 2 μ M in all used solutions.

The irradiation of 2 ml QDs, Ce_6 , or QD- Ce_6 solutions was performed using a continuous 402 nm light source (P = 45 mW/cm²). Upon irradiation, the magnetic stirring of solutions was performed.

2.4. Efficacy of QD-Ce₆ complex in PDT

2.4.1. Cells

MiaPaCa-2 cells were purchased from the Health Protection Agency Culture Collection. The cells were cultured in Dulbecco's modified Eagle's medium (DMEM), supplemented with 10% foetal bovine serum (FBS), 100 U/ml penicillin, 100 mg/ml streptomycin, and 4 mM L-alanyl-glutamine. The cells were routinely cultivated in 25 cm² culture dishes under standard conditions by subculturing them 2–3 times a week and keeping in a humidified incubator at 37 °C.

2.4.2. Preparation of QD-Ce₆ complex solution

In QD-Ce₆ mixture solutions the concentration of QDs was 0.02 μ M, while the concentration of Ce₆ was 0.1 μ M, maintaining the molar ratio of QD:Ce₆ at 1:5. All measurements were performed 20 minutes after preparation of solutions, allowing the formation of a QD-Ce₆ complex.

2.4.3. FLIM in live cancer cells

Cells were seeded into an 8-chambered coverglass plate (*Nalge Nunc International*, USA). 3×10^4 cells were seeded in each chamber and incubated with the QDs (0.2 μ M), Ce₆ (1 μ M), and QD-Ce₆ (molar ratio 1:5) complex in PBS (supplemented with Ca²⁺ and Mg²⁺). After 2 h of incubation the old medium was carefully aspirated, the cells were washed twice with PBS and supplemented with fresh PBS. The cellular uptake of the QD-Ce₆ complex was assessed using the Nikon Eclipse Te2000-U (Japan) microscope with the confocal laser scanning system C1si (capable of 32 bit spectral imaging) equipped with the CO₂ microscope stage incubation system (OkoLab, Italy). Measurements were done using a 60×/1.4 NA oil immersion objective. The lifetime imaging was done using the Lifetime and FCS Upgrade (PicoQuant GmbH, Germany) for Nikon C1si. The system consisted of a 404 nm pulse diode laser with a pulse width of 39 ps and repetition rate of 10 MHz. The reflected fluorescence signal was filtered by a 650±75 nm filter. The detected photons were captured by a photomultiplier tube (PMT) and photons were counted by a time correlated single-photon counter PicoHarp 300 (PicoQuant GmbH, Germany). Initialization, scanning, and acquisition were controlled by the same Nikon C1si microscope system.

2.4.4. Photosensitizing properties of $QD-Ce_6$ complex

Cells were seeded into 96 well plates, 50,000 cells per well. After 24 hours the medium was replaced with 100 μ l DPBS containing a QD-Ce₆ complex and left for 3.5 hours in the incubator (in the dark).

For the irradiation procedure, cells were transferred to the microscope stage incubation system and exposed to 25 mW/cm² irradiation at 470 nm, applied for 15 minutes on each well, giving a dose of 15 J/ cm². Photosensitizing properties were evaluated as a capacity of the QD-Ce₆ complex to induce obvious cell death.

3. Results

*3.1. Formation of QD-Ce*⁶ *complex*

The absorption spectra of CdSe/ZnS QDs (620 nm) bearing amine groups and also Ce₆ in aqueous solution at pH 7 are shown in Fig. 1(a). The absorption spectrum of free Ce₆ consists of the intensive Soret band at 403 nm and four weaker Q bands with the most intensive Q(I) in the red spectral side at 655 nm. The absorption spectrum of QDs decreases towards the red spectral side and ends with an exciton peak at around 600 nm. The absorption spectra of mixed QD-Ce₆ solutions did not display a simple superposition of QDs and Ce₆ spectra at corresponding concentrations of both components. Various absorption spectral changes were observed in QD-Ce₆ mixture solutions

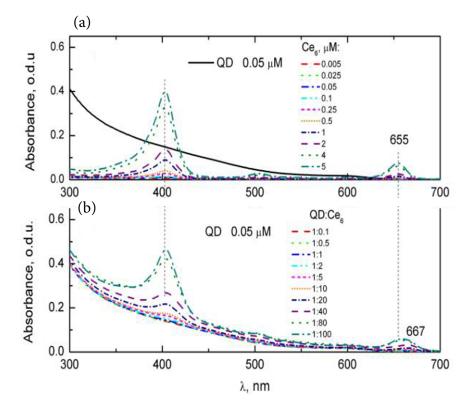


Fig. 1. (a) Absorption spectrum of QDs (0.05 μ M) and spectra of various solutions of Ce₆. (b) Absorption spectra of mixed QD-Ce₆ solutions at various QD:Ce₆ molar ratios.

