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The interplay of broken translation symmetry due to the edge and the particular properties of the edge 
states is illustrated considering the simple square lattice. In the case of the most symmetric edge (when its 
direction coincides with the primitive translation vector) the translation along the edge symmetry enables to 
transform the two-dimensional (2D) tight-binding method equations into a more simple 1D eigenvalue prob-
lem. When the direction of the edge does not coincide with the primitive vector, the above-mentioned sym-
metry is broken. Nevertheless it can be partially restored enlarging the primitive cell and the number of wave 
function components, what enables to obtain the above-mentioned effective 1D problem. It is shown that the 
exact solution of the 1D problem can be obtained by means of the Bethe Ansatz method what was checked by 
the numerical diagonalization. Using the proposed technique the properties of the edge states were considered. 
It was shown that there are two reasons for the edge states to appear: the local potential of the edge sites and 
the modification of the tunnelling amplitudes along the edge. In the case of the most symmetric edge only the 
second one can lead to the edge state energy dependence differing from the one of the bottom of the continu-
ous band. While in the case of the tilted edge the electron motion along the edge infuences significantly the 
spectrum of the edge state.
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1. Introduction

Since its isolation in 2004, graphene [1] – the two-
dimensional (2D) system of electrons  –  is still of 
interest because of nontrivial electronic proper-
ties and promising applications in electronic de-
vices. Due to the progress in nanotechnology the 
investigations are shifting towards the properties 
of restricted systems, like half-planes and ribbons 
where the edges are of importance (see [2] and 
references there). The restrictions always lead to 
more complicated calculations. That is why the ap-
plication of various symmetries that simplifies the 
consideration is of importance. For instance, look-
ing for the protected edge states much attention to 
the topological symmetry is given [3], expecting 
that such states inffuence essentially the transport 
and magnetic properties of the restricted samples.

To our mind, the translation symmetry might 
be useful as well when considering the properties 
of the edge states. Although the edge always spoils 
the translation symmetry (at least partially), the re-
maining of it enables to reduce the dimensionality 
of the problem, and in such way simplifies the con-
sideration. In the case of edge states in graphene the 
reference of attention to the translation symmetry 
is important as well. Usually two types of edges are 
under consideration: zigzag and armchair [4]. The 
first one is cut along the direction of the primitive 
translation vector, while the second one makes a 30° 
angle with it. This fact provides different proper-
ties of these edges because they spoil the translation 
symmetry of the graphene lattice in a different way.

The above-mentioned influence of the trans-
lation symmetry on the edge state properties is 
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caused by the disreteness of the lattice, and it is not 
just the prerogative of the graphene. It can be met in 
a more simple lattice as well. The aim of this paper is 
to demonstrate the interplay of the spoiled transla-
tion symmetry and the edge state properties using 
the simplest model quadratic lattice. This model was 
successfully used to consider the main properties of 
the topologial isolators [5]. Besides, we pursue the 
methodologial purpose and show how making use 
of the translation symmetry the 2D lattice eigenval-
ue problem can be transformed into a 1D effective 
chain problem in the case of any edge. The latter one 
is considered by means of Bethe Ansatz [6].

The paper is organized as follows. In Section 2 
we present the model and shortly formulate the 
tight-binding model equations. The main idea of 
using the translation symmetry in edge state treat-
ment is given in Section  3 considering the most 
symmetric edge, while in Section 4 the appliation 
of Bethe Ansatz in solving the effective 1D chain 
model is presented. In Sections 5 and 6 the same 
procedure is applied to the tilted edge, and in Sec-
tion 7 our conclusions are given.

2. Model

We consider the model system shown in Fig. 1 and 
describe the spectrum of electron moving in this 
square 2D lattice by the following stationary tight-
binding model (TBM) equation:

εun,m = – (un–1,m + un +1,m + un,m–1 + un,m+1). (1)

The symbol ε stands for the electron energy 
(measured in tunnelling amplitude units), and un,m is 

the amplitude whose modulus squared indicates the 
probability to find the electron at the lattice site {n,m}. 
According to the figure the vertial rows of the lattice 
are numbered by the first index n, while the se cond 
index m shows the number of the horizontal ones.

