[PDF]    http://dx.doi.org/10.3952/lithjphys.53308

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 53, 175182 (2013)

G. Mordas, V. Ulevicius, K. Plauškaitė, and N. Prokopčiuk
State Research Institute Center for Physical Sciences and Technology, Savanorių 231, LT-02300 Vilnius, Lithuania
E-mail: genrik@ftmc.lt

Received 19 February 2013; revised 16 April 2013; accepted 20 June 2013

The main performance characteristics of the modernized condensation particle counter (CPC) UF-02M were determined. We studied the particle number concentration range of the instrument and the detection efficiency as a function of the particle diameter experimentally. In order to determine a cut-size D 50, the function was fitted to the experimental data. According to the fitting, the cut-size was 4.35 nm. The determined cut-size allows detecting the aerosol particles of the nucleation mode, giving possibilities to find many applications of the CPC UF-02M in the investigations of the aerosol nanometre particle dynamical properties. The counting efficiency of the CPC at high particle concentrations was experimentally investigated using silver particles of a 20 nm diameter. The minimum measured number concentration of aerosol particles was 0.003 cm–3, the maximum was 150000 cm–3 with the accuracy of 20%. The operation of the CPC UF-02M was compared with the operation of a commercially available SMPS TSI3936 under ambient conditions. The measured number concentrations were comparable with 5% accuracy. During the testing time, both instruments detected a new particle formation event. It was determined that the number concentration measured with the modernized CPC was higher than that determined by the SMPS. It was explained that a new CPC had a lower cut-size and detected smaller particles than the SMPS did.
Keywords: condensation particle counter, detection efficiency, nanoparticle
PACS: 92.60.MZ, 92.20.Bk

G. Mordas, V. Ulevičius, K. Plauškaitė, N. Prokopčiuk
Valstybinis mokslinių tyrimų institutas Fizinių ir technologijos mokslų centras, Vilnius, Lietuva

Straipsnyje pateikiami patobulinto kondensacinio dalelių skaitiklio UF-02M eksperimentinių tyrimų duomenys. Nustatyti pagrindiniai skaitiklio veikimo parametrai (kondensacinės kameros ir garintuvo temperatūros, aerozolio ir butanolio garų srautai). Įvertinta aerozolio dalelių registravimo efektyvumo priklausomybė nuo dalelių dydžio. Taikant trijų laisvų parametrų funkciją įvertintas registravimo efektyvumo ribinis dydis ( D50 %), kuris yra 4,35 nm. Įvertintas aerozolio dalelių skaičiavimo efektyvumas naudojant 20 nm dydžio sidabro dalelės. Nustatytos mažiausios ir didžiausios registruojamos dalelių skaitinės koncentracijos: atitinkamai 0,003 ir 150 000 cm–3. Atliktas kondensacinio dalelių skaitiklio UF-02M testavimas aplinkos sąlygomis matuojant Baltijos jūros pakrantės aerozolį kartu su komerciniu aerozolio dalelių spektrometru TSI3936. Palyginimo rezultatai parodė, kad matuojamos dalelių koncentracijos sutampa 5 % tikslumu. Tačiau UF-02M registravo didesnes koncentracijas naujų dalelių susidarymo metu. Tai paaiškinama tuo, kad skaitiklio UF-02M registravimo efektyvumo ribinis dydis yra mažesnis negu komercinio spektrometro TSI3936. Tikimės, kad patobulinto kondensacinio dalelių skaitiklio UF-02M taikymas atmosferos fizikos tyrimams suteiks galimybę sukaupti tikslesnių ir vertingų žinių apie aerozolio nanometrinių dalelių dinaminius procesus.