upon increase of Ce_6 concentration, keeping QDs concentration constant (Fig. 1(b)). The most pronounced changes were observed in the region of the Ce_6 Q(I) band, which underwent a bathochromic shift to 667 nm. However, at the highest added Ce_6 amounts (QD:Ce₆ molar ratios 1:80–1:100), an absorption band of free Ce_6 (655 nm) also appeared. Thus, the peak at 667 nm can be attributed to the formed QD-Ce₆ complex.

Similarly, distinct changes in intensity were observed in the fluorescence spectra of mixed QD-Ce₆ solutions at different molar ratios of QDs and Ce₆ (Fig. 2). The fluorescence spectra of QD-Ce₆ mixture solutions displayed two fluorescence bands at 622 and 670 nm under excitation at 465 nm. The first band belongs to QDs. Since the fluorescence peak of free Ce₆ was detected at 660 nm, the second

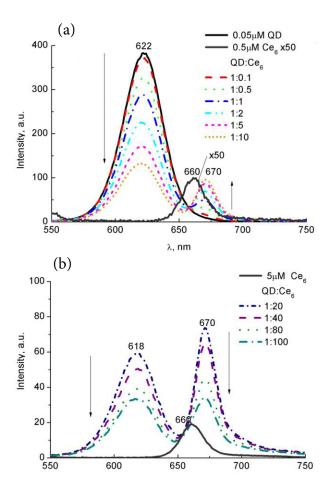


Fig. 2. Fluorescence spectra of QDs, Ce₆ solutions and QD-Ce₆ mixture solutions at various QD:Ce₆ molar ratios: (a) from 1:0.1 to 1:10, and (b) from 1:20 to 1:100; $\lambda_{ex} = 465$ nm (fluorescence intensity of free Ce₆ is multiplied by 50).

band with the peak at 670 nm could be assigned to the bound Ce_6 molecules in the formed QD- Ce_6 complex. It has to be noted that this band was detected under excitation, at which the absorbance of QDs prevails and the absorbance of Ce_6 is minimal (Fig. 1(a)).

The intensity of the QDs photoluminescence (PL) band at 622 nm decreased with the changing of a molar ratio between QD and Ce₆ from 1:0.1 to 1:10, while the intensity of the band at 670 nm increased (Fig. 2(a)). However, further increase of relative Ce₆ concentration from 1:20 to 1:100 resulted in intensity decrease through the whole spectrum (Fig. 2(b)). When Ce₆ was excited directly at 400 nm (data not shown), the fluorescence peak of free Ce₆ appeared at 660 nm in the mixed solutions at QD:Ce₆ molar ratios exceeding 1:10, and its intensity further increased in contrast to the observed decrease in intensity of the peak at 670 nm for bound Ce₆ molecules.

Both QDs and Ce₆ spectra contributed to the fluorescence excitation spectrum of a QD-Ce₆ mixture measured at 670 nm (Fig. 3). The partial intensity of QDs PL in a mixture spectrum was significantly higher than the total intensity of the fluorescence excitation spectrum of a pure QDs solution measured at this emission wavelength. However, the partial intensity of the Ce₆ spectrum remained relatively unchanged.

One might expect that electrostatic interaction between the positively charged amino groups of QDs coating and negatively charged carboxyl groups of Ce₆ might be a pivotal factor for QD-Ce₆

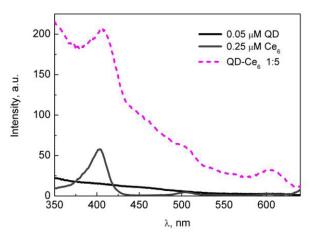


Fig. 3. Fluorescence excitation spectra of 0.05 μ M QDs, 0.25 μ M Ce₆ solutions and QD-Ce₆ mixture solution at molar ratio 1:5; spectra were recorded at $\lambda_{em} = 670$ nm.

complex formation. To elucidate the actual origin of QDs and Ce₆ interaction, the fluorescence measurements were performed with identical QDs, only coated with terminal carboxyl (negatively charged) groups replacing amino (positively charged) groups. However, the fluorescence band of Ce₆ underwent a similar bathochromic shift to 670 nm (Fig. 4).