The lattice can be considered as constructed 
translating the shadowed primitive cell along the 
directions of the primitive translation vectors a and 
b shown by arrows. It is evident that this infinite lat-
tice and Eq. (1) are also invariant in respect of these 
two translations. Consequently, the amplitude can 
be presented as a product of the eigenfunctions of 
the corresponding translation operators

un,m = ei(kn+qm)    (2)

with the real quasi-momentum components k and 
q what leads to a well-known cosine type spectrum:

E = ε + 4 = 4 – 2 (cos k + cos q).  (3)

For the sake of convenience we introduced the 
shifted-up energy in order to have the bottom of 
the band at the point E = 0.

3. The most symmetric edge

We start the analysis of the edge states with the 
half-lattice shown in Fig. 2 with the vertical edge 
on its left side. It is of the most symmetry and cor-
responds to the zigzag edge in a graphene ribbon.

The amplitudes of the electron moving in this 
lattice satisfy the same Eq.  (1) with a single dif-
ferene that now n ≥ 1. The amplitudes at the edge 

Fig. 1. Square 2D lattice.
Fig. 2. Half-lattice with the most symmetric edge 
along b direction.
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(its sites are shown by the empty circles) satisfy the 
following boundary condition:

(ε – U) u0,m = –u1,m – s (u0,m–1 + u0,m+1). (4)

This equation differs from the previous Eq. (1) 
not only by the number of nearest neighbours 
(three instead of four), but also by the additional 
local energy U and modified tunnelling amplitude 
along the edge by factor s, what can be justified by 
the different hybridization of the edge atom states 
and their different interaction with the substrate.

The symmetry properties of this half-lattice are 
weaker compared with those of the infinite lattice. 
For instance, it is not invariant in respect of transla-
tion perpendicular to the edge direction along vec-
tor a. That is why the amplitude given by Eq. (2) is 
not a solution anymore. However, this half-lattice is 
still invariant in respect of its translation along vec-
tor b. Consequently, the eigenfunction of this trans-
lation operator can be used, and the problem can 
be reduced to the effective 1D eigenvalue problem. 
Namely, we assume the following amplitude:

un,m = eiqmun, (5)

and inserting it into Eqs. (1) and (4) obtain the fol-
lowing set of equations:

(ε + 2 cos q) un = – (un−1 + un+1), (6a)

[ε + 2 cos q – Ueff(q)] u0 = –u1, (6b)

where

Ueff(q) = U + 2(1 – s) cos q. (7)

Actually, we separated the variables, and the main 
characteristic of the parallel motion, the electron 
momentum q along the edge, enters the above set 
of equations as a plain parameter. It causes the total 
shift of the energy spectrum and modifies the local 
potential of the edge sites. In such way we managed 
to simplify the 2D problem essentially, reducing it to 
the 1D one. Actually, we converted it to the eigen-
value problem of the chain that is shown in Fig. 3.

4. Bethe Ansatz

So, in order to find the edge state of a 2D lattice we 
have to find the edge state of a 1D chain shown in 
Fig. 3. From the first sight it seems that the trans-
lation symmetry cannot help us anymore, because 
due to the edge this half-chain is not invariant in 
respect of this symmetry. However, there is the so-
called Bethe Ansatz [6] that is closely related to the 
above symmetry and often enables to find the exact 
analytical solution. The main idea of this method 
consists in constructing the solution of a half-in-
finite chain as a superposition of exponents (the 
eigenfunctions of the translation operator). Such 
superposition satisfies Eq.  (6a) automatically, and 
the single job to do is to satisfy the boundary con-
dition (6b) choosing properly the coefficients of it. 
We shall illustrate this idea solving our simple most 
symmetric edge problem.

