[PDF]    http://dx.doi.org/10.3952/lithjphys.54202

Open access article / Atviros prieigos straipsnis

Lith. J. Phys. 54, 8088 (2014)

J. Vyšniauskas and J. Matukas
Faculty of Physics, Vilnius University, Saulėtekio 9, LT-10222 Vilnius, Lithuania
E-mails: juozas.vysniauskas@ff.vu.lt; jonas.matukas@ff.vu.lt

Received 26 July 2013; revised 13 October 2013; accepted 4 December 2013

The plasma formation and extraction processes in silicon n+np+, p+pn+, and Schottky TRAPATT (TRApped Plasma Avalanche Triggered Transit) diodes were simulated. The drift-diffusion model was chosen for the simulation of the processes. We show that the minority carrier storage depends on the TRAPATT diode structure. The most intensive minority carrier storage takes place in the n+np+ diode, where holes accumulate in the n+ region and electrons in the p+ region. The extraction of electrons from the p+ region is more rapid due to higher electron mobility compared to holes. Thus, the initial current for the next oscillation period is the hole current. In the p+pn+ diode the accumulation of holes in the n+ region is inferior to that in the n+np+ diode due to a higher electric field in the pn+ interface. The initial current in p+pn+ diodes is lower and the voltage oscillation is almost periodic. The most efficient structure in respect to low minority carrier storage is a pm-type Schottky diode. In this structure the initial conditions in all voltage oscillation periods are the same and there is a quite periodic oscillation in a very wide region of the diode total current density. We show that periodic oscillation can be achieved even in the n+np+ diode with optical generation of the carriers during the plasma formation and extraction period.
Keywords: simulation, avalanche diodes, diffusion, minority carrier storage
PACS: 85.30.Mn

J. Vyšniauskas, J. Matukas
Vilniaus universiteto Fizikos fakultetas, Vilnius, Lietuva

Darbe pateikti plazmos susidarymo bei išsiurbimo procesų n+np+, p+pn+ ir Šotkio silicio TRAPATT (TRApped Plasma Avalanche Triggered Transit) dioduose modeliavimo rezultatai. Procesų modeliavimui buvo pasirinktas dreifinis-difuzinis modelis. Parodyta, kad šalutinių krūvininkų kaupimas priklauso nuo TRAPATT diodo sandaros. Intensyviausias šalutinių krūvininkų kaupimas vyksta n+np+ diode, kur skylės kaupiasi n+ srityje, o elektronai – p+ srityje. Dėl didesnio judrio elektronų išsiurbimas iš p+ srities vyksta greičiau negu skylių iš n+ srities. Dėl to pradinė srovė kitame virpesių periode yra skylių srovė. p+pn+ diode skylių kaupimas n+ srityje yra mažesnis negu n+np+ diode (dėl didesnio elektrinio lauko np+ sandūroje). Pradinė srovė p+pn+ dioduose yra mažesnė, o įtampos virpesiai praktiškai yra periodiniai. Efektyviausias mažo šalutinių krūvininkų kaupimo požiūriu darinys yra pm tipo Šotkio diodas. Šiame darinyje pradinės sąlygos visiems įtampos virpesių periodams yra vienodos, ir virpesiai praktiškai yra periodiniai plačiame pilnosios srovės tankio diapazone. Parodyta, kad periodiniai virpesiai gali egzistuoti netgi n+np+ diode optiškai generuojant krūvininkus plazmos formavimosi ir išsiurbimo metu.

References / Nuorodos

[1] H.J. Prager, K.K.N. Chang, and S. Weisbrod, High-power, high-efficiency silicon avalanche diodes at ultra high frequencies, Proc. IEEE 55(4), 586–587 (1967),

[2] D.F. Kostishack, UHF avalanche diode oscillator providing 400 watts peak power and 75 percent efficiency, Proc. IEEE 58(8), 1282–1283 (1970),

[3] S.G. Liu, 2000-W-GHz complementary TRAPATT diodes, in: International Solid-State Circuits Conference: Digest of Technical Papers (1973) pp. 124–125,

[4] S.K. Lyubutin, S.N. Rukin, B.G. Slovikovsky, and S.N. Tsyranov, Generation of powerful microwave voltage oscillations in a diffused silicon diode, Semiconductors 47(5), 670–678 (2013),

[5] R.L. Johnston, D.L. Scharfetter, and D.L. Bartelink, High-efficiency oscillations in germanium avalanche diodes below the transit-time frequency, Proc. IEEE 56(9), 1611–1613 (1968),

[6] A.S. Clorfeine, R.J. Ikola, and L.S. Napoli, A theory for the high-efficiency mode of oscillation in avalanche diodes, RCA Review 30(3), 394–421 (1969)