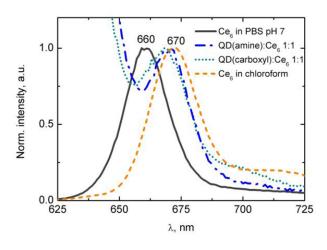


Fig. 4. Normalized fluorescence spectra of Ce_6 in PBS in the presence of QDs with terminal amino or carboxyl groups, and Ce_6 in chloroform.

3.2. Formation and stability of QD-Ce₆ complex in the presence of BSA

To investigate the formation and stability of a QD- Ce_6 complex in the model biological medium, spectroscopic measurements were performed in the presence of bovine serum albumin (BSA).

The addition of BSA to the QDs solution resulted in a negligible quenching of QDs photoluminescence intensity, and no other spectral changes were observed (data not shown). Also, the presence of protein did not change the stability of QDs photoluminescence over time. On the other hand, the addition of BSA induced a bathochromic shift of Ce₆ spectral bands, which is typical of interaction between a tetrapyrrolic compound and protein [10, 11]. A fluorescence band of Ce₆ was also shifted bathochromically to 670 nm, equally as the band of Ce₆ bound to QDs.

Appropriate volumes of Ce_6 , QDs, and BSA stock solutions were added to QD-BSA, Ce_6 -BSA, and QD- Ce_6 mixture solutions, respectively, to reach the same final concentrations of solutes.

The emission spectra ($\lambda_{ex} = 465 \text{ nm}$) of the first solution (QD-BSA with added Ce₆) (Fig. 5(a)) and of the second one (Ce₆-BSA with added QDs) (Fig. 5(b)) showed the same spectral changes as in

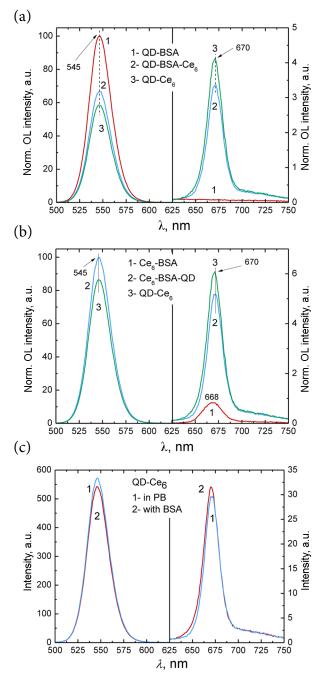


Fig. 5. Normalized emission spectra of (a) QD-BSA (0.05 μ M : 1 μ M) and (b) Ce₆-BSA (0.5 μ M : 1 μ M) solutions after addition of Ce₆ (0.5 μ M) and QD (0.05 μ M), respectively. Emission spectra before addition of Ce₆ and BSA to QD-BSA and Ce₆-BSA solutions, respectively, are also shown along with QD-Ce₆ emission spectra in the absence of protein, (c) QD-Ce₆ (0.05 μ M : 0.5 μ M) solution before and after addition of BSA ($c = 1 \ \mu$ M). Spectra were recorded using $\lambda_{ex} = 465 \ nm$.

the case of QD-Ce₆ complex formation in PBS. In all cases photoluminescence intensity of QDs was quenched with simultaneous significant increase in the intensity of the Ce₆ fluorescence band at 670 nm.

However, the intensity of the QDs photoluminescence band was higher and the intensity of fluorescence of bound Ce₆ molecules was lower in the presence of BSA for both cases of mixing order. Similar spectral changes were also obtained for the third solution (QD-Ce₆ with added BSA) (Fig. 5(c)). The results obtained suggest that the presence of BSA does not prevent QD-Ce₆ complex formation, regardless of the primacy of interaction of BSA with QDs or Ce₆ molecules.

3.3. Effect of lipid coating on the formation of QD-Ce₆ complex

To elucidate the process of complexation between QDs and Ce_6 , the surface of hydrophobic QDs was modified using three different phospholipids containing saturated and unsaturated fatty acids: DOPC, PEG-DPPE, or PEG-DOPE. While modification with PEG-DPPE or PEG-DOPE resulted in solubility of coated QDs and stability of aqueous colloidal solutions, it was found that QDs covered with DOPC became insoluble. Also, the colloidal solution of QDs modified by the mixture of DOPC:PEG-DPPE (molar ratio 2:1) was unstable. On the other hand, QDs encapsulated into DOPC:PEG-DOPE micelles with molar ratios of 1:1 and 2:1 showed long-term stability in the aqueous solution.