Thus, inserting exponent

un = eikn (8)

into Eq. (6a) we obtain Eq. (3) for the continuous 
spectrum. As this equation is an even function of 
momentum k the superposition of two exponents 
with  ±k may be constructed, what leads to the 
known solution of the reflected wave from the edge 
of the chain. We are looking, however, for a dif-
ferent solution, namely, for the edge state with the 
energy that is lower than the bottom of the above 
continuous spectrum. Fortunately, such solution 
can be obtained from the above one just replacing 
k → iκ, what gives the amplitude

un = e–κn, (9)

decaying when receding from the edge (n  →  ∞), 
and the energy

ε = –2 (cos q + chk) (10)
that is lower than the bottom of the continuous spec-
trum. In this case, however, there is no other solu-
tion because changing κ → –κ we obtain the solution 
growing when receding from the edge. Consequent-
ly, the boundary condition (6b) has to be satisfied by 
a single exponent (9). Thus, inserting this exponent 
into Eq. (6b) and using Eq. (6a) we obtain

Ueff(q) = –eκ.    (11)Fig. 3. The effective chain.
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We see that a single discrete edge state appears 
if this effective edge potential is negative and its ab-
solute value exeeds the unity (Ueff < −1). Solving the 
above equation for κ and inserting it into Eq. (10) 
we obtain the energy of the local edge state, corre-
sponding to the above κ:

)(
1)(cos2–4

eff
eff qU

qUqE ++=  (12)

,12)(
eff

effmin 







+++=

U
UqE

where

Emin(q) = E(0, q) = 2 (1 – cos q) (13)

is the above-mentioned bottom of the continuous 
spectrum for the given parallel momentum q value. 
The obtained result is illustrated by Fig. 4 where the 
spectrum is shown. We see that when the tunnelling 
along the edge is the same as in the plane (s = 1), 
the edge state is pushed down from the bottom of 
the continuous spectrum parallel to its minimum 
(see solid line in Fig. 4). In the opposite (s ≠ 1) case 
the effective edge potential (7) is q-dependent, and 
when the momentum q increases the edge state ei-
ther submerges itself into continuum or splits away 
from it at some q value, as it is shown by dashed 
and dotted curves.

The analogous localized state can be pushed 
up from the top of the continuous spectrum 
when Ueff(q)  >  1. In this case the function 
un = (–1)n exp(–κn) has to be chosen. It is remark-
able that the local state appears when the positive 
effective potential exceeds only one fourth of the 

continuous spectrum width like in the already-
considered negative local potential case.

5. Tilted edge

Now we consider a more sophisticated case when 
the edge is tilted and spoils the translation sym-
metry substantively. The example of such edge is 
shown in Fig. 5. It is evident that this half-lattice is 
not invariant in respect of both translations along 
the previously defined primitive vectors a and b.

However, the translation symmetry can be 
partially restored choosing some other primitive 
cell as it is shown in Fig.  6. Now the edge spoils 
the translation symmetry only in the direction of 
vector a while the other one along vector b is pre-
served as its direction coincides with the direction 
of the edge that is shown by the tilted dashed line. 
In the case of some other tilted edges the different 
cells (maybe even larger) have to be chosen. This 
choice is closely related to the commensurability 

Fig. 5. Half-lattice with the tilted edge.

Fig. 4. Edge state in the most symmetric edge case.
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in the system with twofold periodicity (lattice and 
edge), like in the case of the lattice with the mag-
netic field [7].

We see in Fig. 6 that now there are two atoms in 
the primitive cell (they are indicated by circles and 
squares). Consequently, two-component electron 
amplitudes have to be used, and instead of Eqs. (1) 
and (4) they satisfy the following set of four equa-
tions:
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εun,m = – (un–1,m + un+1,m

+ vn,m–1 + vn−1,m), n ≥ 1; (14a)

εvn,m = – (vn–1,m + vn+1,m

+ un+1,m + un,m+1), n ≥ 0; (14b)

(ε – U)u0,m = – (u1,m + v0,m–1 + sv–1,m), (14c)

(ε – V)v–1,m = – (v0,m + su0,m). (14d)

Now following the strategy presented in Sec. 3 
and using the restored symmetry along the edge we 
assume the following amplitudes:

 (15)

where the symbol q stands for the electron mo-
mentum component along the tilted edge. Insert-
ing these amplitudes into Eqs.  (14) we obtain the 
following set of 1D difference equations:

εun = − (un−1 + un+1

+ e–iqvn + vn–1), n ≥ 1; (16a)

εvn = −(vn−1 + vn+1

+ un+1 + eiqun), n ≥ 0; (16b)

(ε – U)u0 = – (u1 + e−iqv0 + sv–1), (16c)

(ε – V)v–1 = – (v0 + su0), (16d)

that desсribes the motion of the electron in the 
effective  1D сhain shown in Fig. 7.