[7] B.C. De Loach and D.L. Scharfetter, Device physics of TRAPATT oscillators, IEEE Trans. Electron Devices 17(1), 9–21 (1970),

[8] R.S. Ying and N.B. Kramer, X-band silicon TRAPATT diodes, Proc. IEEE 58(8), 1285–1286 (1970),

[9] C.H. Oxley, A.M. Howard, and J.J. Purcell, X-band TRAPATT amplifiers, Electron. Lett. 13(14), 416–417 (1977),

[10] K.K.N. Chang, H. Kawamoto, H.J. Prager, J. Reynolds, A. Rosen, and V.A. Milkinas, High-efficiency avalanche diodes (TRAPATT) for phased-array radar systems, in: International Solid-State Circuits Conference: Digest of Technical Papers (1973) pp. 122–123, 207,

[11] H. Kawamoto, Gigahertz-rate 100-V pulse generator, IEEE J. Solid-State Circuits 8(1), 63–66 (1973),

[12] F.K. Vaitiekūnas, J.B. Vyšniauskas, Š.A. Kamaldinov, M.J. Filatov, and G.E. Šimėnas, Investigation of the pulse generator external circuit with TRAPATT diode, Tekhnika Sredstv Svyazi, Ser. Radioizmeritel’naya Tekhnika 35(1), 11–16 (1981) [in Russian]

[13] J. Vyšniauskas, Charge Generation and Transport in TRAPATT Structures during the Generation of Nonsinusoidal Oscillation, Doctoral Thesis (Vilnius University, Vilnius, 1985)

[14] R.A. Kiehl and R.E. Hibray, High-speed digital microwave transmitter utilizing optical modulation, Proc. IEEE 66(6), 708–709 (1978),

[15] H. Gottstein, Amplification and transformation of optical signals with a TRAPATT diode, Int. J. Electron. 56(5), 663–668 (1984),

[16] G. Šimėnas, Generation of Pulsed and Sinusoidal Oscillation on Avalanche Diodes with Optical Generated Carriers, Doctoral Thesis (Vilnius University, Vilnius, 1991)

[17] R. Jacob Baker, Time domain operation of the TRAPATT diode for picosecond-kilovolt pulse generation, Rev. Sci. Instrum. 65(l0), 3286–3288 (1994),

[18] V.A. Kozlov, A.F. Kardo-Sysoev, and V.I. Brylevskii, Impact ionization wave breakdown of drift step recovery diodes, Semiconductors 35(5), 608–611 (2001),

[19] P. Rodin, U. Ebert, W. Hundsdorfer, and I.V. Grekhov, Superfast fronts of impact ionization in initially unbiased layered semiconductor structures, J. Appl. Phys. 92(4), 1971–1980 (2002),

[20] P. Rodin and I. Grekhov, Dynamic avalanche breakdown of a p-n junction: Deterministic triggering of a plane streamer front, Appl. Phys. Lett. 86, 243504 (2005),

[21] I.V. Grekhov and P.B. Rodin, Triggering of superfast ionization fronts in silicon diode structures by field-enhanced thermionic electron emission from deep centers, Tech. Phys. Lett. 37(9), 849–853 (2011),

[22] F.K. Vaitiekūnas, J.B. Vyšniauskas, and M.V. Meilūnas, Influence of n+n region steepness to plasma formation and extraction processes in silicon TRAPATT diodes, Elektronnaya Tekhnika, Ser. Elektronika SVCh 361(1), 34–37 (1984) [in Russian]

[23] J. Vyšniauskas, V. Klimenko, J. Matukas, and V. Palenskis, Simulation of electron diffusion effect on plasma formation in silicon TRAPATT diodes, Lith. J. Phys. 52(3), 203–213 (2012)

[24] R.A. Kiehl, Dynamic minority-carrier storage in TRAPATT diodes, Solid State Electron. 23(3), 217–222 (1980),

[25] F. Vaitiekunas and J. Vyshniauskas, Differences of plasma formation and extraction in p+nn+ and n+pp+ silicon TRAPATT structures, Electron. Lett. 17(21), 822–824 (1981),

[26] C.M. Lee, R.J. Lomax, and G.I. Haddad, Semiconductor device simulation, IEEE Trans. Microw. Theor. Tech. 22(3), 160–177 (1974),

[27] L.M. Degtyarev and A.P. Favorskii, Flow variant of sweep method, Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki [Comput. Math. Math. Phys., in Rusian] 8(3), 679–684 (1968)

[28] L.M. Degtyarev and A.P. Favorskii, Flow variant of sweep method for difference tasks with strongly varying coefficients, Zhurnal Vychislitel’noi Matematiki i Matematicheskoi Fiziki [Comput. Math. Math. Phys., in Russian] 9(1), 211–218 (1969)