The modification of QD surface with different phospholipids had no effect on the absorption spectrum of QDs in comparison with that in toluene. However, the quantum yield of QDs PL slightly decreased after modification.

The formation of a complex between Ce₆ and superficially modified QDs was tested by adding a small volume of a Ce₆ stock solution to 50 nM solutions of modified QDs to obtain a molar ratio 1:5 for QD:Ce₆. The addition of Ce₆ to the colloidal solution of QDs covered with PEG-DPPE made no effect on the spectral properties of either QDs or Ce₆ (data not shown). However, the addition of Ce₆ to the colloidal solution of QDs covered with unsaturated phospholipids PEG-DOPE and DOPC:PEG-DOPE resulted in significant spectral changes of the PL of QDs and Ce_6 (Fig. 6). These experiments revealed that the coating of QDs with phospholipids with unsaturated bonds favours the complexation of Ce_6 with such QDs.

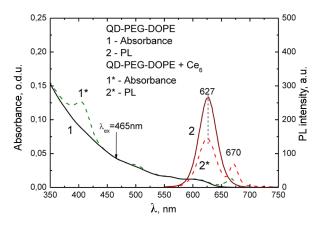


Fig. 6. Absorption and fluorescence spectra of QD-PEG-DOPE and KT-PEG-DOPE+Ce₆ solutions (concentration of Ce₆ was $0.25 \ \mu$ M).

3.4. Production of singlet oxygen by QD-Ce₆ complex

Figure 7(a–d) shows the normalized absorption and emission spectra registered in the solutions of QDs, Ce_6 , QD- Ce_6 mixture, and SOSG, which was used for the detection of singlet oxygen.

Complexation with QDs resulted in the shift of the last absorption band of Ce₆ from 655 to 660 nm. The intensity of QDs photoluminescence was quenched to half of its initial value. Excitation at 460 nm of a non-irradiated QD-Ce₆ mixture solution yielded a combined emission spectrum with the peaks at 630 and 670 nm, originated from QDs and from Ce₆ molecules complexed with QDs (Fig. 7(c)). The most intense absorption band of SOSG was at 508 nm and two much weaker bands were at 374 and 395 nm. The fluorescence band of SOSG at 525 nm did not overlap with emission bands of QDs and Ce₆ (Fig. 7(d)).

All solutions were irradiated with a light beam at around 460 nm since the absorbance of Ce_6 at this wavelength is minimal. Thus, the stability of a QD-Ce₆ complex and generation of singlet oxygen were assessed in a way preventing the direct photo-excitation of Ce₆.

Figure 8(a) shows relative changes in emission intensity of irradiated Ce_6 , QDs, and QD-Ce₆

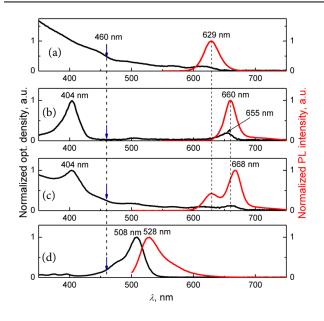


Fig. 7. Normalized absorption and emission spectra of (a) 0.02 μ M QDs, (b) 0.2 μ M Ce₆, (c) QD-Ce₆ (QD:Ce₆ 1:10), and (d) 2 μ M SOSG solutions (PB pH 7). Excitation at 460 nm was used for QDs, Ce₆ and QD-Ce₆ solutions, while excitation for SOSG solution was at 504 nm. Absorption spectra were normalized at excitation wavelength, while emission was normalized at intensity maximum. Arrows indicate the wavelength of irradiation.

solutions depending on the delivered irradiation dose, which are normalized to the absorbance at an irradiation wavelength (460 nm). Distinct changes in PL bands of QDs at 630 nm and of a QD-Ce₆

complex at 670 nm were detected in the mixture solution in comparison with those in homogenous solutions. The intensity of the band at 670 nm diminished by 90% after exposure to 128 J/cm² while the PL of QDs increased 3.6 times.

Figure 8(b) shows changes in fluorescence intensity of SOSG in QDs, Ce_6 , and QD- Ce_6 mixture solutions measured at 528 nm after various exposures to the light beam at about 460 nm. A significant increase of SOSG fluorescence intensity for about 30% was observed in QD- Ce_6 mixture after exposure to 160 J/cm². However, almost no fluorescence changes of SOSG were registered in solutions of QDs and Ce_6 .