Fig. 6. Twice large primitive cell.
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Fig. 7. Effective 1D chain for the tilted edge 
problem.

6. Solution of 1D problem

Now we shall solve Eqs. (16) using the same Bethe 
Ansatz idea that was discussed in Sec. 4. Namely, 
we assume that the amplitudes are proportional 
to the eigenfunction of the translation operator, 
namely,

 (17)

and inserting it into the Eqs. (16a) and (16b) obtain 
the following set of two algebraic equations:

[ε + 2 cos k] u = −(e–iq + e−ik)v, (18a)

[ε + 2 cos k] v = −(eik + eiq)u. (18b)

By zeroing the determinant of the above set we 
obtain the dispersion relation

ε ± = –2 cos k ± 2 cos [(k – q)/2]. (19)
Actually, it coindices with the obtained ear-

lier Eq.  (3) if we take into account the skewness 
of coordinates in the momentum plane defined by 
new primitive vectors a and b and a twice smaller 
Brillouin zone due to which two energy branches 
appear. This dispersion relation differs, however, 
essentially from Eq. (3) that was used in the case 
of the most symmetric edge. Due to the second 
term the variables are not separated, and it is not 
possible to satisfy the above equation with imagi-
nary momentum k that we need for describing the 
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edge state. That is why let us try a complex mo-
mentum

k = ξ + iκ, κ > 0,   (20)

and split Eq. (19) into real and imaginary parts:

ε ± = –2 cos ξ chκ ± 2 cos [(ξ – q)/2] ch(κ/2),   (21a)

–2 sin ξ ch(κ/2) ± sin [(ξ – q)/2] = 0.          (21b)

The graphical solution of these equations for 
the momentum k components (20) in the case of 
a given energy E is demonstrated in Fig. 8 where 
the zero lines of two contour plots corresponding 
to above two equations are shown.

Now, inserting these expressions into Eq. (21a) 
we obtain the energy as an even function of the real 
momentum component:

.
sin2

cos–coscos24 2 ξ
ξξ qE ++=

 
(23)

Thus, the root of this real equation (what can be 
easily obtained numerically, say, by the Newton–
Raphson method) together with Eq.  (22) gives us 
both momentum k± components. The energy de-
pendence of them is illustrated by Fig. 9.
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Fig. 8. Graphical solution of Eqs. (21).

The solutions are obtained as intersections of 
solid or dashed curves corresponding to the real 
and imaginary parts of dispersion equations. Two 
of them in the upper half-plane that according to 
Eq. (20) are useful for constructing the edge state 
are indicated by circles. This contour plot confirms 
our assumption that dispersion equations can be 
satisfied by the complex momentum k value.

By the way, the solution can be simplified using 
the analytic expression for the imaginary part of 
the momentum obtained from Eq. (21b):
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Fig. 9. Energy dependence of real and imaginary mo-
mentum components for the edge state.

We see that approaching the bottom of the con-
tinuous band (E = 0.22 in the case of q = 0.3) the 
imaginary component k– becomes zero, what indi-
cates that at this point the edge state (if it existed) 
breaks away from the edge and submerges into a 
continuous band.