References / Nuorodos

[1] A.L. Metnieks and L.W. Pollak, Introduction for Use of Photo-Electric Condensation Nucleus Counters (School of Cosmic Physics, Dublin Institute of Advanced Studies, 1959),
[2] G.J. Sem, Design and performance characteristics of three continuous-flow condensation particle counters: a summary, Atmos. Res. 62, 267–294 (2002),
http://dx.doi.org/ 10.1016/S0169-8095(02)00014-5
[3] R. Mavliev, Turbulent mixing condensation nucleus counter, Atmos. Res. 62, 302–314 (2002),
http://dx.doi.org/ 10.1016/S0169-8095(02)00016-9
[4] J. Wang, V.F. McNeill, D.R. Collins, and R.C. Flagan, Fast mixing condensation nucleus counter: application to rapid scanning differential mobility analyzer measurements, Aerosol Sci. Technol. 36 , 678–689 (2002),
http://dx.doi.org/ 10.1080/02786820290038366
[5] F.R. Quant, R. Caldow, G.J. Sem, and T.J. Addison, Performance of condensation particle counters with three continuous-flow designs, J. Aerosol Sci. 23, S405–S408 (1992),
http://dx.doi.org/ 10.1016/0021-8502(92)90435-X
[6] S. Mertes, F. Schröder, and A. Wiedensohler, The particle detection efficiency curve of the TSI-3010 CPC as a function of the temperature difference between saturator and condenser, Aerosol Sci. Technol. 23, 257–261 (1995),
http://dx.doi.org/ 10.1080/02786829508965310
[7] P.H. McMurry, The history of CPCs, Aerosol Sci. Technol. 33, 297–322 (2000),
http://dx.doi.org/ 10.1080/02786820050121512
[8] K. Hämeri, I.K. Koponen, P.P. Aalto, and M. Kulmala, The particle detection efficiency of the TSI-3007 condensation particle counter, J. Aerosol Sci. 33, 1463–1469 (2002),
http://dx.doi.org/ 10.1016/S0021-8502(02)00090-3
[9] G. Mordas, H.E. Manninen, T. Petäjä, P.P. Aalto, K. Hämeri, and M. Kulmala, On operation of the ultra-fine water-based CPC TSI3786 and comparison with other TSI models (TSI3776, TSI3772, TSI3025, TSI3010, TSI3007), Aerosol Sci. Technol. 42, 152–158 (2008),
http://dx.doi.org/ 10.1080/02786820701846252
[10] S.V. Hering and M.R. Stolzenburg, A method for particle size amplification by water condensation in a laminar, thermally diffusive flow, Aerosol Sci. Technol. 39, 428–436 (2005),
[11] S.V. Hering, M.R. Stolzenburg, F.R. Quant, D.R. Oberreit, and P.B. Keady, A laminar-flow, water-based condensation particle counter (WCPC), Aerosol Sci. Technol. 39, 659–672 (2005),
http://dx.doi.org/ 10.1080/02786820500182123
[12] W. Liu, S.L. Kaufman, B.L. Osmondson, G.J. Sem, F.R. Quant, and D.R. Oberreit, Water-based condensation particle counters for environmental monitoring of ultrafine particles, J. Air Waste Manag. Assoc. 56, 444–455 (2006),
[13] T. Petäjä, G. Mordas, H. Manninen, P.P. Aalto, K. Hämeri, and M. Kulmala, Detection efficiency of water-based TSI condensation particle counter 3785, Aerosol Sci. Technol. 40, 1090–1097 (2006),
http://dx.doi.org/ 10.1080/02786820600979139
[14] G. Mordas, T. Petäjä, and V. Ulevičius, Optimisation of the operation regimes for the water-based condensation particle counter, Lith. J. Phys. 52(3), 253–260 (2012),
[15] M.R. Stoltzenburg and P.H. McMurry, An ultrafine aerosol condensation nucleus counter, Aerosol Sci. Technol. 14, 48–65 (1991),
http://dx.doi.org/ 10.1080/02786829108959470
[16] A. Asmi, M. Collaud Coen, J.A. Ogren, E. Andrews, P. Sheridan, A. Jefferson, E. Weingartner, U. Baltensperger, N. Bukowiecki, H. Lihavainen, N. Kivekäs, E. Asmi, P.P. Aalto, M. Kulmala, A. Wiedensohler, W. Birmili, A. Hamed, C. O’Dowd, S.G. Jennings, R. Weller, H. Flentje, A. Mari Fjaeraa, M. Fiebig, C. Lund Myhre, A.G. Hallar, and P. Laj, Aerosol decadal trends – Part 2: In-situ aerosol particle number concentrations at GAW and ACTRIS stations, Atmos. Chem. Phys. Discuss. 12, 20849–20899 (2012),
http://dx.doi.org/ 10.5194/acpd-12-20849-2012
[17] C. Reche, X. Querol, A. Alastuey, M. Viana, J. Pey, T. Moreno, S. Rodríguez, Y. González, R. Fernández-Camacho, A.M. Sánchez de la Campa, J. de la Rosa, M. Dall’Osto, A.S.H. Prévôt, C. Hueglin, R.M. Harrison, and P. Quincey, New considerations for PM, Black Carbon and particle number concentration for air quality monitoring across different European cities, Atmos. Chem. Phys. 11, 6207–6227 (2011),
[18] H.G. Scheibel and J. Porstendörfer, Generation of monodisperse Ag- and NaCl-aerosols with particle diameters between 2 and 300 nm, J. Aerosol Sci. 14(2), 113–126 (1983),
http://dx.doi.org/ 10.1016/0021-8502(83)90035-6
[19] A. Wiedensohler, D. Orsini, D.S. Covert, D. Coffmann, W. Cantrell, M. Havlicek, F.J. Brechtel, L.M. Russell, R.J. Weber, J. Gras, J.G. Hudson, and M. Litchy, Intercomparison study of the size-dependent counting efficiency of 26 condensation particle counters, Aerosol Sci. Technol. 27, 224–242 (1997),
http://dx.doi.org/ 10.1080/02786829708965469
[20] TSI Inc, Model 3936 SMPS (Scanning Mobility Particle Sizer), Operation and Service Manual, P/N 1933796, Revision H (TSI press, Massachusetts, 2003)
[21] V. Ulevičius, M. Kulmala, G. Mordas, V. Matulevičius, V. Grigoraitis, K. Hämeri, and P. Aalto, Method and apparatus for increasing the size of small particles, EU Patent No. EP 1702205 (2006),
Bibliographic data: EP1702205  (A1) ― 2006-09-20/
[22] V. Ulevičius, S. Byčenkienė, V. Remeikis, A. Garbaras, S. Kecorius, J. Andriejauskienė, D. Jasinevičienė, and G. Mocnik, Characterisation of pollution events in the East Baltic region affected by regional biomass fire emissions. Atm. Research 98(2–4), 190–200 (2010),
http://dx.doi.org/ 10.1016/j.atmosres.2010.03.021
[23] K. Plauškaitė, V. Ulevičius, N. Špirkauskaitė, S. Byčenkienė, T. Zielinski, T. Petelski, and A. Ponczkowska, Observation of new particle formation events in the south-eastern Baltic sea, Oceanologia 52(1), 53–75 (2010),