3.5. Uptake of QD-Ce₆ complex in cells

The uptake of 1 μ M Ce₆, 0.2 μ M QDs, and QD-Ce₆ complex in MiaPaCa-2 cells was examined using laser confocal microscopy with an accessory for PL lifetime imaging. In order to investigate whether Ce₆ molecules remain bound to QDs after intracellular uptake, pictures of cells with accumulated Ce₆, QDs, and QD-Ce₆ were taken and the fluorescence lifetime measurements were performed in different sites of cells. The obtained data are summarized in Fig. 9.

A typical fluorescence lifetime of Ce_6 in cells was found to be 5.9 ns and did not vary in membrane and cytoplasm compartments of the cell. While typical PL lifetimes of QDs in plasma membrane and

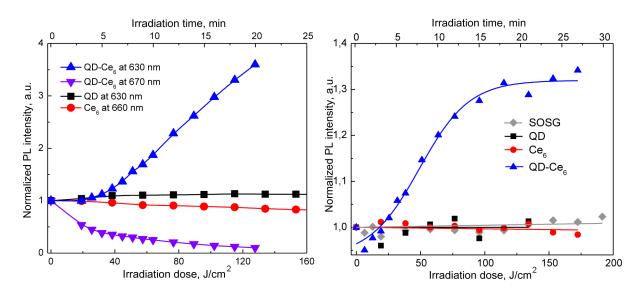


Fig. 8. Changes of photoluminescence of QDs, Ce₆ and QD-Ce₆ mixture solutions measured at corresponding wavelengths (left panel) and fluorescence of SOSG measured at 528 nm (right panel) after various exposures to light beam at about 460 nm. Intensities were normalized according to formulae $I_{irr}/I_{nonirr} \times A_{nonirr}/A_{irr}$.

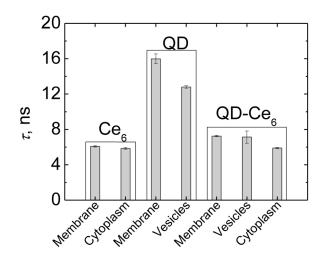


Fig. 9. Averaged fluorescence lifetimes of Ce_6 , QDs and QD- Ce_6 complex in different locations of MiaPaCa-2 cancer cells.

inner vesicles were slightly different, 16 and 12.8 ns, respectively, in the cells incubated with a QD-Ce₆ complex the PL lifetime value of QDs changed to 7.3 ns, which indicated a strong quenching of QDs due to energy transfer to Ce₆. However, the lifetime measurements in the cytoplasm yielded an averaged PL value of 5.9 ns, which coincided with the PL lifetime value of Ce₆ in cells.

3.6. Photosensitizing properties of QD-Ce₆ complex

To determine whether cell incubation with a $QD-Ce_6$ complex can cause photosensitization and induce photochemical damage upon irradiation, the cells in well plates were exposed to a light dose of 15 J at 470 nm, which is predominantly absorbed by QDs. Following light exposure, the morphology of the MiaPaCa-2 cells incubated with a QD-Ce₆ complex changed dramatically. The phase contrast micros-

copy image (Fig. 10(b)) shows the presence of the randomly shaped, volume-increased cells. These cellular features were not observed in control cells (Fig. 10(a)), indicating possible necrosis and photosensitizing properties of the QD-Ce₆ complex.

4. Discussion

Since it was suggested that QDs could be used in the photodynamic therapy of cancer as resonance energy donors for conventional photosensitizers [5], it became clear that the nature of interaction between QDs and photosensitizer molecules would play a very important role in photodynamic processes, affecting stability, photophysical properties and sensitizing effectiveness of such complexes. Spectroscopic investigations of the mixtures of all studied QDs with Ce₆ showed bathochromic shifts of absorption and fluorescence bands of the photosensitizer (Figs. 1, 2), which is typical of microenvironmental changes occurring during complex formation. The fluorescence excitation spectra being registered at the peak of the shifted Ce_c fluorescence band (Fig. 3) displayed the contribution of both QDs and Ce₆ absorbance confirming that the part of QD energy during photoexitation was indeed transferred to Ce₆ molecules. Interaction between QDs coated with either positively charged amino groups or negatively charged carboxyl groups and photosensitizer Ce₆ resulted in identical spectral positions of the fluorescence band of the latter (Fig. 4), implying that electrostatic interaction is not responsible for the observed formation of a complex between QDs and Ce₆. The shifted position of this band in relation to that observed in PBS and its similarity with that of Ce₆ dissolved in chloroform indicate that spectral properties of Ce_6