When the momenta are found, the components of 
amplitudes (17) are obtained by means of Eq. (18a):

 (24)

Now we use the ideas of Bethe Ansatz and con-
struct the following wave function of the electron:

 (25)
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Inserting this function into boundary condi-
tions (16c) and (16d) we obtain the set of two alge-
braic equations:

ae–ik–A + be–ik+B = 0, (26a)

ce–i(k––q)/2A – de–i(k+–q)/2B = 0, (26b)

where
a = Ueik−/2 + e–ik−/2 + (1 – s)eiq/2, (27a)

b = Ueik+/2 + e–ik+/2 – (1 – s)eiq/2, (27b)

c = (ε – V)e–ik–/2 + eik–/2 + se–iq/2, (27c)

d = (ε – V)e–ik+/2 + eik+/2 – se–iq/2. (27d)

At last, zeroing the determinant we get

D(E) = e–ik–/2ad + e–ik+/2bc = 0. (28)

Actually, it is the equation from which the en-
ergy of the edge state (if such state exits) has to 
be defined. The energy, of course, is a real quan-
tity (otherwise the state will not be stationary), 
while Eq. (28) itself is complex. It is equivalent to 
two real equations for real and imaginary parts of 
Eq. (28). That is why it is not evident that the edge 
state exists. And if it exists it is not evident that 
the applied Bethe Ansatz method gives the right 
answer. There are known cases when this method 
fails (see, for instance [8]). The positive answer to 
this question we see in Fig. 10 where the energy 
dependence of real and imaginary parts of the 
above determinant is shown. We see that these 
components become zero at the same energy val-
ue indicated by an empty circle. The coincidence 
within the accuracy of six digits cannot be occa-
sional.

The validity of obtained results by means of Bethe 
Ansatz was confirmed by the direct numerical diag-
onalization of the matrix corresponding to consid-
ered Eqs.  (16). The typical result for the ribbon of 
the width of 30 primitive cells (0 ≤ n < 30) is shown 
in Fig. 11. The obtained 60 energy values are shown 
in the increasing order for two different q values. The 
most interesting for us are the kinks of both curves 
at small n values indicated by the empty circle, wit-
nessing the existence of the edge states split from the 
continuous spectrum. These numerical values coin-

cide with those obtained for the edge state energy by 
means of Bethe Ansatz within 0.1% accuracy.

Figure 12 demonstrates the behaviour of the 
edge state wave function components that are real 
in this q = 0 case. According to the Bethe Ansatz 
method the wave function consists of two expo-
nents (slow and fast) that are shown separately. Both 
components in a slow exponent are of the same sign 
and almost coincide. A small difference appears 
due to the different position of sites in the primi-
tive cell, and it shortly disappears when going away 
from the edge where the discreteness of the lattice 
becomes not important. In the fast exponent, the 
components are of the opposite sign. They are es-
sential only in the near vicinity of the edge and take 

Fig. 10. Energy dependence of real and imaginary 
components of the determinant (28).

Fig. 11. The eigenvalues obtained by numerical  
diagonalization.
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into account the wave function corrections due to 
the discreteness and scalariform of the edge.

The energy of the edge state as a function of the 
momentum component q along the edge is shown 
in Fig. 13 together with the shadowed continuous 
spectrum. Comparing this plot with the results for 
the most symmetric edge presented in Fig.  4 we 
may conclude that in the case of the tilted edge 
the motion of the electron along the edge is more 
tightly coupled with its motion in the perpendicu-
lar direction that finally is responsible for the ap-
pearance of the edge state. Two factors testify to 
it: the edge state energy split dependence on the 
parallel electron momentum (even in the case of 
non-modified tunneling when s = 1), and increas-
ing the above-mentioned split with increment of 
this momentum.

7. Conclusions

Using the simplest model of the 2D quadratic lat-
tice, the interplay between the lattice edge and 
translation symmetry was demonstrated. It was 
shown that due to translation symmetry the 2D 
lattice eigenvalue problem can be transformed 
into the 1D chain problem. When the edge is cut 
along a primitive translation vector, it does not 
spoil the translation symmetry along the edge. 
The variables can be separated, and the above 
transformation is trivial.

In the case of the tilted edge when its direc-
tion does not coincide with any primitive trans-
lation vector, sometimes it is possible to restore 
the spoiled symmetry by means of increasing the 
primitive cell and changing the corresponding 
translation vectors. That enables to reduce the 2D 
problem to the 1D one, although by enlarging the 
number of wave function components. Thus, we 
may conclude that the tilted edge breaks the trans-
lation symmetry only partially.