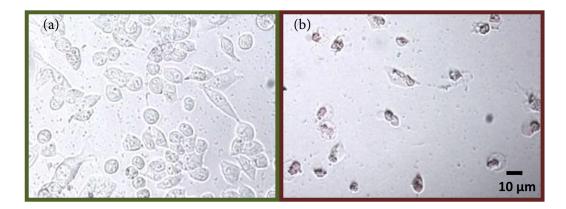


Fig. 10. MiaPaCa-2 - cells (a) after treatment with $QD-Ce_6$ complex in the dark, and (b) after exposure of 15 J irradiation (470 nm).

are very sensitive to environmental polarity. Since chloroform solution is hydrophobic, it is reasonable to presume that upon binding to QDs, Ce_6 molecules immerse in the hydrophobic part of its lipid coating. This presumption is in agreement with the report, demonstrating the localization of Ce_6 in most cellular membranes [12]. Another study on NMR spectroscopy of Ce_6 also demonstrated its localization in phospholipid bilayers, where Ce_6 was immersed in the vicinity of polar heads of phospholipids [13].

The experiments on the stability of the formed QD-Ce₆ complex that were performed in aqueous solutions in the presence of BSA did not reveal any notable changes in the spectral position of the fluorescence band of bound Ce_{6} (Fig. 5). The inability of BSA to prevent complex formation irrespective of the mixing sequence of all three components allows presuming that interaction strength between Ce₆ and the molecules of QDs coating is higher than interaction between each of them and BSA taken separately. Nevertheless, a slightly reduced intensity of Ce₆ and increased intensity of QDs PL in the presence of BSA (Fig. 5(a-c)) indicates the involvement of the latter in certain microenvironment changes occurring on QDs surface. It could weaken the affinity of Ce₆ towards QDs, inducing partial complex degradation.

The importance of hydrophobic interactions in the formation of a QD-Ce₆ complex was confirmed spectroscopically by conducting experiments with amphiphilic QDs, the surface coating of which had been modified using different phospholipids possessing saturated and unsaturated fatty acids. A notable bathochromic shift of Ce₆ absorption and fluorescence spectra was registered upon mixing PS solution with the solution of QDs coated with unsaturated fatty acid QD-PEG-DOPE (Fig. 6). The indistinguishable similarity of the fluorescence band of Ce₆ at 670 nm with the band of Ce₆ in a QD-Ce₆ complex formed in mixture solutions (Fig. 2) confirms the presumption that molecules of Ce₆ interact with the hydrophobic side of phospholipidic coating of QDs and that the presence of unsaturated fatty acids in a lipid coating of QDs greatly promotes complex formation.

It was found that a QD-Ce₆ complex is formed when a non-polar part of Ce₆ interacts with the hydrophobic part of QDs phospholipid coating [14, 15], which is evidenced by a fluorescence band shift from 660 to 670 nm, analogous as for Ce_6 molecules present in the hydrophobic environment [13, 16–18].

Being in close proximity Ce_6 conjugated with a QD could be indirectly excited by FRET from the QD to the sensitizer. Efficient energy transfer from QDs to bound Ce_6 molecules is achieved due to close localization of Ce_6 molecules to the core of QDs which is crucial for its further application in photodynamic therapy of cancer. Due to size dependent PL wavelength the QDs photoluminescence band can be tuned to overlap with the absorption band of PS, therefore exciting one via FRET. The excited PS molecules would act in the same way as in conventional PDT producing active cell destructive species.

Following the studies on application of QD-PS conjugates in PDT, employing QDs as potential energy donors for photosensitizers [5], it was of interest to test the most important requirement for PDT agents – the ability to generate singlet oxygen $({}^{1}O_{2})$, which is the main reactive intermediate in photosensitized cancer cell killing. The detection of singlet oxygen generated during irradiation of QD-Ce₆ solutions was performed using commercially available SOSG.

Irradiation of QD-Ce₆ complex solution caused a significant (about 30%) increase in intensity of SOSG fluorescence measured at 528 nm, which is proportional to the detected amount of ${}^{1}O_{2}$ (Fig. 8(b)). This result indicates that upon irradiation in the region of QDs absorbance, ${}^{1}O_{2}$ is produced. So, it seems that a QD-Ce₆ complex irradiated by visible light is able to produce ${}^{1}O_{2}$ more efficiently than QDs or Ce₆ alone and be a potential candidate for PDT.