We showed that although there is no transla-
tion symmetry perpendicularly to the edge direc-
tion, the obtained 1D eigenvalue problem can be 
exactly solved using the Bethe Ansatz method, 
namely, using the wave function as a superposi-
tion of the translation operator eigenfunctions, 
what may be explained by the one-dimensionality 
of the problem and the local type of perturbation 
caused by the edge.

Using the proposed technique, the properties 
of the edge states were considered. There are two 
reasons for the edge state to appear. The first one 
is just the local potential of edge sites. If this po-
tential is negative and exceeds some critical value, 
the edge state is pushed down from the bottom 
of the continuous spectrum. In an analogous way, 
the positive local potential can push the edge state 
up from the top of the continuous spectrum. The 
second reason for the edge state to appear is a dy-
namical one. The different tunnelling of the elec-
tron along the edge changes the local potential 
into the effective one that modifies the condition 
for the edge state to appear and makes the edge 
state energy dependent on the electron momen-
tum along the edge. In the case of the tilted edge 
the dependence of the edge state properties on the 
motion of the electron along the edge is more pro-
nounced.
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n

Fig. 13. Spectrum in the case of tilted edge for dif-
ferent tunnelling amplitudes along the edge.

Fig. 12. The wave function of the edge state. Two ex-
ponent components un are shown by solid curves, 
while vn by dashed ones.
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These mathematical and physical conclusions 
are quite general and give hope to apply them to 
edge states in graphene.
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Santrauka
Pasinaudojus paprasčiausiu dvimatės (2D) kvadratinės 
gardelės modeliu ir stipraus ryšio mode lio lygtimis, 
pailiustruota konkurencija tarp gardelės krašto 
ir transliacinės simetrijos. Kraštas visada sulaužo 
transliaciją statmena jam kryptimi ir tuo gerokai ap-
sunkina analizinių sprendimų paiešką. Didžiausios si-
metrijos krašto atveju (kada jo kryptis sutampa su vienu 
iš primityvių transliacijos vektorių) transliacija išilgai 
krašto išlieka, tai įgalina redukuoti 2D gardelės tikrinių 
verčių uždavinį į 1D grandinėlės uždavinį. Įstrižo krašto 
atveju, kai jo kryptis nesutampa nei su vienu iš tų trans-
liacijos vektorių, kraštas sugadina transliacijas abejomis 
kryptimis. Parodoma, kad transliacijos simetrija gali 
būti iš dalies atstatyta pasirenkant didesnį primityvųjį 
narvelį ir kitus transliacijos vektorius. Tai įgalina (kaip 
ir anksčiau) redukuoti uždavinį į 1D, nors ir padidėja 

elektrono banginės funkcijos komponenčių skaičius, o 
dėl sumažėjusios Brijueno zonos atsiranda papildomos 
energijos šakos. Parodoma, kad gauti 1D uždaviniai 
gali būti išspręsti Bethe Ansatz metodu skaitmeniškai 
patikrinant gautus rezultatus. Panaudojant pasiūlyta 
skaičiavimo technika išnagrinėtos pagrindinės kraštinių 
būsenų savybės. Parodyta, kad yra dvi priežastys, 
lemiančios tos būsenos atsiradimą. Viena jų – skirtingas 
lokalinis kraštinių gardelės mazgų potencialas; antro-
ji  – dinaminė, atsirandanti dėl modifikuoto elektrono 
tuneliavimo efektyvumo išilgai krašto. Jeigu didžiausios 
simetrijos krašto atveju tik antroji lemia skirtingą 
tolydinės juostos minimumo kraštinės būsenos energi-
jos priklausomybę nuo elektrono impulso išilgai krašto, 
tai įstrižas kraštas gerokai sumaišo tų dviejų priežasčių 
vaidmenį, lemdamas didesnę išilginio elektrono 
judėjimo įtaką kraštinės būsenos spektrui.