When considering application of a QD-Ce₆ complex in PDT, it is very important to ascertain whether weak hydrophobic interaction between PS molecules and QDs is enough to induce cancer cell killing by using the FRET mechanism. The interference of various kinds of biomolecules in cytoplasm with a QD-Ce₆ complex may not only weaken its stability, but also enhance nonradiative decays and lead to shortening of the PL lifetime [19] thus creating the concurrence for FRET-based photosensitization. However, comparative PL lifetime imaging measurements performed in the cells (Fig. 9) revealed that the PL lifetime of

QDs in the absence of Ce_6 was 2 times longer than in its presence, confirming intracellular stability of the QD-Ce₆ complex as well as FRET occurrence. The observed photoinactivation of cells (Fig. 10) incubated with a QD-Ce₆ complex under irradiation in the spectral region minimizing direct excitation of a photosensitizer provided clear evidence for complex capacity to induce FRET-mediated cell eradication.

5. Conclusions

Spectroscopic studies on the formation of a non-covalent complex between QDs bearing different coatings and photosensitizer chlorin e, in an aqueous medium and in the presence of BSA revealed that the QD-Ce₆ complex is driven by hydrophobic interaction between the amphiphilic coating of quantum dots and non-polar moiety of chlorin e₆. Neither interaction with BSA nor intracellular environment could prevent complex formation; however, slight influence on its stability was observed. An investigation on the capacity of such complex to generate ¹O₂ showed that irradiation of the QD-Ce₆ complex with visible light, almost completely not absorbed by the sensitizer, produces ¹O₂ more efficiently than QDs or Ce₆ being exposed separately, due to effective energy transfer in such complex from QDs to bound chlorin e₆ molecules. The photoinactivation of cells incubated with a QD-Ce₆ complex evidenced that such complexes could induce FRET-mediated cell destruction, implying that such complexes could be used to create selective innovative techniques for photodynamic therapy based on biomedical application of femtosecond pulsed laser systems for twophoton excitation of photosensitizers.

Acknowledgements

This research was supported by the Norwegian Financial Mechanism and the Republic of Lithuania within the project "Multifunctional nanoparticles for specific non-invasive early diagnostics and treatment of cancer" (Contract No. LT0036) and Research Council of Lithuania Grant No. MIP-095/2011). A. S. is grateful for the Lithuanian Science Council Student Research Fellowship Award, and J. V. for the Postdoctoral Fellowship Implementation in Lithuania.

References

- K.R. Weishaupf, C.J. Gomer, and T.J. Dougherty, Identification of singlet oxygen as the cytotoxic agent in photoinactivation of a murine tumor, Cancer Res. 36, 2326–2329 (1976).
- [2] J.M. Fernandez, M.D. Bilgin, and L.I. Grossweiner, Singlet oxygen generation by photodynamic agents, J. Photochem. Photobiol. B Biol. 37(1–2), 131–140 (1997).
- [3] B. Čunderlikova, L. Gangeskar, and J. Moan, Acidbase properties of chlorin e6: relation to cellular uptake, J. Photochem. Photobiol. B Biol. 53(1–3), 81–90 (1999).
- [4] D. Kessel and R.D. Poretz, Sites of photodamage induced by photodynamic therapy with a chlorin e6 triacetoxymethyl ester (CAME), Photochem. Photobiol. 71, 94–96 (2000).
- [5] A.C.S. Samia, X.B. Chen, and C. Burda, Semiconductor quantum dots for photodynamic therapy, J. Am. Chem. Soc. **125**(51), 15736–15737 (2003).
- [6] R. Bakalova, H. Ohba, Z. Zhelev, M. Ishikawa, and Y. Baba, Quantum dots as photosensitizers? Nat. Biotechnol. 22(11), 1360–1361 (2004).
- [7] P. Juzenas, W. Chen, Y.P. Sun, M.A. Coelho, R. Generalov, N. Generalova, and I.L. Christensen, Quantum dots and nanoparticles for photodynamic and radiation therapies of cancer, Adv. Drug Deliv. Rev. 60(15), 1600–1614 (2008).
- [8] E. Yaghini, A.M. Seifalian, and A.J. MacRobert, Quantum dots and their potential biomedical applications in photosensitization for photodynamic therapy, Nanomedicine 4(3), 353–363 (2009).
- [9] L. Shi, B. Hernandez, and M. Selke, Singlet oxygen generation from water-soluble quantum dotorganic dye nanocomposites, J. Am. Chem. Soc. 128, 6278–6279 (2006).
- [10] A. Jasaitis Jr., G. Streckyte, and R. Rotomskis, Photophysics of sensitizer-protein complexes, Lith. J. Phys. 36, 299–302 (1996).
- [11] A.Jr. Jasaitis, G. Streckyte, and R. Rotomskis, Binding of porphyrin-type sensitizers to human serum albumin: spectroscopic investigation, Biologija 2, 16–23 (1997).
- [12] R. Bachor, C.R. Shea, R. Gillies, and T. Hasan, Photosensitized destruction of human bladdercarcinoma cells treated with chlorin e6-conjugated microspheres, Proc. Natl. Acad. Sci. USA 88(4), 1580–1584 (1991).
- [13] M. Vermathen, M. Marzorati, P. Vermathen, and P. Bigler, pH-Dependent distribution of chlorin e6 derivatives across phospholipid bilayers probed by NMR spectroscopy, Langmuir 26(13), 11085– 11094 (2010).
- [14] J. Valanciunaite, A. Skripka, R. Araminaite, K. Kalantojus, G. Streckyte, and R. Rotomskis, Spectroscopic study of non-covalent complex

formation between different porphyrin analogues and quantum dots with lipid-based coating, Chemija **22**(4), 181–187 (2011).

- [15] J. Valanciunaite, A. Skripka, G. Streckyte, and R. Rotomskis, Complex of water-soluble CdSe/ ZnS quantum dots and chlorine e₆: interaction and FRET, Proc. SPIE **7376**, Laser Applications in Life Sciences, 737607-1 (2010).
- [16] A.A. Frolov, E.I. Zenkevich, G.P. Gurinovich, and G.A. Kochubeyev, Chlorin e_6 -liposome interaction investigation by the methods of fluorescence spectroscopy and inductive resonance energy-transfer, J. Photochem. Photobiol. B Biol. 7(1), 43–56 (1990).
- [17] H. Mojzisova, S. Bonneau, C. Vever-Bizet, and D. Brault, The pH-dependent distribution of the photosensitizer chlorin e6 among plasma proteins and membranes: a physico-chemical approach, Bioch. Biophys. Acta 1768, 366–374 (2007).
- [18] Y. Zhang and H. Gorner, Photoprocesses of chlorin e6 bound to lysozyme or bovin serum albumin, Dyes Pigments 83, 174–179 (2009).
- [19] Y. Zhang, L. Mi, P.N. Wang, S.J. Lu, J.Y. Chen, J. Guo, W.L. Yang, and C.C. Wang, Photoluminescence decay dynamics of thiol-capped CdTe quantum dots in living cells under microexcitation, Small 4(6), 777–780 (2008).

MODIFIKUOTO PAVIRŠIAUS KVANTINIŲ TAŠKŲ IR CHLORINO e₆ KOMPLEKSAI FOTODINAMINEI TERAPIJAI

R. Rotomskis ^{a, b}, J. Valančiūnaitė ^b, A. Skripka ^b, S. Steponkienė ^b, G. Špogis ^b, S. Bagdonas ^a, G. Streckytė ^a

> ^a Vilniaus universiteto Lazerinių tyrimų centras, Vilnius, Lietuva ^b Vilniaus universiteto Onkologijos institutas, Vilnius, Lietuva

Santrauka

Pastaraisiais metais buvo pasiūlyta, kad kvantiniai taškai (KT) galėtų tapti energijos donorais tradiciniams porfirinams, taikomiems vėžio gydymui fotodinaminės terapijos metodu. Šiame darbe spektroskopiniais metodais tirtas nekovalentinės prigimties komplekso tarp KT ir fotosensibilizatoriaus chlorino e_6 (Ce₆) susidarymas vandeninėje terpėje ir jaučio serumo albumino aplinkoje. KT ir Ce₆ sugerties ir fluorescencijos spektrų pokyčiai atskleidė, kad KT ir Ce₆ komplekso formavimasis vyksta dėl hidrofobinės sąveikos tarp amfifilinio fotosensibilizatoriaus molekulės nepolinės dalies ir hidrofobinės KT lipidinio dangalo dalies. Tokiuose kompleksuose fotosensibilizatorius gali būti sužadinamas netiesiogiai vykstant Fiorsterio rezonansinės energijos pernašai. Švitinamas regimosios šviesos spinduliuote, KT ir Ce₆ kompleksas generuoja singuletinį deguonį aktyviau negu jo atskirai švitinami komponentai. Inkubavus vėžio ląsteles KT ir Ce₆ komplekso tirpalu ir pašvitinus šviesa, kurios sensibilizatorius nesugeria, didelė dalis ląstelių žuvo. Stabilių KT ir fotosensibilizatorių kompleksų citotoksiškumas ląstelėse galėtų būti panaudotas kuriant selektyvias fotodinaminės terapijos metodikas.